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Quantum chemistry calculations constitute an important application of quantum annealing (QA). For practical
applications in quantum chemistry, it is essential to estimate the ground-state energy of the Hamiltonian with
chemical accuracy. However, there is no known method for guaranteeing the accuracy of the energy estimated
via QA. Here, we propose a method for guaranteeing the accuracy of the energy estimated via QA using the
Weinstein and Temple bounds. In our scheme, before QA is performed, the energies of the ground state and
first excited state must be preestimated with some error bars (corresponding to the possible estimation error)
via classical computation with some approximations. We show that, if the expectation value and standard
deviation of the energy of the state after QA are lower than certain threshold values (that we can calculate
from the preestimation), the ground-state energy estimated by QA is closer to the ground-state energy than the
preestimation. As the expectation value and standard deviation of the energy can be experimentally measured
via QA, our results pave the way for accurate estimation of the ground-state energy using QA.
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I. INTRODUCTION

In recent years, quantum chemistry calculations have
attracted considerable attention as a novel application of
quantum devices because of their potential use in medical
fields. One of the main purposes of quantum chemistry is
to calculate the energy of the molecular Hamiltonian. High
accuracy of the energy of chemical materials is required, i.e.,
at least 1.6 × 10−3 hartree, where 1 hartee = e2/4πε0a0 =
27.211 eV and a0 = 1 bohr = 0.529 × 10−10 m. This ac-
curacy is called chemical accuracy. Energy with chemical
accuracy allows us to estimate the chemical reaction rate at
room temperature using the Eyring equation [1].

There are sophisticated techniques for mapping the molec-
ular Hamiltonian with the second quantized form into a spin
Hamiltonian. These techniques are important for implement-
ing quantum chemistry calculations using quantum devices
composed of qubits, because the Hamiltonian for describ-
ing the molecules in the quantum devices should be written
using the Pauli matrices. We can map the second-quantized
many-body Hamiltonians onto those of qubit systems using
the Bravyi–Kitaev transformation [2–6]. In addition, there
are ways to generate effective three-body interactions using
two-body interactions [7,8].

There is an improvement over the Jordan–Wigner trans-
formation in terms of the required number of qubit operators
per fermionic operator. The Jordan–Wigner transformation
maps one of n fermionic operators to O(n) qubit opera-
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tors. By contrast, the Bravyi–Kitaev transformation maps
one of n fermionic operators to O(log(n)) qubits. A com-
parison between the gate numbers of the Bravyi–Kitaev and
Jordan–Wigner transformations to obtain the ground state and
the lowest energy with the Trotter decomposition has been
reported [9]. Furthermore, Babbush et al. represented the
Hamiltonian using only a two-local interaction between spins
[10].

Quantum algorithms have also been proposed for fault-
tolerant quantum computation in quantum chemistry calcu-
lations [11–13]. In addition, molecular energies have been
obtained using phase-estimation algorithms [14,15]. How-
ever, a fault-tolerant quantum computer requires many qubits
with high-fidelity gate operations beyond the capability of
a near-term quantum computer to perform error correction.
Therefore, algorithms for quantum chemistry have not been
experimentally implemented with a practically useful size
thus far.

Recently, noisy intermediate-scale quantum (NISQ) com-
puting has been proposed [16–18]. A promising algorithm
for NISQ is the variational quantum eigensolver (VQE) with
the variational method [19,20]. The VQE gives the lowest
eigenvalue of a Hamiltonian, such as that of a chemical ma-
terial. It is a hybrid quantum-classical algorithm. Variational
algorithms have also been used to simulate quantum dynamics
[21,22]. The standard deviation has been used to determine
how close the quantum state is to the energy eigenstate in the
NISQ algorithm [23].

Quantum annealing (QA) is also a promising method
for implementing quantum chemistry calculations. It has
traditionally been used to solve combinatorial optimization
problems [24,25]. We map a combinatorial optimization prob-
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lem into the Ising Hamiltonian HP and we call this a problem
Hamiltonian whose ground state corresponds to the solu-
tion of the combinatorial optimization problem. Meanwhile,
we use another Hamiltonian HD that represents transverse
magnetic fields, which we call a driver Hamiltonian. In QA,
we prepare a ground state of HD and the total time-dependent
Hamiltonian is changed from HD to HP within an annealing
time T . As long as then the adiabatic condition is satisfied,
the adiabatic theorem guarantees that the ground state of the
problem Hamiltonian can be obtained via QA. Importantly,
by replacing HP with the molecular Hamiltonian, QA can be
used to estimate the energy of the ground state in quantum
chemistry [6,26–29]. In addition, the search for excited states
in quantum chemistry has been discussed [30,31].

D-Wave Systems Inc. [32] realized QA machines com-
posed of thousands of qubits. They used superconducting flux
qubits to implement QA. There have been many experimental
demonstrations of QA using the devices of D-Wave Systems
Inc. [33–36]. In particular, quantum chemistry calculations
have been demonstrated using QA to estimate the ground-state
energy for a small-sized molecule [28]. Also, recently, a cou-
pler to realize a no-stoquastic Hamiltonian was developed and
there were some experimental demonstrations for this [37,38].
It is worth mentioning that the coherence time of the qubits
with the D-wave machine is less than 100 ns [39] and this
short coherence time makes it difficult to realize single qubit
operations except computational basis measurements. On the
other hand, by using a recently proposed scheme called a
spin-lock QA, it is possible to use long-lived qubits such, as
capacitively shunted flux qubits, and we can perform arbitrary
single qubit operations in this architecture (see Appendix D)
[40,41].

The potential problem in using QA for practical quantum
chemistry calculations arises because of the intrinsic error
in QA. Nonadiabatic transitions induce a transition from the
ground state to excited states. Moreover, decoherence owing
to the coupling with the environment causes unwanted decay
of the quantum states during QA. Because of these problems,
it is not clear whether chemical accuracy can be achieved in
quantum chemistry calculations using QA. Therefore, it is es-
sential to achieve higher accuracy to estimate the ground-state
energy in QA.

In this paper, we propose a method for estimating the
energy of the target Hamiltonian with guaranteed accuracy,
where we combine QA with classical computation. The en-
ergy calculated from QA should be larger than the true
ground-state energy owing to errors and the difference be-
tween the energy calculated from QA and the true energy is
defined as the estimation error. The upper bound of such an
estimation error is called an error bar. To measure the error
bar, we use the Weinstein bound: if the population of the
ground state is more than 1/2 after QA, the standard deviation
of the energy (that we can experimentally measure) provides
us with the upper bound of the estimation error. We present
a method for checking whether the population of the ground
state is more than 1/2 after QA by using classical computa-
tion. We must determine the possible range of the energies of
the ground state and first excited state before QA by perform-
ing classical computation with some approximation (such as a
mean-field technique). We can calculate a certain threshold

FIG. 1. Flow chart showing how to estimate the ground-state
energy of the target Hamiltonian in our protocol. We must preesti-
mate the ground-state energy using a classical computer with some
approximation and determine Ẽ0, Ẽ1, δM0, and δM1, where Ẽ0 (Ẽ1) is
the approximated ground (first-excited) -state energy from the prees-
timation and δM0 (δM1) is the error bound of the preestimation. In
addition, E0 (E1) denotes the true energy of the ground (first excited)
state and 〈H〉 (〈�E 2〉) denotes the expectation (the squared standard
deviation) of the Hamiltonian of the state after QA. In our protocol,
when 〈H〉 is smaller than ( Ẽ1−Ẽ0

2 − δM0+δM1
2 ), the standard deviation

of the state after QA can be the upper bound of the estimation error.

by using values from the preestimation and, if the energy
estimated by QA is lower than the threshold, the population of
the ground state is more than 1/2 after QA. In addition, if the
classical error bars (corresponding to the possible estimation
error) given by the preestimation are larger than the standard
deviation of the energy measured from QA, we can use the
standard deviation of the energy as the improved error bars
for the energy estimation. The method is schematically shown
in Fig. 1. Moreover, in order to reduce the error, we employ
the Temple bound. To do that, we must determine the lower
bound of the energy of the first excited state via classical
computation. If the ground-state energy estimated with QA
is smaller than the bound, we can obtain the error bar of the
estimation. This method is schematically shown in Fig. 2.

FIG. 2. Flow chart showing how to estimate the ground-state
energy of the target Hamiltonian in our protocol using the Temple
bound. We must preestimate the lower bound E (low)

1 of the first-
excited-state energy using a classical computer. When the energy
from QA satisfies E (low)

1 > 〈H〉, we obtain the lower bound of the

ground-state energy E0, 〈H〉 − �E2

E (low)
1 −〈H〉 . Here, we use the same

notation as that in Fig. 1.
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We numerically demonstrate that this approach provides more
accurate error bars than the approach based on the Wein-
stein bound. It is worth mentioning that, although we focus
on QA as a primary application of our method, our scheme
is also useful for the other schemes to find a ground state
such as a variational quantum eigensolver with NISQ devices
[19].

The remainder of this paper is organized as follows. Sec-
tion II reviews QA. Section III introduces the Weinstein and
Temple bounds. Section IV describes our approach of using
the Weinstein and Temple bounds for obtaining the error bars
for the energy estimation with QA.

Section V describes our method for estimating the ground-
state energy of the hydrogen molecule to evaluate the
performance of our scheme. Finally, Sec. VI summarizes our
findings.

II. QUANTUM ANNEALING

Here, we review QA for the ground-state search. We re-
gard the driving Hamiltonian as the transverse field. The total
Hamiltonian for QA is described as follows:

H (t ) = t

T
HP +

(
1 − t

T

)
HD, (1)

where T is the annealing time. First, we prepare the ground
state of the transverse field HD = −∑N

i=1 σ̂ x
i , |�(0)〉 =

|+ · · · +〉, where the quantum state |+〉 denotes the eigenstate
of σ x with the eigenvalue +1. Second, the driver Hamiltonian
is adiabatically changed into the problem Hamiltonian. Fi-
nally, we obtain the ground state of the problem Hamiltonian
if the dynamics is adiabatic; hence the measurement of an
observable HP provides the ground-state energy.

Various forms of noise degrade the accuracy of QA. The
main sources of such noise are environmental decoherence
and nonadiabatic transitions. There is a trade-off between
these two errors. We should implement QA slowly to avoid
nonadiabatic transitions; however, slow dynamics tends to
increase the error owing to decoherence.

Many attempts have been made to suppress nonadiabatic
transitions and decoherence. To find a ground state of the Ising
Hamiltonian, the use of nonstoquastic Hamiltonians has been
proposed to increase the energy gap during QA for a spe-
cific model, which could contribute toward the suppression of
nonadiabatic transitions [42–45]. An inhomogeneous driving
Hamiltonian for a p-spin model is known to contribute toward
accelerating QA for specific cases [46,47]. It is shown that the
use of Ramsey type measurements can suppress the degra-
dation due to the nonadiabatic transitions in QA [25]. Both
theoretical and experimental studies have been conducted to
suppress decoherence during QA. Error correction techniques
[48], spin lock techniques [40,49,50], and decoherence-free
subspaces [51,52] can be used for the suppression of decoher-
ence. In addition, a method involving nonadiabatic transition
and quenching for efficient QA has also been investigated
[53–60]. Counterdiabatic driving is considered as one of the
approaches to improve the performance of the QA [61–67].

Despite previous efforts, there is no universal way to
suppress both environmental decoherence and nonadiabatic

transitions during QA, which makes it difficult to guarantee
the accuracy of the results of QA.

III. WEINSTEIN BOUND AND TEMPLE BOUND

Here, we review the Weinstein and Temple bounds. Let E0

(E1) denote the true energy of the ground (first excited) state.
First, we introduce the Weinstein bound [68].

Theorem 1. If the state 〈ψ | satisfies 〈ψ |ψ0〉 � 1
2 , then we

obtain

σ � 〈ψ | H |ψ〉 − E0, (2)

where σ =
√

〈ψ | H2 |ψ〉 − 〈ψ | H |ψ〉2 denotes the standard
deviation of the energy and |ψ0〉 is the true ground state.

Next, we introduce the Temple bound [69].
Theorem 2. If we know the exact first excited energy E1

and a state |ψ〉 satisfies E1 > 〈ψ | H |ψ〉, then we obtain the
following lower bound:

Elower = 〈ψ | H |ψ〉 − σ 2

E1 − 〈ψ | H |ψ〉 , (3)

where σ =
√

〈ψ | H2 |ψ〉 − 〈ψ | H |ψ〉2.
This inequality requires precise knowledge of E1. How-

ever, for many practical applications, it is difficult to
determine the exact value of the first-excited-state energy.
Thus we consider a case for which we know an approximate
(or a lower-bounded) value of the first-excited-state energy. In
this case, we can use the following inequality.

Theorem 3. If the state |ψ〉 and the approximate first-
excited-state energy E app

1 satisfy E1 > E app
1 > 〈ψ | H |ψ〉, then

we obtain the following lower bound:

Elower = 〈ψ | H |ψ〉 − σ 2

E app
1 − 〈ψ | H |ψ〉 , (4)

where σ =
√

〈ψ | H2 |ψ〉 − 〈ψ | H |ψ〉2.

IV. METHOD

Here, we present our scheme for estimating a ground-state
energy with guaranteed accuracy for QA in a certain condi-
tion. We use the two inequalities presented in the previous
section to obtain the error bars for QA.

To use these inequalities, we must measure the expectation
value and standard deviation of the Hamiltonian after QA.
In practice, the quantum states become mixed states because
the nondiagonal terms in the density matrix decay owing to
decoherence. After implementing QA, we measure only the
Hamiltonian and standard deviation. In this case, we can show
that the nondiagonal terms in the energy basis do not affect the
expectation value and standard deviation of the Hamiltonian.
Hence we can describe the quantum state after QA as either
a pure state or a mixed state as long as the energy population
between them is the same. For simplicity, we use a pure state
for the description.

Suppose that we obtain a state of |φ(ann)
0 〉 after QA. We

rewrite this state as follows:∣∣φ(ann)
0

〉 =
√

1 − ε2 |φ0〉 +
∑
m �=0

εm |φm〉 , (5)
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where |φ0〉 denotes the ground state, |φm〉 (m > 0) denotes
the mth excited state, εm denotes the amplitude of the mth
excited state, and ε denotes the amplitude of all the states
except the ground state. In other words,

√
1 − ε2 denotes the

amplitude of the ground state. Owing to normalization, we
have a condition ε2 = ∑

m �=0 ε2
m. As we consider the expecta-

tion value of the Hamiltonian and the standard deviation, the
relative phase between the energy eigenstates does not affect
our results. Therefore, we can assume εm to be real values
without loss of generality throughout this paper. The squared
standard deviation �E2 is given by

�E2 = 〈
φ

(ann)
0 | H2

P |φ(ann)
0

〉 − 〈
φ

(ann)
0 | HP |φ(ann)

0

〉2
. (6)

To quantify the accuracy of the output of QA, we define
two values: an estimation error and an error bar. The estima-
tion error is defined as

δest = 〈
φ

(ann)
0 | HP |φ(ann)

0

〉 − E0. (7)

It is worth mentioning that δest is always positive because E0

provides the lowest energy. However, it is difficult to measure
the estimation error experimentally. Therefore, we define an
error bar δerrorbar as the upper bound of the estimation error,
such as δest < δerrorbar, and the objective of our study is to
present a method for determining the error bar from experi-
mentally observable quantities.

A. Bounds on the error of the energy using the Weinstein
bound for QA

First, we explain how to use the Weinstein bound to obtain
the error bar from experimentally observable quantities.

By applying the Weinstein bound to the case of QA, we
can rewrite Theorem 1 in the following form.

Theorem 4. If ε2 � 1
2 is satisfied, then

�E2 − ( 〈φ(ann)
0 | HP |φ(ann)

0 〉 − 〈φ0| HP |φ0〉
)2 � 0. (8)

Thus we regard the standard deviation as the error bar
and the lower bound of the ground-state energy is given by
〈φ(ann)

0 | HP |φ(ann)
0 〉 − �E . However, if we only use experi-

mental results with QA, it is not straightforward to judge
whether the condition 1

2 � ε2 is satisfied.
We present a method for judging whether 1

2 � ε2 is
satisfied. The key idea is to combine QA with classical com-
putation. In particular, we perform a preestimation of the
energies of the ground state and first excited state. We can
employ a classical computer for such a preestimation by using
a suitable approximation, such as a mean-field technique or
variational methods. Let Ẽ0 (Ẽ1) denote the approximate value
of the ground (first-excited) -state energy calculated from the
preestimation. If this preestimation is sufficiently accurate, the
condition 1

2 � ε2 is satisfied; hence we can use the standard
deviation of the energy to obtain the upper bound of the error
estimation, as will be explained later.

There are many ways to calculate the ground-state and
excited-state energies of molecules in quantum chemistry
using a classical computer. For example, a variational trial
function gives us the upper bound of the ground-state energy.
In addition, there is a way to estimate the lower bound of
the ground-state energy [69]. Furthermore, various ways to

obtain the energy gap between the ground state and the excited
states are known [70–73]. By combining these techniques, the
range of the ground-state and first-excited-state energies can
be obtained.

The classical estimation error between the approximate
energy Ẽn and the true energy En is denoted by δẼn. Thus we
have the equality

Ẽn = En + δẼn. (9)

We assume that the classical estimation errors are bounded as
follows:

|δẼ0| < δM0, |δẼ1| < δM1, (10)

where δM0 and δM1 denote the classical error bars represent-
ing the accuracy of the preestimation. We assume that both
δM0 and δM1 are positive. We can show that the sufficient
condition of the inequality 1

2 � ε2 is

E (ann)
0 � 1

2 (E0 + E1), (11)

where E (ann)
0 = 〈φ(ann)

0 | HP |φ(ann)
0 〉 is the energy of the state

|φ(ann)
0 〉. Substituting (9) into (11), we obtain

(E0 <)E (ann)
0 < 1

2 (Ẽ0 + Ẽ1) − 1
2 (δẼ0 + δẼ1). (12)

We obtain a sufficient condition for (12) as follows:

(E0 <)E (ann)
0 < 1

2 (Ẽ0 + Ẽ1) − 1
2 (|δẼ0| + |δẼ1|). (13)

From |δẼ0| < δM0 and |δẼ1| < δM1, a sufficient condition for
(13) is

(E0 <)E (ann)
0 < 1

2 (Ẽ0 + Ẽ1) − 1
2 (δM0 + δM1). (14)

From the approximate energy by the preestimation (Ẽ0 and
Ẽ1) and the upper bound of the classical estimation errors
(δM0 and δM1), Eq. (14) is the sufficient condition of (11).
This means that, as long as (14) is satisfied, we can use the
standard deviation of the energy as the new error bar (corre-
sponding to the upper bound of the estimation error) of the
energy estimation. In particular, when the new error bar given
by the standard deviation is smaller than δM0, the ground-state
energy estimated by QA is closer to the ground-state energy
than the preestimation.

Note that the condition given by (14) is not always sat-
isfied. If there are significant effects of decoherence and/or
nonadiabatic transitions, E (ann)

0 may be large such that the
sufficient condition is not satisfied. Alternatively, if the esti-
mation error (δM0 + δM1) is large, again, it becomes more
difficult to satisfy the sufficient condition. For example, at
least, (δM0 + δM1) should be sufficiently small to satisfy the
following conditions:

E0 < 1
2 (Ẽ0 + Ẽ1) − 1

2 (δM0 + δM1). (15)

Otherwise, we cannot use the Weinstein bound regardless
of the results of QA. In these cases, we should try other
approaches, such as optimizing the QA schedule, fabricat-
ing new samples with lower decoherence, or more precise
preestimation with a longer calculation time using a classical
computer to satisfy the condition given by (14).
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B. Bounds on the error of the energy using the Temple bound
for QA

Second, we explain how to use the Temple bound to obtain
the error bar from experimentally observable quantities. By
applying Theorem 2 to the case of QA, we obtain the follow-
ing.

Theorem 5. If the condition E1 > 〈φ(ann)
0 | H |φ(ann)

0 〉 is sat-
isfied, then we obtain the lower bound of the ground-state
energy:

ET
lower = 〈φ(ann)| H |φ(ann)〉 − �E2

E1 − 〈φ(ann)| H |φ(ann)〉 , (16)

where E1 is the exact energy for the first excited state.
However, to use this inequality, we need to determine the

exact value of the first-excited-state energy, which is difficult
using a classical computer. Therefore, we consider replacing
the exact first-excited-state energy E1 with an approximate
value. By applying Theorem 3 to our case, we obtain the
following form.

Theorem 6. If the approximate first-excited-state energy
E (low)

1 satisfies E1 > E (low)
1 > 〈H〉, then we obtain the lower

bound

ET ′
lower = 〈φ(ann)| H |φ(ann)〉 − �E2

E (low)
1 − 〈φ(ann)| H |φ(ann)〉 .

(17)

We show how the Temple bound can be used for QA by
preestimation of the energy via classical computation. We
need to determine the lower bound of the excited-state en-
ergy. Hence, similar to the case of the Weinstein bound, we
assume that Ẽ1 = E1 + δẼ1 with |δẼ1| < δM1 from classical
computation. In this case, we set E (low)

1 = Ẽ1 − δM1. Suppose
that we obtain E (ann)

0 after performing QA. If E (ann)
0 < E (low)

1
is satisfied, we can use the Temple bound to obtain the lower
bound of the ground-state energy, which corresponds to the
error bar of the QA estimation.

C. Comparison between the Weinstein bound
and the Temple bound

Here, we explain how to compare the error bars obtained
from the Weinstein bound with those obtained from the Tem-
ple bound when we perform QA. It is worth mentioning that
the performance strongly depends on the accuracy of the
preestimation; hence the comparison is not straightforward.
In particular, the Weinstein bound requires preestimation of
both the ground state and the first excited state, whereas the
Temple bound requires preestimation of only the first excited
state. Moreover, the accuracy of the Temple bound depends on
how accurately we can estimate the first-excited-state energy,
whereas the accuracy of the Weinstein bound does not depend
on the accuracy of the preestimation as long as the condition
described in (14) is satisfied.

We consider the following two extreme cases for the com-
parison; the Temple bound is advantageous in one of them
and disadvantageous in the other. First, by assuming that
we have perfect knowledge of the first excited state, we set
E (low)

1 = E1. In this case, the Temple bound is advantageous.
Second, we assume that we have the least knowledge of the

first excited state under the constraint that (15) is satisfied.
This corresponds to the worst case of the Temple bound,
while we can still employ the Weinstein bound if we use
long-lived qubits with QA. More specifically, by substituting
Ẽ0 = E0 into (15), we obtain δM1 < Ẽ1 − E0. By assuming
that Ẽ1 = E1 − δM1, we obtain the lower bound of the first-
excited-state energy Ẽ1 > E0+E1

2 . From these calculations, we
choose E (low)

1 = E0+E1
2 . In this case, the Temple bound is dis-

advantageous. In Sec. V, when we compare the Temple bound
with the Weinstein bound, we consider these two conditions.

D. Measurement of the energy and standard deviation
of the Hamiltonian

We describe how to measure the energy and standard de-
viation of the Hamiltonian in QA. We assume that we can
perform any single-qubit measurements in QA. The Hamilto-
nian is now written in the form H = ∑

j P̂j , where P̂j denotes
the product of the Pauli matrices (such as σ̂ z

0 , σ̂ z
1 , . . . and

σ̂ x
0 σ̂ x

1 σ̂
y
2 σ̂

y
3 ). After the preparation of the ground state with QA,

we can implement single-qubit measurements to obtain 〈P̂1〉.
This means that, by repeating the experiments (that involve the
ground-state preparation and single-qubit measurements), we
can measure 〈P̂j〉 for every j and obtain 〈H〉 by summing them
up. Similarly, we can measure 〈H2〉; hence we can also mea-
sure the standard deviation of the energy. These techniques
have been used in the algorithms of NISQ devices [18,74].

We explain a possible experimental implementation for
measuring the energy and standard deviation of the Hamil-
tonian. In conventional QA, we cannot perform arbitary
single-qubit operations. For example, in the current D-Wave
machine, the available operations are adiabatic changes of
external fields and measurements of σ̂z. In this case, it is
not possible to measure the standard deviation of the energy
because of the requirement to measure σ̂x and σ̂y. However,
owing to recent developments in QA from both theoretical and
experimental aspects, such measurements would be available
for cutting-edge devices. A capacitively shunted flux qubit
(CSFQ) is another candidate for realizing QA with a long
coherence time [75,76]. The CSFQ was originally developed
for a gate-type quantum computer and arbitrary single-qubit
operations can be implemented on it with microwave pulses
[75,76]. Recently, there was a theoretical proposal for using
this device in QA [40]; hence single-qubit operations are
available with the CSFQ during QA. More details about this
method are described in Appendix D. Therefore, CSFQs are
suitable for our scheme owing to the ability of the arbitrary
single-qubit operations.

V. NUMERICAL RESULTS

This section describes numerical simulations performed to
obtain the error of the energy estimated using our method. In
particular, we consider the hydrogen molecule. The Hamil-
tonian of the hydrogen molecule can be described by the
Pauli matrices. To consider the decoherence, we simulate QA
with the Lindblad master equation and discuss the relation
between the decoherence rate and the accuracy of the energy
estimation. In addition, we plot the improved error bars ob-
tained from our methods.
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TABLE I. Coefficient of the hydrogen molecule. The unit of
these values is GHz, as described in the main text.

h0 −0.09706626816762881
h1 0.17141282644776895
h2 0.16868898170361213
h3 −0.22343153690813586
h4 0.17441287612261597
h5 0.12062523483390428
h6 0.17141282644776892
h7 0.04530261550379928
h8 0.04530261550379928
h9 0.16592785033770355
h10 −0.22343153690813589
h11 0.12062523483390428
h12 0.04530261550379928
h13 0.04530261550379928
h14 0.16592785033770355

We introduce the Lindblad master equation. We consider
the time-dependent system Hamiltonian H (t ) under a noisy
environment. The Lindblad master equation that we use in this
paper is given by

dρ(t )

dt
= −i[H (t ), ρ(t )] +

∑
n

γ
[
σ (k)

n ρ(t )σ (k)
n − ρ(t )

]
,

(18)

where σ
(k)
j (k = x, y, z) denotes the Pauli matrix acting at site

j, γ denotes the decoherence rate, and ρ(t ) is the density
matrix of the quantum state at time t . We solve the Lindblad
master equation numerically using QuTiP [77,78]. Through-
out this paper, we choose the decoherence type σ z

j as the
Lindblad operator. This type of noise has been investigated
in a previous study to consider the effect of noise on the
superconducting qubits [79].

The Hamiltonian of the hydrogen molecule is given by

H = h0I + h1σ̂
z
0 + h2σ̂

z
1 + h3σ̂

z
2 + h4σ̂

z
1 σ̂ z

3

+ h5σ̂
z
0 σ̂ z

2 + h6σ̂
z
0 σ̂ z

1 + h7σ̂
x
0 σ̂ z

1 σ̂ x
2 + h8σ̂

y
0 σ̂ z

1 σ̂
y
2

+ h9σ̂
z
0 σ̂ z

1 σ̂ z
2 + h10σ̂

z
1 σ̂ z

2 σ̂ z
3 + h11σ̂

z
0 σ̂ z

2 σ̂ z
3

+ h12σ̂
x
0 σ̂ z

1 σ̂ x
2 σ̂ z

3 + h13σ̂
y
0 σ̂ z

1 σ̂
y
2 σ̂ z

3 + h14σ̂
z
0 σ̂ z

1 σ̂ z
2 σ̂ z

3 , (19)

where we have used STO-3G basis and Bravyi–Kitaev
transformation. The coefficients of the Hamiltonian (19),
h0, . . . , h14, depend on the interatomic distance. We assume
that the interatomic distance is 0.74 Å. The coefficient of
the Hamiltonian (19) corresponding to the above-mentioned
interatomic distance is listed in Table I and it is calculated
using OpenFermion [80].

The most promising device for QA is a supercon-
ducting qubit. We mainly consider the implementation of
superconducting qubits. The typical energy scale of the su-
perconducting qubit is of the order of GHz [81]. Therefore,
we adopt this energy scale to describe the Hamiltonian.

The relation between the measured energy and the anneal-
ing time is shown in Fig. 3. We can choose the annealing
time to minimize the energy of the problem Hamiltonian after
QA. Throughout this paper, we choose such an optimized

FIG. 3. Plots showing the relation between the annealing time
and the ground-state energy by QA. We consider the hydrogen
molecule with an interatomic distance of 0.74 Å. The vertical axis
represents the energy, while the horizontal axis represents the an-
nealing time T for each decoherence rate γ . Values of γ from top
to bottom in legend correlate with solid curves in the figure from
bottom to top.

annealing time for the plots. Importantly, as the decoherence
rate increases, the minimum energy after the optimization in-
creases because the decoherence can induce a transition from
the ground state to the excited states.

By applying the method described in Sec. IV A, we numer-
ically determine the conditions that satisfy 1

2 � ε2 with the
preestimation when we estimate the ground-state energy of
the hydrogen molecule. In other words, we show the region
where we can use the Weinstein bound so that we can use the
standard deviation as the upper bound of the estimation error.
Such a region is plotted in Fig. 4(a). Moreover, for the case of
E (low)

1 = (E0 + E1)/2, we can also use the Temple bound in
this region. As the decoherence rate increases, preestimation
should be performed more precisely to satisfy 1

2 � ε2. Mean-
while, even when we can use the standard deviation obtained
from QA as the new error bound (owing to the satisfaction
of the condition 1

2 � ε2), the preestimation could still provide
a closer to ground-state energy than the QA if the standard
deviation is larger. We plot the condition when the standard
deviation is smaller than δM0 while the condition 1

2 � ε2 is
satisfied, as shown in Fig. 4(b).

In Fig. 5, we plot the estimation of the ground-state energy
and the lower bound obtained by the Weinstein and Temple
bounds when we use our scheme in QA. As the decoherence
rate decreases, the error bar (providing the lower bound of the
ground state) becomes smaller.

In Fig. 6, we show how close the estimation error cor-
responding to the Weinstein and Temple bounds is to the
chemical accuracy [here, we assume that either E (low)

1 = E1

or E (low)
1 = (E0 + E1)/2 when we use the Temple bound, as

explained in Sec. IV C]. Furthermore, for comparison, we
show the chemical accuracy of the hydrogen molecule. When
the decoherence rate is lower than 10−5, the energy measured
using the Temple bound is within the chemical accuracy.

In this section, we calculate the error bars for the energy
obtained by QA for a Hamiltonian written in qubits obtained
by the Bravyi–Kitaev transformation of molecular hydrogen.
Meanwhile, in Appendix C, we calculate the error bars for the
energy obtained by QA for the Jordan–Wigner transformation
of molecular hydrogen and obtain similar results. In addition,
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FIG. 4. Plot of two types of threshold decoherence rate. One of
them is for the Weinstein bound to be applied. The other one is for
our scheme using the Weinstein bound to be more precise than the
preestimation using a classical computer. As long as the decoherence
rate of QA is lower than the threshold (blue line in the plot), we
can apply the Weinstein bound; hence the standard deviation can be
the upper bound of the estimation error of QA. If (δM0 + δM1)/2
becomes equal to or larger than (E1 − E0)/2, our protocol always
fails regardless of the value of the decoherence rate. As long as the
decoherence rate of QA is lower than the threshold (orange line in the
plot), the standard deviation given from our scheme is more precise
upper bound than the preestimation error of QA. For simplicity, we
assume that 1

2 (Ẽ0 + Ẽ1) = 1
2 (E0 + E1) in these plots. Here, we say

that our scheme succeeds when we can apply the Weinstein bound
based on this prescription and the ground-state energy estimated by
QA is closer to the ground-state energy than the preestimation.

Weinstein
Temple half
Temple exact

FIG. 5. We plot the energy expectation value with the lower
bound (calculated from the error bars) of the ground-state energy
in our scheme. The dashed line represents the exact ground-state
energy. The solid line represents the energy expectation value (E (ann)

0 )
obtained from QA. The green dots represent the lower bound ob-
tained from the Weinstein bound. The red dots represent the lower
bound obtained from the Temple bound when E (low)

1 in (17) is
the exact first-excited-state energy E1. The blue dots represent the
lower bound obtained from the Temple bound when E (low)

1 in (17) is
(E0 + E1)/2.

Weinstein
Temple half
Temple exact

FIG. 6. We plot the estimation error and chemical accuracy (dot-
ted line) against the decoherence rate. The green dots represent
the lower bound obtained from the Weinstein bound. The red dots
represent the lower bound obtained from the Temple bound when
E (low)

1 in (17) is the exact first-excited-state energy E1. The blue dots
represent the lower bound obtained from the Temple bound when
E (low)

1 in (17) is (E0 + E1)/2.

we verify that our scheme can be applied to the case of lithium
hydride, as explained in Appendix A.

VI. CONCLUSION

In this paper, we proposed a method for estimating the
energy of the target Hamiltonian with improved accuracy
by combining QA with classical computation. Based on the
Weinstein bound, if the population of the ground state is more
than 1/2 after QA, the error of the energy for the problem
Hamiltonian is upper bounded by the standard deviation. To
check whether the population of the ground state is more than
1/2 after QA, we used classical computation for the prees-
timation of the energy of the ground state and first excited
state. More precisely, we obtained the approximate energy
of the problem Hamiltonian with possible error bars for the
ground state and first excited state by performing classical
computation with some approximation (such as a mean-field
technique). From the values obtained by the preestimation, we
can calculate a threshold; if the energy of the state after QA is
lower than the threshold, the population of the ground state is
more than 1/2 after QA. In addition, if the standard deviation
of QA is smaller than the error bar in the preestimation, we can
use the standard deviation as the improved error bar. More-
over, to obtain a further improved error bar, we employed the
Temple bound for QA. In this case, it is necessary to determine
the lower bound of the energy of the first excited state using
classical computation. If the estimation of the ground-state
energy with QA is lower than the bound, we can obtain the
error bar of the estimation. We numerically showed that the
error bar obtained from the Temple bound provides a better
bound than that obtained from the Weinstein bound. Our
methods are useful for improving the accuracy of quantum
chemistry calculations, especially when QA with long-lived
qubits is realized experimentally.

Finally, we discuss the scope for future work. Recently,
variationally scheduled quantum simulation has been pro-
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posed, where annealing scheduling has been optimized to
minimize the expectation value of the Hamiltonian [82–88].
In this case, for the optimization of the scheduling parameters,
it is necessary to iterate QA many times. However, in this
scheme, there is no information about the estimation error of
the energy. By combining this method with our proposal, the
expectation value of the Hamiltonian can be decreased and the
accuracy can be improved via measurement of the standard
deviation, because the decrease in the expectation value of the
Hamiltonian usually decreases the energy error of the Temple
and Weinstein bounds when the system is close to the ground
state. Further research is required to quantify the performance
of such a hybrid strategy, and we leave this as a topic for future
study.
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APPENDIX A: LITHIUM HYDRIDE MOLECULE

In this section, we describe the application of our scheme to
the lithium hydride molecule. The Hamiltonian of the lithium
hydride molecule is given by the spin systems, where we
use the STO-3G basis and Jordan–Wigner transformation.
We set the interatomic distance to 2.04 Å. The coefficients
of the Hamiltonian depend on the interatomic distance. We
obtain the coefficients using OpenFermion [80]. As there are
12 qubits in this system, the computational cost is too high
to consider the decoherence by solving the Lindblad master
equation. Therefore, we use the time-dependent Schrödinger
equation without decoherence in our calculations. We set the
annealing time from 102 ns to 105 ns. In Fig. 7, we plot the
energy expectation value obtained by annealing with error
bars obtained by measuring the energy standard deviation.
Furthermore, we show the exact ground-state energy. In Fig. 8,
we plot the estimation error and the standard deviation, where
the chemical accuracy is also shown for comparison. The
estimation error (the standard deviation of the energy) be-
comes lower than the chemical accuracy with an annealing
time longer than 1.0 × 104 (5.0 × 104).

APPENDIX B: DERIVATION OF THE WEINSTEIN
BOUND FOR QA

In this section, we derive the Weinstein bound (Theorem
4). First, we explain the estimation error and standard devia-
tion.

The estimation error of the energy eigenvalue of the prob-
lem Hamiltonian is given by

〈φ| HP |φ〉 − 〈φ0| HP |φ0〉 =
∑
m �=0

ε2
m(Em − E0), (B1)

Weinstein

Temple half
Temple exact

FIG. 7. Energy expectation value with the error bar in our
scheme. The solid line represents the energy expectation value
(E (ann)

0 ) obtained from QA. The dashed line represents the exact
ground-state and first-excited-state energies. The green dots repre-
sent the lower bound obtained from the Weinstein bound. The red
dots represent the lower bound obtained from the Temple bound
when E (low)

1 in (17) is the exact first-excited-state energy E1. The
blue dots represent the lower bound obtained from the Temple bound
when E (low)

1 in (17) is (E0 + E1)/2.

where HP is the problem Hamiltonian, Em is the mth energy
eigenvalue of the problem Hamiltonian, and |φ〉 is the state
that satisfies 〈φ|φ0〉 � 1

2 . Meanwhile, the squared standard
deviation �E2 is given by

�E2 = 〈φ| H2
P |φ〉 − 〈φ| HP |φ〉2

=
∑
m �=0

ε2
m(Em − E0)2 −

(∑
m �=0

ε2
m(Em − E0)

)2

. (B2)

Weinstein

Temple half
Temple exact

FIG. 8. We plot the estimation error and the chemical accuracy
(dotted line) against the decoherence rate. The green dots represent
the lower bound obtained from the Weinstein bound. The red dots
represent the lower bound obtained from the Temple bound when
E (low)

1 in (17) is the exact first-excited-state energy E1. The blue dots
represent the lower bound obtained from the Temple bound when
E (low)

1 in (17) is (E0 + E1)/2.
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We subtract the squared error of the energy from the energy
dispersion �E2 as follows:

�E2 − (〈φ| HP |φ〉 − 〈φ0| HP |φ0〉)2

=
∑
m �=0

ε2
m(Em − E0)2 − 2

(∑
m �=0

ε2
m(Em − E0)

)2

. (B3)

We consider the relation between the standard deviation
and the estimation error of the energy eigenvalue. We remark
that the following inequality holds from the Cauchy–Schwarz
inequality:

(∑
m �=n

ε2
m(Em − En)

)2

�
(∑

m �=n

ε2
m

)(∑
m �=n

ε2
m(Em − En)2

)
. (B4)

The lower bound of the difference between the squared stan-
dard deviation and the squared error of the energy (B3) is
given as follows:

�E2 − (〈φ| HP |φ〉 − 〈φ0| HP |φ0〉)2

=
∑
m �=0

ε2
m(Em − E0)2 − 2

(∑
m �=0

ε2
m(Em − E0)

)2

�
∑
m �=0

ε2
m(Em − E0)2 − 2ε2

∑
m �=0

ε2
m(Em − E0)2

= (1 − 2ε2)
∑
m �=0

ε2
m(Em − E0)2, (B5)

where we have used (B4) to rewrite the inequality. Finally,
from

∑
m �=0 ε2

m(Em − E0)2 � 0 in the equations above, the
proof of Theorem 4 is complete.

APPENDIX C: HYDROGEN MOLECULE
OF JORDAN–WIGNER TRANSFORMATION

In this section, we discuss the case of using the Jordan–
Wigner transformation. First, in this case, the Hamiltonian of
the hydrogen molecule is given by

H = h0I + h1σ̂
z
0 + h2σ̂

z
1 + h3σ̂

z
2 + h4σ̂

z
3

+ h5σ̂
z
0 σ̂ z

1 + h6σ̂
z
0 σ̂ z

2 + h7σ̂
z
1 σ̂ z

2 + h8σ̂
z
0 σ̂ z

3 + h9σ̂
z
1 σ̂ z

3

+ h10σ̂
z
2 σ̂ z

3 + h11σ̂
y
0 σ̂

y
1 σ̂ x

2 σ̂ x
3 + h12σ̂

x
0 σ̂

y
1 σ̂

y
2 σ̂ x

3

+ h13σ̂
y
0 σ̂ x

1 σ̂ x
2 σ̂

y
3 + h14σ̂

x
0 σ̂ x

1 σ̂
y
2 σ̂

y
3 , (C1)

where we have used the STO-3G basis. The coefficient of this
Hamiltonian is listed in Table II.

We plot the relation between the annealing time and the
energy after QA in Fig. 9. This is nearly identical to Fig. 3.

We plot the lower bound of the energy and the error of the
energy using our method for the Jordan–Wigner and Bravyi–
Kitaev transformations in Fig. 10 and Fig. 11. We can see that

TABLE II. Coefficient of the hydrogen molecule using the
Jordan–Wigner transformation. The unit of these values is GHz, as
described in the main text.

h0 −0.09706626816762881
h1 0.17141282644776895
h2 0.17141282644776892
h3 −0.22343153690813586
h4 −0.22343153690813589
h5 0.16868898170361213
h6 0.12062523483390428
h7 0.16592785033770355
h8 0.16592785033770355
h9 0.12062523483390428
h10 0.17441287612261597
h11 −0.04530261550379928
h12 0.04530261550379928
h13 0.04530261550379928
h14 −0.04530261550379928

the results of the Jordan–Wigner transformation are slightly
more accurate than those of the Bravyi–Kitaev transforma-
tion.

APPENDIX D: POSSIBLE EXPERIMENTAL
IMPLEMENTATION OF SINGLE QUBIT OPERATIONS

IN QA BY USING CSFQ

In this section, we show how to realize the single qubit
operation in QA by using CSFQs. It is worth mentioning
that, by combining single-qubit measurements in the com-
putational basis and single-qubit rotations, it is possible to
implement single-qubit measurements in an arbitrary basis.
This section is divided into two parts. The first one is a review
of spin-lock techniques for QA by using CSFQ. The second
one is to explain how single-qubit operation can be performed
in QA by using the spin-lock techniques.

FIG. 9. Plots showing the relation between the annealing time
and the ground-state energy by QA. We consider the hydrogen
molecule with an interatomic distance of 0.74 Å. The vertical axis
represents the energy, while the horizontal axis represents the an-
nealing time T for each decoherence rate γ . Values of γ from top
to bottom in legend correlate with solid curves in the figure from
bottom to top.
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Weinstein

Temple half
Temple exact

FIG. 10. We plot the energy expectation value with the lower
bound of the ground-state energy in our scheme. The dashed line
represents the exact ground-state energy. The green dots represent
the lower bound obtained from the Weinstein bound. The red dots
represent the lower bound obtained from the Temple bound when
a in (17) is the exact first-excited-state energy E1. The blue dots
represent the lower bound obtained from the Temple bound when
a in (17) is (E0 + E1)/2. This case corresponds to the worst case of
the preestimation.

1. Spin-lock quantum annealing

In this subsection, we explain about the spin-lock QA [40].
This is a method to realize quantum annealing in CSFQ with
a microwave driving field. Suppose that we drive inductively
coupled CSFQs with a microwave field. In this case, the
Hamiltonian during QA (before the readout) is given by

H (t ) =
∑

j

w

2
σ̂ z

j + λ(t )σ̂ x
j cos wt + g(t )HP, (D1)

Weinstein

Temple half
Temple exact

FIG. 11. We plot the estimation error and chemical accuracy
(dotted line) against the decoherence rate. The green dots represent
the lower bound obtained from the Weinstein bound. The red dots
represent the lower bound obtained from the Temple bound when
a in (17) is the exact first-excited-state energy E1. The blue dots
represent the lower bound obtained from the Temple bound when
a in (17) is (E0 + E1)/2. This case corresponds to the worst case of
the preestimation.

FIG. 12. Schedule of parameters λ(t ) and λ̃(t ).

where λ(t ) = (1 − t
T )λ0 denotes a time-dependent driving

amplitude, g(t ) = t
T denotes a scheduling of the coupling

strength, and HP denotes the problem Hamiltonian. We as-
sume that HP commutes with

∑
j σ̂

z
j and actually the problem

Hamiltonians adopted in our paper satisfy these properties. By
going to a rotating frame, the Hamiltonian is rewritten as

Ĥ = UHU † − iU † dU

dt
, (D2)

where U is a unitary operator to denote the rotating frame. In
this section, we choose the following:

U = exp

(
− it

L∑
j=1

w

2
σ̂ z

j

)
. (D3)

By using the rotating wave approximation, we obtain the
following Hamiltonian:

Ĥ (t ) =
∑

j

λ(t )σ̂ x
j + g(t )HP (D4)

and this is the same Hamiltonian that we use in the main text.

2. Realizing the single qubit operation

In this subsection, we explain how to realize single qubit
rotations. After the evolution with the Hamiltonian in the
Eq. (D4), we have

H (t = T ) =
∑

j

w

2
σ̂ z

j + HP (D5)

at t = T . We apply microwave pulses and the Hamiltonian is
given as

H (t = T + τ ) =
∑

j

w

2
σ̂ z

j + λ̃(t )σ̂ x
j cos(w′τ + θ ) + HP,

(D6)
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where λ̃(t ) denotes the time-dependent amplitude of the driv-
ing fields (see Fig. 12):

λ̃(t ) =
{
λ̃, T � t � T + �T,

0, otherwise.
(D7)

Equation (D6) in the rotating frame is given by

Ĥ (t ) =
∑

j

(
w − w′

2
σ̂ z

j + λ̃(t ) cos θσ̂ x
j + λ̃(t ) sin θσ̂

y
j

)

+ HP (D8)

using the unitary operator

U ′ = exp

(
− it

L∑
j=1

w′

2
σ̂ z

j

)
. (D9)

When the magnitude of the driving fields is much larger than
any coefficient of the problem Hamiltonian, we obtain the
following Hamiltonian in a rotating frame:

Ĥ (t ) �
∑

j

(
w − w′

2
σ̂ z

j + λ̃(t ) cos θσ̂ x
j + λ̃(t ) sin θσ̂

y
j

)
.

(D10)

This means that we can realize arbitrary single qubit rotations
with the CSFQ. By combining this with a single qubit mea-
surement in the computational basis, we can realize single
qubit measurements in an arbitrary basis.
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