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Accurate quantum control is a key technology for realizing quantum information processing, such as quantum
communication and quantum computation. In reality, a quantum state under control suffers from undesirable
effects caused by systematic errors. A composite pulse (CP) is used to eliminate the effects of systematic errors
during control. One-qubit control, which is the most fundamental in quantum control, is typically affected by
two errors: pulse length error and off-resonance error (ORE). In this paper, we focus on ORE-robust CPs and
systematically construct symmetric ones comprising three elementary operations in order to understand their
properties. We find an infinitely large number of ORE-robust CPs, including the well-known CORPSE family,
and evaluate their performance according to gate infidelity and operation time, both of which are important for
the realization of accurate quantum control.

DOI: 10.1103/PhysRevA.106.042613

I. INTRODUCTION

The performance of quantum technologies such as quan-
tum computing [1–3], quantum communication [4–6], and
quantum metrology [7–9] is highly dependent on the accu-
racy of quantum control in each process. Numerous attempts
have been made to improve the accuracy of quantum con-
trol [10–16]. Particularly, one-qubit control, which is the
most fundamental part of quantum computation, has received
considerable attention [17–20]. One-qubit control is also in-
teresting from a geometrical perspective because this process
is related to rotations on a unit sphere, which is called the
Bloch sphere.

Realistic quantum operations suffer from undesirable ef-
fects of systematic errors caused by the miscalibration of
experimental apparatuses, and such errors deteriorate the
performance of quantum control. In one-qubit control, one
mainly confronts two typical systematic errors: pulse length
error (PLE) and off-resonance error (ORE). PLE is an error
due to the deviation in the external control field whereas
ORE is often caused by the miscalibration of the resonance
frequency of the qubit to be controlled. These two errors in
one-qubit control have been intensively investigated in the
context of nuclear magnetic resonance (NMR), which can be
used to demonstrate a toy quantum computer [21–25]. Even
after we calibrate the parameters, slow and small fluctuations
of the parameters can unavoidably cause these errors. We then
require treatments for the systematic errors without relying on
calibration.

A composite pulse (CP) is a method used to compensate for
such systematic errors and has been investigated, particularly
in the field of NMR [26–28]. This method replaces a single

*toranojoh@phys.kindai.ac.jp
†kiya.haruki@kindai.ac.jp
‡ykondo@kindai.ac.jp

operation (or pulse in the context of NMR) with a sequence
of several operations such that the systematic errors in each
operation cancel each other. Thus, the CPs are less sensitive
to these errors. For one-qubit operations, several CPs that are
robust against PLE have been found, such as SK1 (Solovay-
Kitaev 1) [29], BB1 (broadband 1) [30], and SCROFULOUS
(short composite rotation for undoing length over and under
shoot) [31]. Similarly, there are several construction methods
for ORE-robust CPs [32–36]. When we implement a specific
angle rotation in the Bloch sphere representation, such as π

and π/2 rotation, these methods work well and can provide
simple and explicit formulas for determining ORE-robust op-
erations. On the other hand, ORE-robust CPs that implement
arbitrary θ rotations have been less investigated. For instance,
Ref. [36] gives equations that determine an ORE-robust arbi-
trary θ operation. However, these equations are not explicitly
solved. If we try to apply the method in Ref. [36] to con-
struction of an arbitrary θ operation, first we should solve
cumbersome equations with respect to θ . The CORPSE (com-
pensation for off resonance with a pulse sequence) family is
one of the simplest and most tractable CPs for implementing
arbitrary θ rotations [37]; it does not require frequency modu-
lation, and all of its parameters are explicitly determined as a
simple function of the parameters of the target operation. This
family often appears when we require ORE-robust arbitrary θ

rotations [17,38–40].
In this paper, we explain a systematic construction of a

wide class of ORE-robust CPs that implement arbitrary θ

rotations. The constructed class is time symmetric, consists
of three elementary operations, and includes the CORPSE
family. This construction provides the parameters in a CP as
an explicit function of the parameters in the target operation as
the CORPSE family does. Surprisingly, even in this restricted
class of CPs, there exist an infinitely large number of CPs for
arbitrary θ rotations: we have one continuous free parameter
to choose a CP that implements a target operation. We then
evaluate the performance of the CPs in this class in terms of
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gate infidelity and the time required for operation. Small gate
infidelity is necessary for accurate quantum control, whereas
a short operation time is generally required, for example,
to avoid the effect of environmental noise. As a result, we
validate the excellent performance of the CORPSE family in
this wide class of ORE-robust CPs.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review the concept of CPs while focus-
ing on ORE-robust ones. Section III explains the systematic
construction of ORE-robust CPs with three elementary opera-
tions, and shows that there are a large number of ORE-robust
CPs based on this construction. Then, we evaluate the CPs
that we found in terms of gate fidelity and operation time in
Sec. IV. A direction of our future work is discussed in Sec. V.
Section VI concludes the paper.

II. REVIEW OF COMPOSITE PULSES

A one-qubit operation is described by a unitary matrix:

U (θ, �n) := exp(−iθ �n · �σ/2)

= cos(θ/2)I − i sin(θ/2)�n · �σ , θ > 0, (1)

where �n is a three-dimensional unit vector and �σ is the vector
consisting of Pauli matrices, �σ := (σx, σy, σz ). Note that the
positivity of θ results from the one-way time flow. In the
Bloch sphere representation, a one-qubit state is represented
by a point on the unit sphere; accordingly, a one-qubit oper-
ation is regarded as a rotation. In this representation, θ and
�n correspond to the angle and axis of rotation, respectively.
Hereinafter, all operations that we consider are assumed to
be constructed as a sequence of operations in the form of
Eq. (1). Hence, we call this type of operation an “elemen-
tary” operation. Typically, for each elementary operation of
a CP, �n is considered to be in the xy plane and parametrized
by one parameter φ as �n = (cos φ, sin φ, 0). Hereinafter, we
adopt this assumption and write an elementary operation as
U (θ, φ) := U (θ, (cos φ, sin φ, 0)). We also assume that the
target operation that we attempt to perform has the form of
U (θ, φ).

ORE is a typical error in NMR. When a qubit suffers from
ORE, the unitary operation is deformed to

U ( f )(θ, φ) := exp[−iθ (cos φσx + sin φσy + f σz )/2]

∼ U (θ, φ) − i f sin(θ/2)σz + O( f 2), (2)

where f is an unknown small parameter that represents the
magnitude of ORE.

A (first-order) ORE-robust CP is defined as an operation
sequence U (θk, φk ) · · ·U (θ1, φ1) consisting of k elementary
operations to compensate for the effect of ORE by satisfying
the following condition:

U ( f )(θk, φk ) · · ·U ( f )(θ1, φ1) = U (θ, φ) + O( f 2) (3)

for the target operation U (θ, φ). That is, the first-order ORE
terms of each elementary operation in a CP cancel each other
out. We assume that f is constant during the operations, which
means that the timescale of the operation sequence is much
shorter than the fluctuation timescale of f . We now focus on
k = 3 CPs, which have the smallest k because no k = 2 CPs
exist [40].

Note that each piece of the control U (θi, φi ) is assumed
to be performed by a constant control Hamiltonian so that
the ORE term has a simple form. In other words, we use a
piecewise constant control Hamiltonian. One may consider
that the discontinuity between U (θi, φi )′s might be problem-
atic when the bandwidth of the control field is limited. In
some applications, such a piecewise constant Hamiltonian
is replaced by another smooth function. One example is to
replace each constant piece with a smooth function that has a
constant plateau and Gaussian slopes. In this case, we must
sufficiently separate a duration of the control and the next
duration so that the effect of the overlap between them will be
negligible. This works equivalently to the piecewise constant
case, if the separation is sufficiently small comparing with
timescales of other dynamics of the system. IBMQ actually
employs this technique [41]. The construction of ORE-robust
CPs still works even in such cases, although the form of
the ORE will slightly vary depending on the form of control
function and thus the robustness condition in this case should
be treated carefully.

III. GENERAL FORM OF k = 3 ORE-ROBUST
SYMMETRIC COMPOSITE PULSES

This section shows the most important ideas of our paper.
First, we restrict CPs under some conditions. These assump-
tions enable us to explicitly list the equations required to
construct a class of ORE-robust CPs, thanks to the reduction
of the degrees of control freedom. Section III A introduces
variables, which are convenient to describe this class of CPs,
and gives the equations to be solved for these variables. Also,
this part discusses how to solve the equations. Section III B
provides the solution of these equations. We show that the
number of variables is 4 and that of the equations is 3. There-
fore, not all variables can be determined uniquely. This part
also exhibits the “recipe” for constructing this class of CPs.
According to this recipe, a CP in this class is simply and
almost automatically given once the parameters of the target
operation are fixed. This recipe is the centerpiece of our paper.
Section III C quantitatively introduces the CORPSE family, a
well-known class of ORE-robust CPs, and discusses how it
is included in this class. The CORPSE family is repeatedly
used as a reference when we evaluate the performance of
ORE-robust CPs.

A. Variables and equations

We consider k = 3 ORE-robust CPs,
U (θ3, φ3)U (θ2, φ2)U (θ1, φ1). Hereinafter, we assume
the time symmetry (mod 2π ) of this sequence, that is,
θ3 = θ1 + 2nπ and φ3 = φ1. The reason why we take these
assumptions is explained in Appendix A. To eliminate the
multivalency of variables, we parametrize (θ1, θ2, θ3) as

θi = θ
(p)
i + 2niπ,

θ
(p)
1 = θ

(p)
3 , 0 < θ

(p)
i � 2π, ni ∈ N (i = 1, 2, 3), (4)

where we use positivity of θ ′
i s and time symmetry.
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We introduce the notations, si, ci, and Ui, as follows:

si := sin
(
θ

(p)
i

/
2
) = (−1)ni sin

(
θi/2

)
,

ci := cos
(
θ

(p)
i

/
2
) = (−1)ni cos(θi/2),

Ui := U
(
θ

(p)
i , φi

) = (−1)niU (θi, φi ). (5)

Note that si is always positive and U3 = U1. Using these
variables, we rewrite the ORE-robustness condition (3) as

(−1)n1+n2+n3 (s2I + s1U1U2 + s1U
†
2 U †

1 ) = 0. (6)

Evidently, n′
is do not affect this condition. Direct calculations

show that the above equation is equivalent to

s2 + s1(c2c1 − αs2s1) = 0, (7)

where α := cos(φ2 − φ1).
A CP must reproduce the target operation U (θ, φ)

when f = 0: U (θ3, φ3)U (θ2, φ2)U (θ1, φ1) = U (θ, φ). In
terms of θ

(p)
i

′s, this condition is rewritten as U1U2U1 =
(−1)n1+n2+n3U (θ, φ). We will evaluate the explicit form of
this matrix equation. First, we note that a symmetric CP (mod
2π ) can only implement a unitary operation in the form of
U (θ, φ), that is, the rotation direction of the target operation
is in the xy plane (Appendix A). We can easily verify this
when k = 3, and induction extends this result to general k
cases. The condition U1U2U1 = (−1)n1+n2+n3U (θ, φ) yields
the following equations:

c2
(
c2

1 − s2
1

) − 2αc1s1s2 = (−1)n1+n2+n3 c, (8)

2s1c1c2e−i(φ2−φ1 ) + c2
1s2 − s2

1s2e−2i(φ2−φ1 )

= (−1)n1+n2+n3 se−i(φ2−φ) (9)

where s := sin(θ/2), c := cos(θ/2). We usually need to
consider the case 0 < θ < 2π ; thus, s is always positive.
Equation (8) originates from the diagonal part of the condi-
tion, whereas Eq. (9) originates from the off-diagonal part.
We obtain an ORE-robust sequence (θ (p)

1 , θ
(p)
2 , φ1, φ2) with

arbitrary (n1, n2, n3) by solving Eqs. (7), (8), and (9) simul-
taneously. We introduce the parameter n = n1 + n2 + n3 ∈ N
because n′

is appear only in this form. The equations above
have solutions for any n, as shown below, and we can then
choose (n1, n2, n3) arbitrarily. Basically, smaller ni values are
preferable for shortening the CP. Further note that the freedom
of n′

is does not affect the first-order ORE robustness, which
can be easily shown, but the higher-order ORE robustness is
affected by the choice of ni in general.

We treat the variables (c1, c2, k := φ2 − φ, l := φ2 − φ1)
instead of (θ (p)

1 , θ
(p)
2 , φ1, φ2). The variable ci has one-to-one

correspondence with θ
(p)
i because 0 < θ

(p)
i /2 � π and si is

always written as si =
√

1 − c2
i without sign ambiguity. For

the same reason as above, we use c as a parameter instead of
θ because we now consider 0 < θ � 2π .

We now discuss how to solve Eqs. (7), (8), and (9).
Equation (9) apparently leads to two (real and imaginary)
equations, but it turns out to be one equation when Eq. (8)
is satisfied (see Appendix B). Therefore, Eqs. (7), (8), and

(9) lead to three equations for four variables of (c1, c2, k, l ):
one can determine only three variables. We take c1 as a free
parameter and solve for (c2, k, l ). To solve the equations,
we first focus on Eqs. (7) and (8). They do not contain k,
and thus lead to c2 and l as functions of c1 and c. Then,
Eq. (9) determines k as a function of c1 and c. Note that
c1 is not a perfectly free parameter, but it exists in a cer-
tain region determined by c: we will discuss it in the next
section.

Note that none of the variables (c1, c2, k, l ) depend on φ.
Accordingly, the original variables are given as

θ
(p)
1 , θ

(p)
2

(
θ, θ

(p)
1

)
, φ1 = φ + k

(
θ, θ

(p)
1

) − l
(
θ, θ

(p)
1

)
,

φ2 = φ + k
(
θ, θ

(p)
1

)
, (10)

where we use the one-to-one correspondence between ci (c)
and θ

(p)
i (θ ). Intrinsically, we only need the information of θ

of the target operation U (θ, φ) to solve the equations. First,
we obtain (θ (p)

1 , θ
(p)
2 , φ1, φ2) for the target operation U (θ, 0)

by taking φ = 0. Then, we obtain the solutions for the tar-
get operation U (θ, φ) by transforming (θ (p)

1 , θ
(p)
2 , φ1, φ2) to

(θ (p)
1 , θ

(p)
2 , φ1 + φ, φ2 + φ). This behavior is a reflection of

the rotational symmetry around the z direction.

B. Solutions

Equations (7) and (8) provide two types of solutions, de-
pending on the parity of n. c2 (s2) and α are determined as a
function of c1 and c (θ ):

c2(c, c1) = − (−1)ncs2
1 − c1

√
1 − c2s2

1, (11)

α(c, c1) = 1 −
√

1 − c2s2
1 + (−1)ncc1

2s2
1

√
1 − c2s2

1 − (−1)ncc1

, (12)

where si (i = 1, 2) is uniquely determined by si =
√

1 − c2
i .

See Appendix C for the derivation. Because c1 remains a free
parameter as mentioned above, we have an infinite number
of choices for the construction of U (θ, φ) in an ORE-robust
manner even in the k = 3 case.

Although the number of choices for c1 is infinite, there
are upper and lower bounds of c1 for a fixed c. Note that
α = cos(φ2 − φ1) must be −1 � α � 1. Equation (12) guar-
antees only α � 1 but not α � −1. The latter inequality gives
additional upper and lower bounds of c1 as

c1,n,− � c1 � c1,n,+, c1,n,± := ±
√

3 − c2 ∓ (−1)nc
√

3 + c2

2
.

(13)
Appendix C also shows the detailed calculations for this. The
region in which c1 takes is shown in Fig. 1. The regions of
odd and even parity are a mirror image of each other. This is
because the index n in the solution appears only in the form
of (−1)nc.

Here, we show a “recipe” to construct an ORE-robust CP.
(1) Fix θ of the target operation that we perform.
(2) Fix n′

is arbitrarily. (Smaller numbers are basically pre-
ferred in order to shorten the operation time.)
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FIG. 1. The region in which c1 can be taken to construct an ORE-
robust CP. The blue shaded region is the allowed region, whereas the
red solid lines are the upper bound c1,n,+ and lower bound c1,n,−.

(3) Fix c1 (θ (p)
1 ) arbitrarily in the region shown by Eq. (13).

(4) c2 and α = cos(φ2 − φ1) are automatically determined
by Eqs. (11) and (12).

(5) Solve k = φ − φ2 to satisfy Eq. (9).
(6) Decide φ of the target operation and then φ1 (φ2) is

automatically determined as φ1 = φ + k − l (φ2 = φ + k).
This method exhausts all possibilities of the k = 3 sym-

metric ORE-robust CPs.

C. Relation with CORPSE

We discuss how the above general construction
reproduces the CORPSE family, a well-known family
of ORE-robust symmetric CPs with the sequence
U (θ (c)

3 , φ
(c)
3 )U (θ (c)

2 , φ
(c)
2 )U (θ (c)

1 , φ
(c)
1 ). The parameters are

written as

θ
(c)
1 = θ/2 − κ + 2ν1π,

θ
(c)
2 = 2ν2π − 2κ,

θ
(c)
3 = θ/2 − κ + 2ν3π,

φ
(c)
1 = φ

(c)
3 = φ,

φ
(c)
2 = φ + π, (14)

where κ = arcsin[sin(θ/2)/2], and U (θ, φ) is the target op-
eration. We first consider short CORPSE, which is a member
of the CORPSE family with the parameters ν1 = 0, ν2 = 1,
and ν3 = 0. This corresponds to θi � 2π (i = 1, 2, 3) in our
general expression, or equivalently, ni = 0 (i = 1, 2, 3). Note
that this short CORPSE performs U (2π − θ, φ + π ) instead
of U (θ, φ) although the only difference between them is
the global phase −1. The actual sequence of short CORPSE
that performs U (θ, φ) is obtained by transforming (θ, φ) to
(2π − θ, φ + π ):

θ
(SC)
1 = θ

(SC)
3 = π − θ/2 − κ,

θ
(SC)
2 = 2π − 2κ,

φ
(SC)
1 = φ

(SC)
3 = φ + π,

φ
(SC)
2 = φ, (15)

where κ is the same because sin[(2π − θ )/2] = sin(θ/2).

To check the relation between our description and short
CORPSE, we calculate cos2(θ (SC)

1 /2) as

cos2
(
θ

(SC)
1

/
2
) = cos

(
θ

(SC)
1

) + 1

2
= cos(π − θ/2 − κ ) + 1

2

= − cos(θ/2 + κ ) + 1

2

= −c
√

1 − (s/2)2 + s2/2 + 1

2

= 3 − c2 − c
√

3 + c2

4
, (16)

where we use cos[arcsin(a)] = √
1 − a2. To determine the

sign of cos(θ (SC)
1 /2), we differentiate θ

(SC)
1 in Eq. (15), with

respect to θ :

dθ
(SC)
1

dθ
= d

dθ

(
π − θ

2
− κ

)
= −1

2

(
1 + c√

3 + c2

)
. (17)

This is always negative for 0 < θ < 2π , which means that
cos(θ (SC)

1 /2) is a monotonically increasing function of θ . As
cos(θ (SC)

1 /2) = 0 when θ = 0, cos(θ (SC)
1 /2) is always posi-

tive. Thus, we find

cos
(
θ

(SC)
1

/
2
) =

√
3 − c2 − c

√
3 + c2

2
= c1,0,+. (18)

Similarly, cos(θ (SC)
2 /2) = c2(c, c1,0,+) is easily proved. These

identities and α(c, c1,0,+) = −1 show that our CP with
(n1, n2, n3) = (0, 0, 0) and c1 = c1,0,+ is equivalent to short
CORPSE.

For other values of n′
is, we find that the choice of c1 =

c1,n,+ reproduces the CPs in the CORPSE family. Partic-
ularly, the case of (n1, n2, n3) = (1, 0, 0) corresponds to a
CORPSE sequence with (ν1, ν2, ν3) = (1, 1, 0). When com-
paring our construction with the CORPSE family, we should
be careful that the CORPSE family sometimes implements
not U (θ, φ) but U (2π − θ, φ + π ), depending on ν ′

is, such
as short CORPSE.

The starting point for constructing the CORPSE family is
to set the angle between φ1 and φ2 to cos(φ2 − φ1) = −1. One
may notice that the bottom edge of the region (c1 = c1,0,−) has
a similar behavior to the CORPSE family: cos(φ2 − φ1) = −1
on this edge as in the case of the top edge c1 = c1,0,+ cor-
responding to the CORPSE family. This edge (c1 = c1,0,−),
however, corresponds not to the CORPSE family but to its
“twin.” Generally, there are two choices of c1 (or θ1) for a
fixed α. See Appendix D for details.

IV. PERFORMANCE EVALUATION

A. Gate infidelity

Here, we evaluate the accuracy of the ORE-robust CPs
found above. We use the gate infidelity as a measure of their
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FIG. 2. Gate infidelity for the cases of c = 1/
√

2 (θ = π/2) and
0 (θ = π ). The solid, dashed, and dot-dashed curves correspond to
(n1, n2, n3) = (0, 0, 0), (1,0,0), and (0,1,0), respectively. The dotted
straight line represents the gate infidelity of the elementary operation
with ORE. The error parameter is set to f = 0.1. All curves for c = 0
have the same existence range because c1,n,± = ±√

3/2, regardless
of n in this case. On the other hand, the curve corresponding to
(n1, n2, n3) = (0, 0, 0) for the case of c = 1/

√
2 has a different exis-

tence range than the other curves: c1,n,± depend on n unless c = 0.

accuracy. The gate infidelity of an operation is defined as

I := 1 − |tr(U †U ′)|
2

, (19)

where U ′ is an operation with ORE and U is the corresponding
errorless gate. The gate infidelity equals zero if and only if
U = U ′, and a smaller gate infidelity implies a better accu-
racy. It should be noted that the gate infidelity behaves as
I ≈ O( f 4) for ORE-robust CPs [25]. Appendix E provides
a simple proof of this behavior for more general error models.

Figure 2 plots the gate infidelity with several combinations
of n′

is for the cases of c = 1/
√

2 (θ = π/2) and 0 (θ = π ).
Note that specific values of n and n′

is can affect the gate
infidelity at a higher order of f , whereas it does not affect
the first-order ORE robustness. This implies that the gate
infidelity could be improved when we consider a larger n
although we do not evaluate such cases in this paper. In
both cases of c = 0 and 1/

√
2, the curves corresponding to

(n1, n2, n3) = (0, 0, 0) and (1,0,0) have the minimum at the
right end c1 = c1,n,+, whereas the curve for (n1, n2, n3) =
(0, 1, 0) has the minimum at the left end c1 = c1,n,−. These
points correspond to the CPs in the CORPSE family (c1 =
c1,n,+) or its twin family (c1 = c1,n,−), which are character-
ized by cos(φ2 − φ1) = −1. Moreover, the right end of the
curve for (n1, n2, n3) = (1, 0, 0) shows a good accuracy; it
is approximately on the order of f 6. This point corresponds
to a CP in the CORPSE family with (ν1, ν2, ν3) = (1, 1, 0)
in Eq. (14). (Hereinafter, we call this case “fundamental
CORPSE.”) The fourth-order term of the gate infidelity for
fundamental CORPSE does not vanish but has a small value.

To further evaluate the gate infidelity, we plot its stability
against f for some specific choice of CPs in Fig. 3. One
can easily observe that all the CPs have much better perfor-
mance than the elementary operation in the region of f ∈
(−0.1, 0.1); this follows from the definition of the first-order
ORE robustness. The robustness of CPs does not depend on
a specific value of the error magnitude f . The fundamental
CORPSE is advantageous over the other CPs in this region of
f as also expected from Fig. 2.

FIG. 3. The stability of the gate infidelity against the ORE mag-
nitude f for the cases of c = 1/

√
2 (θ = π/2) and 0 (θ = π ). The

solid, dashed, and dot-dashed curves corresponds to the parame-
ters (c1, n1, n2, n3) = (c1,1,+, 1, 0, 0) corresponding to fundamental
CORPSE, (c1, n1, n2, n3) = (c1,0,+, 0, 0, 0) corresponding to short
CORPSE, and (c1, n1, n2, n3) = (0, 0, 0, 0), respectively. c1,n,+ is a
function of θ and its specific value for θ = π is

√
3/2. The value for

θ = π/2 is also easily calculated from Eq. (13) although it does not
have a simple form. The dotted curve represents the stability of the
elementary operation performing a π (π/2) rotation.

Note that the CORPSE family does not necessarily have
the best accuracy when we consider a measure other than
the gate infidelity. For example, let us consider the state in-
fidelity 1 − |〈ψ |U †U ′|ψ〉| with taking the eigenvector of σz

corresponding to eigenvalue 1 as |ψ〉 (the initial state of the
dynamics). In this case, we can find a CP that has a better
accuracy than the CORPSE family. See Appendix F. The gate
infidelity corresponds to the worst value among all the state
infidelities for all initial states (Appendix E). Thus, if we
apply an ORE-robust CP to an unknown initial state, we can
conclude that the CORPSE family or its twin has the best ac-
curacy, at least when c = 0, 1/

√
2. Particularly, fundamental

FIG. 4. Shortest operation time. (a) The existence range of c1

as a function of c. c1 = c1,n,+ on the solid thick line provides the
minimum operation time Lmin(c, n) for either case of even n (the left
panel) or odd n (the right panel). (b) The minimum operation time
Lmin(c, 0) (the left panel) and Lmin(c, 1) (the right panel). These lines
correspond to the solid thick (red) lines in panel (a).
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CORPSE appears to provide the best performance compared
with other choices of c1.

B. Total operation time

Another measure for performance of a quantum opera-
tion is time required for the operation. To avoid decoherence
and other undesirable environmental effects, a short operation
time (or operation length) is preferred. We assume that the
strength of the control field is constant ω throughout the
operations. The parameter θi is given as θi = ωti, where ti is
the time required for each operation. In this terminology, the
operation time of CPs is simply proportional to L = θ1 + θ2 +
θ3 = 2θ

(p)
1 + θ

(p)
2 + 2πn. We evaluate the non-dimensional

operation time L as a function of (c, c1, n) because the other
parameters are uniquely determined by these variables. The
phase φ of the target operation does not influence L.

First, we consider the freedom of c1 for fixed n and c. The
function L is explicitly given as

L(c, c1, n) = 4 arccos(c1) + 2 arccos[c2(c, c1)] + 2πn, (20)

where we explicitly show the c1 dependence of c2 and use
c1 = cos(θ1/2) and c = cos(θ/2). The derivative of L with

respect to c1 is given as

∂L(c, c1, n)

∂c1
= − 2√

1 − c2
1

(
1 + (−1)n cc1√

1 − (
1 − c2

1

)
c2

)
,

(21)
which is always negative regardless of n and c. This implies
that L is a monotonically decreasing function of c1. Thus, we
found that the largest c1 = c1,n,+ provides the shortest time
L(c, c1,n,+, n) for any fixed value of c and n. See Fig. 4(a).
We define the minimum operation time for a fixed n as
Lmin(c, n) := L(c, c1,n,+, n).

We then consider which of Lmin(c, 0) or Lmin(c, 1) is
shorter for a given c. We trivially have the sequences
Lmin(c, 0) < Lmin(c, 2) < Lmin(c, 4) < · · · and Lmin(c, 1) <

Lmin(c, 3) < Lmin(c, 5) < · · · . However, it should be verified
whether Lmin(c, 0) � Lmin(c, 1) or Lmin(c, 1) � Lmin(c, 0)
because the parity difference between odd and even n
yields different solutions. Figure 4(b) shows L(c, c1,0,+, 0)
and L(c, c1,1,+, 1) and evidently implies L(c, c1,0,+, 0) �
L(c, c1,1,+, 1).

To mathematically justify this result, we calculate the
derivative of Lmin(c, n) with respect to c and obtain

dLmin(c, n)

dc
= (−1)n

2γ
[√

1 − (
1 − c2

1,n,+
)
c2 + (−1)ncc1,n,+

] + 1 − c2
1,n,+√(

1 − c2
1,n,+

)[
1 − (

1 − c2
1,n,+

)
c2

] (22)

where γ = −(−1)ndc1,n,+/dc and it is always positive. The
numerator is easily shown to be positive. Thus, we find that
Lmin(c, n) is a monotonically increasing (decreasing) function
of c when n is 0 (1). Lmin(c, 0) has the maximal value of 4π at
c = 1, whereas Lmin(c, 1) has the minimal value of 4π at c =
1 as in Fig. 4(b). Thus, Lmin(c, 0) gives the shortest time for
any values of c. In other words, short CORPSE provides the
shortest operation time among all the k = 3 symmetric ORE-
robust CPs.

V. DISCUSSION

Here, we discuss CPs with more elementary operations,
which we leave for future work. It will be difficult to di-
rectly apply our results for constructing such CPs because our
methods highly depend on the small number of elementary
operations. As the number of (independent) parameters con-
tained in three elementary operations is 3, which is tractable,
the ORE-robustness condition for these parameters can ana-
lytically be solved. For the case of CPs with more elementary
operations, we may not be able to obtain a simple form of
parameters as an explicit function of the parameters in the
target operation. However, it is definitely important to inves-
tigate such cases to find better CPs, which have, e.g., a short
operation time, robustness against other types of error, and
higher-order ORE robustness. This extension can be valuable
future work.

VI. CONCLUSION

In this paper, we provided a systematic construction of
ORE-robust CPs comprising three elementary operations. Our
results are general and applicable to all potential physical
setups, and these understandings are important. We assumed
that the operation sequence is symmetric modulo 2π . Under
this condition, we found general solutions for an ORE-robust
CP implementing an arbitrary θ rotation. We have one contin-
uous degree of freedom, even after solving all the conditions
for the ORE-robust θ rotation. This implies that there are
infinitely many k = 3 symmetric CPs that implement an arbi-
trary θ rotation. This sequence includes the CORPSE family,
a well-known and well-investigated family of ORE-robust
CPs. We then evaluated the performance of the CPs in terms
of the gate infidelity and the total operation time. In our
calculation, the CORPSE family provides the best accuracy
among all the choices evaluated, at least when θ = π and
π/2. We also proved that short CORPSE, one of the CPs in
the CORPSE family, has the shortest operation time among
the symmetric ORE-robust CPs with three elementary opera-
tions.

So far, the performance of the CORPSE family has never
been investigated in comparison to other ORE-robust CPs.
Our construction, which provides a wide class of ORE-robust
CPs, including the CORPSE family, enabled us to validate the
performance of the CORPSE family among this wide class of
ORE-robust CPs. Our results show that fundamental CORPSE
and short CORPSE (or their twins) actually have good
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performance in terms of gate infidelity and total operation
time compared among this wide class of ORE-robust CPs.

There are many methods designing optimal quantum oper-
ations [42]. As our CP has a continuous degree of freedom, it
may be combinable with the other methods by adjusting this
parameter, and be able to improve their performance. Such an
improvement is left for future work.
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APPENDIX A: TIME-SYMMETRIC
k = 3 ORE-ROBUST CPs

1. Time symmetry and ORE robustness

First, we show the relationship between the time symmetry
of k = 3 CPs and the ORE robustness. Consider a general
form of k = 3 CPs:

Ū3Ū2Ū1 := U (θ3, φ3)U (θ2, φ2)U (θ1, φ1), (A1)

where Ūi := U (θi, φi ). The condition that the above CP is
robust against the ORE is

sin(θ3/2)σzŪ2Ū1 + sin(θ2/2)Ū3σzŪ1 + sin(θ1/2)Ū3Ū2σz = 0.

(A2)
By operating Ū †

1 from the right-hand side (rhs) and Ū †
3 from

the left-hand side (lhs), we obtain

sin(θ2/2)σz + sin(θ3/2)Ū †
3 σzŪ2 + sin(θ1/2)Ū2σzŪ

†
1 = 0.

(A3)
This implies

sin(θ2/2)I + sin(θ3/2)Ū3Ū2 + sin(θ1/2)Ū †
2 Ū †

1 = 0, (A4)

where we use σzŪi = Ū †
i σz (�ni is orthogonal to �z for any i). To

further deform Eq. (A4), we evaluate the following equation:

A + B = αI, (A5)

where α is a nonzero number, and A and B are matrices. By
simple calculations, we can prove that A and B commute, that
is, [A, B] = 0:

A + B = αI �⇒ B = αI − A �⇒ [A, B] = 0. (A6)

Applying this fact to Eq. (A4), we obtain

[sin(θ3/2)Ū3Ū2, sin(θ1/2)Ū †
2 Ū †

1 ] = 0, (A7)

which is a necessary condition for the ORE robustness. Note
that sin(θ1/2) [sin(θ3/2)] is zero only when the first (third)
operation is a 2nπ rotation. Because such an operation can-
not contribute to the (first-order) ORE robustness [see the
ORE-robustness condition (A4)], we assume that sin(θ1/2)
and sin(θ3/2) are nonzero. Then straightforward calculations
show that the above equation is equivalent to the following:

Ū3Ū2Ū1 = Ū1Ū2Ū3. (A8)

The simplest case for satisfying Eq. (A8) is Ū3 = ±Ū1, or
equivalently,

θ3 = θ1 + 2nπ, φ1 = φ3, n ∈ Z, θ1, θ3 > 0. (A9)

Therefore, we consider the symmetric ORE-robust CPs in the
main text.

2. Time symmetry and target operation direction

Here, we show that the condition (A8) also restricts the
target operation to the form of U (θ, φ). The direction �n of
the target operation is restricted into the xy plane. When each
elementary operation has the form of U (θi, φi ), some calcula-
tions show that Ū1Ū2Ū3 and Ū3Ū2Ū1 can be written as

Ū1Ū2Ū3 =
(

A + iB C
C∗ A − iB

)
,

Ū3Ū2Ū1 =
(

A − iB C
C∗ A + iB

)
, (A10)

with the same coefficients, A, B ∈ R, and C ∈ C. The condi-
tion (A8) directly implies B = 0. Comparing the form of the
elementary operation (1), we find that the direction vector �n of
Ū1Ū2Ū3(= Ū3Ū2Ū1) is in the xy plane; B is the coefficient of
σz. Accordingly, the symmetric condition Ū3 = ±Ū1 restricts
the form of the target operation.

APPENDIX B: STRUCTURE OF EQ. (9)

1. Radial equation

Because Eq. (9) is a complex equation, it can be decom-
posed into radial and phase equations. Here, we demonstrate
that the radial part is always satisfied when Eq. (8) holds. The
squared absolute value of the lhs in Eq. (9) is calculated as

|2s1c1c2e−i(φ2−φ1 ) + c2
1s2 − s2

1s2e−2i(φ2−φ1 )|2

= (2s1c1c2)2 + c4
1s2

2 + s4
1s2

2 + 2c2
1s2

1s2
1

+ 4
(
c2

1 − s2
1

)
s1c1s2c2α − 4s2

1c2
1s2

2α
2

= 1 − c2
2 + 4s2

1c2
1c2

2 + 4
(
c2

1 − s2
1

)
s1c1s2c2α − 4s2

1c2
1s2

2α
2

= 1 − [
c2

(
c2

2 − s2
2 − 2αs1c1s2

)]2 = 1 − c2 = s2 (B1)

where we use Eq. (8) in the last line. The absolute value of the
lhs in Eq. (9) is identical to that of the rhs owing to Eq. (8).
Thus, we have shown that Eq. (9) is actually equivalent to
one real equation when Eq. (8) is satisfied. The number of
the original variables c1, c2, k, and l is 4, while the number
of the actual equations that must be solved is 3. This is the
reason why we can freely choose c1.

2. Phase equation

After solving Eqs. (7) and (8), the variable k = φ2 − φ is
determined by the following equations equivalent to Eq. (9):

cos k = (−1)n

s

[
2s1c1c2 cos l + c2

1s2 − s2
1s2 cos(2l )

]
,

sin k = (−1)n

s

[
2s1c1c2 sin l − s2

1s2 sin(2l )
]
, (B2)

where we use l = φ2 − φ1. These equations always have a
solution k because of the radial identity. Note that Eqs. (7)
and (8) cannot determine l itself: they just fix α = cos l . This
means that the signature of sin l is arbitrary. For either choice
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of signature, we obtain a different k, but both choices are valid
for constructing an ORE-robust CP.

APPENDIX C: DERIVATION OF EQS. (11)–(13)

Let us solve Eqs. (7) and (8), and derive the solutions (11)
and (12). For this purpose, it is convenient to introduce cn :=
(−1)nc. Equations (7) and (8) can be rewritten as

s2 + s1(c2c1 − αs2s1) = 0, (C1)

c2
(
c2

1 − s2
1

) − 2αc1s1s2 = cn, (C2)

with cn. These two equations contain three variables
(c1, c2, α); hence, one parameter cannot be determined. We
take c1 as the free parameter without loss of generality. Our
purpose is to represent α and c2 as a function of c and c1.
According to Eq. (C1), α can be expressed as

α = 1

s2
1

+ c1c2

s1s2
, (C3)

where we assume s1,2 �= 0 because si = 0 implies that θi =
2πn (n ∈ Z), and such an operation cannot contribute to the
first-order ORE robustness. Substituting this equation into
Eq. (C2), we obtain

c2 + c1s2

s1
= −cn. (C4)

As s′
is are positive and written as si =

√
1 − c2

i , the above
equation is rewritten as

c1

√
1 − c2

2 = −(cn + c2)
√

1 − c2
1. (C5)

Taking the square of both sides, we obtain

c2
2 + 2cn

(
1 − c2

1

)
c2 − c2

1 + (
1 − c2

1

)
c2 = 0. (C6)

We solve this equation with respect to c2 and obtain

c2 = −cn
(
1 − c2

1

) ± |c1|
√

1 − s2
1c2. (C7)

Note that these are the solutions of the squared Eq. (C6). It is
necessary to verify the sign that should be chosen for Eq. (C5).
Substituting this solution into the original Eq. (C5), we obtain

c1

√
1 − c2

2 = −(
cnc2

1 ± |c1|
√

1 − s2
1c2

)√
1 − c2

1. (C8)

Note that the following relation is satisfied:√
1 − s2

1c2 =
√

c2c2
1 + (1 − c2) � |c1c| = |c1cn|. (C9)

When c1 is positive, the lhs is also positive. Thus, to guarantee
consistency, we must take the minus sign in the rhs, regardless
of the other parameters c and n. Similarly, when c1 is negative,
the sign must be positive. Hence, c2 is given as

c2 = −cn
(
1 − c2

1

) − c1

√
1 − s2

1c2

= −(−1)nc
(
1 − c2

1

) − c1

√
1 − s2

1c2. (C10)

The combination of the minus (plus) sign and absolute value
|c1| with positive (negative) c1 can always be written as −c1.

Calculating s2 through the relation s2 =
√

1 − c2
2, we ob-

tain

s2 =
√

1 − [−cn(1 − c2
1 ) − c1

√
1 − s2

1c2
]2

= |s1|
√

1 − s2
1c2 − 2cnc1

√
1 − s2

1c2 + c2
1c2

= |s1|
√(√

1 − s2
1c2 − cnc1

)2
. (C11)

Using the positivity of s1 and Eq. (C9), we obtain

s2 = s1

(√
1 − s2

1c2 − cnc1

)
= s1

[√
1 − s2

1c2 − (−1)ncc1

]
.

(C12)
We obtain the explicit form of α by substituting Eqs. (C10)
and (C12) into Eq. (C3):

α = 1 −
√

1 − s2
1c2 + (−1)ncc1

2s2
1

[√
1 − s2

1c2 − (−1)ncc1
] . (C13)

Then, we explain the origin of the bound (13). Note that
α must satisfy −1 � α � 1 because it is originally the inner
product of �n1 and �n2. The second term in Eq. (C13) is non-
negative; hence, the condition α � 1 is always satisfied.

On the other hand, the condition α � −1 provides a non-
trivial constraint for allowed values of c1 as a function of
c. Here, we show how this constrains c1. The condition of
α � −1 can be written as

(
4c2

1 − 3
)√

1 − s2
1c2 � −(

5 − 4c2
1

)
cnc1. (C14)

Note that 5 − 4c2
1 is always positive and the sign of both sides

varies depending on c1 as follows.
(1) −1 � c1 � −

√
3

2 �⇒ lhs, non-negative; rhs, sgn(cn).

(2) −
√

3
2 < c1 � 0 �⇒ lhs, negative; rhs, sgn(cn).

(3) 0 < c1 <
√

3
2 �⇒ lhs, negative; rhs, −sgn(cn).

(4)
√

3
2 � c1 � 1 �⇒ lhs, non-negative; rhs, −sgn(cn).

Note that −1 � c1 := cos(θ (p)
1 /2) � 1. We solve the in-

equality according to this division.
Hereinafter we focus only on the case of cn � 0 because

the other case cn � 0 is easily solved similarly. When cn � 0,
only the top three equations are valid because a positive value
cannot be smaller than a negative value.

1. Case of −1 � c1 � −
√

3
2

In this case, both sides of Eq. (C14) are positive. By squar-
ing both sides, we obtain the following form of the inequality:

16c4
1 − 8(2 + s2)c2

1 + 9s2 � 0. (C15)
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This inequality leads to

−g+(s) � c1 � −g−(s), or g−(s) � c1 � g+(s),

g−(s) =
√

2 + s2 − √
s4 − 5s2 + 4

2
,

g+(s) =
√

2 + s2 + √
s4 − 5s2 + 4

2
. (C16)

For later convenience, we calculate the behavior of g−(s)
and g+(s). First, note that the numerators of g−(s) and g+(s)
are always real, because it is easy to check that |2 + s2| �√

s4 − 5s2 + 4. Hence, the inequality (C16) is always valid.
The derivative of [g−(s)]

2
with respect to s2 is

d[g−(s)]2

d (s2)
= 2

√
s4 − 5s2 + 4 − (2s2 − 5)

8
√

s4 − 5s2 + 4
. (C17)

It is easily determined that the numerator is always positive.
Thus, [g−(s)]

2
is a monotonically increasing function of s2.

Accordingly, g−(s) is a monotonically increasing function of
s, because g−(s) > 0 and we assume that s > 0 (0 < θ <

2π ). g−(s) takes its minimum value g−(0) = 0 at s = 0 and
its maximum value g−(1) = √

3/2 at s = 1. Similarly, we
find that g+(s) takes g+(0) = 1 as its maximum value and
g+(1) = √

3/2 as the minimum value. Thus, in the case of
−1 < c1 < −√

3/2, we found the possible range of c1 as

−g+(s) � c1 � −
√

3/2. (C18)

2. Case of −
√

3
2 < c1 � 0

When −
√

3
2 < c1 � 0, the inequality (C14) is trivially sat-

isfied. Thus, this range is also a solution of the inequality.

3. Case of 0 < c1 <
√

3
2

When 0 < c1 <
√

3
2 , both sides of Eq. (C14) are negative.

By squaring both sides, we obtain the following form of
inequality:

16c4
1 − 8(2 + s2)c2

1 + 9s2 � 0. (C19)

Note that the direction of the inequality is opposite to that
in Eq. (C16). The solution of Eq. (C19) with respect to c1 is
given by

c1 � g+(s), c1 � −g+(s), or − g−(s) � c1 � g−(s). (C20)

Considering the conditions, 0 < g−(s) <
√

3/2,
√

3/2 <

g+(s) < 1, and 0 < c1 <
√

3/2, we find that

0 < c1 < g−(s). (C21)

Summarizing the above three results, we obtain

−g+(s) � c1 � g−(s) (C22)

as the solution of Eq. (C14) when cn � 0. Because s2 = 1 −
c2, the function g±(s) is thus rewritten as a function of c as

FIG. 5. Contours with fixed α. The solid, dotted, dashed, and dot-
dashed lines represent α = −1.0, −0.3, 0.5, and 0.7, respectively.

follows:

g±(c) =
√

2 + s2 ± √
s4 − 5s2 + 4

2
=

√
3 − c2 ± |c|√3 + c2

2

=
√

3 − c2 ± cn

√
3 + c2

2
, (C23)

where we use |c| = |cn| = cn. We now obtain the range of c1:

−
√

3 − c2 + (−1)nc
√

3 + c2

2

� c1 �

√
3 − c2 − (−1)nc

√
3 + c2

2
, (C24)

which we have already shown as Eq. (13). Similarly, we obtain
the same range of c1 as above for the case of cn < 0. Thus, we
now have the possible range of c1, regardless of the sign of cn.

APPENDIX D: “TWIN” COMPOSITE PULSES

As mentioned in the main text, a fixed value of α provides
two choices of c1. We call these choices “twins.” The struc-
ture of twins is discussed here. Figure 5 shows the pairs of
two lines which represent twins. The structure of these twins
changes at α = 0.5. The twins are separated into the bottom
and top parts when α < 0.5 and into the left and right parts
when α > 0.5. In the case of α = 0.5, the twins touch each
other at c = 0.

Particularly, we have the explicit form of the twin of the
CORPSE family:

θ
(tc)
1 = 2μ1π − θ/2 + κ,

θ
(tc)
2 = 2μ2π + 2κ,

θ
(tc)
3 = 2μ3π − θ/2 + κ,

φ
(tc)
1 = φ

(tc)
3 = φ + π,

φ
(tc)
2 = φ, (D1)

where κ = arcsin[sin(θ/2)/2] and U (θ, φ) is the target opera-
tion. The integer parameters μi

′s satisfy μ1,3 � 1 and μ2 � 0.
In our construction, the above operation sequence corresponds
to the choice of c1 = c1,n,− for arbitrary ni

′s. Note that our pa-
rameters ni

′s can take ni = 0, unlike the case of the CORPSE
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family and its twin, owing to the choice of effective variables
θ

(p)
i

′s.

APPENDIX E: PROPERTIES OF GATE INFIDELITY

1. Order behavior of gate infidelity

We discuss the order behavior of the gate infidelity. One
might expect that the gate infidelity I would behave as I ≈
O( f 2) for (first-order) ORE-robust CPs because they are con-
structed such that the first-order error term in the unitary
operator disappears. Actually, this is not the case. The gate
infidelity for any quantum gate with ORE has the dependence
of I ≈ O( f 2), regardless of its ORE robustness, whereas that
for ORE-robust CPs has the dependence of I ≈ O( f 4).

We can prove this fact not only for ORE but also for any
type of error. To do this, it is convenient to introduce the
Hamiltonian description of the error robustness. The time evo-
lution with a time-dependent Hamiltonian H (t ) is described
by the Schrödinger equation:

d

dt
|
(t )〉 = −iH (t )|
(t )〉. (E1)

The formal solution from t = 0 to t = T of this equation is

|
(T )〉 = T exp

(
−i

∫ T

0
dtH (t )

)
|
(0)〉, (E2)

where we introduce the time-ordered product:

T (A(t1)B(t2)) =
{

A(t1)B(t2) t1 > t2,
B(t2)A(t1) t2 > t1.

(E3)

The extension to cases of multiple operators such as
T [A(t1)B(t2)C(t3)] is clear. When we consider a piece-
wise constant Hamiltonian, the time-ordered exponential in
Eq. (E2) can be written as

T exp

[
−i

∫ T

0
dtH (t )

]
= exp[−i(tk − tk−1)Hk]

× exp[−i(tk−1 − tk−2)Hk−1] · · ·
× exp[−i(t1 − t0)H1], (E4)

where t0 = 0 and tk = T , and the piecewise constant Hamil-
tonian is

H (t ) = Hi, ti−1 � t < ti, (i = 1 ∼ k). (E5)

Thus, we reproduce a sequence of elementary operations, as
discussed in the main text.

We consider the case where the Hamiltonian is decom-
posed into the following two parts:

H (t ) = H0(t ) + Herr (t ). (E6)

H0(t ) represents the ideal Hamiltonian. The dynamics
U0(T, 0) := T exp[−i

∫ T
0 dtH0(t )] corresponds to the target

operation U (θ, φ) in the main text. We control this part H0(t )
in the Hamiltonian. Meanwhile, Herr (t ) is the effect of unde-
sirable systematic errors during the operation. The magnitude
of Herr (t ) is assumed to be sufficiently small during the oper-
ation. Either part H0(t ) or Herr (t ) can have time dependence.
The state in the interaction picture with respect to H0(t ) is
given as

|
I (t )〉 :=
{
T exp

[
−i

∫ t

0
dt ′H0(t ′)

]}†

|
(t )〉

= U †
0 (t, 0)|
(t )〉, (E7)

where |
(t )〉 is a solution of the Schrödinger equation (E1).
The dynamics of the state |
I (t )〉 obeys the following equa-
tion:

d

dt
|
I (t )〉 = −iH̃err (t )|
I (t )〉, (E8)

where H̃err (t ) := U †
0 (t, 0)Herr (t )U0(t, 0). Its formal solution is

|
I (T )〉 = Ũerr (T, 0)|
I (0)〉

:= T exp

[
−i

∫ T

0
dtH̃err (t )

]
|
I (0)〉. (E9)

By comparing Eqs. (E9) and (E7), we obtain

|
(T )〉 = U0(T, 0)|
I (T )〉 = U0(T, 0)Ũerr (T, 0)|
(0)〉.
(E10)

Thus, we formally decouple the effect of the error Ũerr (T, 0)
from the ideal dynamics U0(T, 0).

We intend to implement the ideal operation U0(T, 0) ac-
curately under the error Herr. As the magnitude of Herr

is sufficiently small, we ignore the higher-order terms in
Ũerr (T, 0) and obtain

Ũerr (T, 0) ∼
[

1 − i
∫ T

0
dtH̃err (t )

]
. (E11)

The condition

∫ T

0
dtH̃err (t ) = 0 (E12)

implies that the operation (E10) is equal to the ideal U0(T, 0)
up to the first order of the magnitude of H̃err (t ). Assuming that
both H0(t ) and Herr (t ) are piecewise constant, we reproduce
the common description of error-robust CPs.

Now, we show that the second-order term of an error in the
gate infidelity disappears for any CP robust against the error.
We first note that in one-qubit control the first-order term of
the gate infidelity disappears even for elementary operations.
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The gate infidelity is written as

I := 1 − |tr[U †U0(T, 0)Ũerr (T, 0)]|/2

= 1 − |tr[Ũerr (T, 0)]|/2, (E13)

where we use U = U0(T, 0). The expansion of I up to the first
order gives

I ∼
∣∣∣∣
∫ T

0
dt tr[H̃err (t )]

∣∣∣∣ + O( f 2). (E14)

However, the trace of the Hamiltonian can always be taken as
zero, and thus the first-order term of the gate infidelity always
disappears regardless of the Hamiltonian.

The second-order term can indicate whether the
sequence is a CP or not. The second-order term of I is
given as

tr

[∫ T

0
dt

∫ t

0
dt ′H̃err (t )H̃err (t

′)

]
. (E15)

This term can be rewritten as

tr

[ ∫ T

0
dt

∫ t

0
dt ′H̃err (t )H̃err (t

′)
]

= tr

(
1

2

∫ T

0
dt

∫ t

0
dt ′H̃err (t )H̃err (t

′) + 1

2

∫ T

0
dt

∫ t

0
dt ′H̃err (t )H̃err (t

′)

+ 1

2

∫ T

0
dt

∫ T

t
dt ′H̃err (t )H̃err (t

′) − 1

2

∫ T

0
dt

∫ T

t
dt ′H̃err (t )H̃err (t

′)
)

= tr

(
1

2

∫ T

0
dt

∫ T

0
dt ′H̃err (t )H̃err (t

′) + 1

2

∫ T

0
dt

∫ t

0
dt ′[H̃err (t ), H̃err (t

′)]
)

= tr

{
1

2

[ ∫ T

0
dtH̃err (t )

]2}
+ tr

(
1

2

∫ T

0
dt

∫ T

t
dt ′[H̃err (t ), H̃err (t

′)]
)

, (E16)

where we use
∫ T

0 dt
∫ T

t dt ′ = ∫ T
0 dt ′ ∫ t ′

0 dt . The term
[H̃err (t ), H̃err (t ′)] can be written as a linear combination
of the Pauli matrices for any t and t ′, and is then traceless.
Thus, the second term in the above equation disappears. The
condition that the first term equals zero is equivalent to the
first-order robustness of CPs, Eq. (E12). Therefore, for any
CP satisfying the robustness condition, the second-order term
of the gate infidelity disappears. Thus, we can use the gate
infidelity as a measure to characterize the performance of CPs
by focusing on the second-order term.

2. Gate infidelity as an upper bound of state infidelity

Here, we show that gate infidelity 1 − |tr(U †V )|/2 is an
upper bound of the state infidelity 1 − |〈ψ |U †V |ψ〉| for any
state |ψ〉 and any 2 × 2 SU (2) matrices U and V . Note that the
dynamics by the traceless Hamiltonian, as in the main text, is
always expressed by an SU (2) matrix. Instead of treating the
gate and state infidelities directly, we simply compare the gate
fidelity |tr(U †V )|/2 with the state fidelity |〈ψ |U †V |ψ〉| for
any state |ψ〉. Because U †V is also a SU (2) matrix, we can
diagonalize this. The eigenvalues are denoted by eig and e−ig,
whereas the corresponding eigenvectors are |ψ+〉 and |ψ−〉.
The square of the gate fidelity is then calculated as

|tr(U †V )|2/4 = |eig + e−ig|2/4 = cos2 g. (E17)

On the other hand, as any state |ψ〉 can be written as |ψ〉 =
a|ψ+〉 + b|ψ−〉 (|a|2 + |b|2 = 1), we can calculate the square
of the fidelity for a state as

|〈ψ |U †V |ψ〉|2 = ||a|2〈ψ+|U †V |ψ+〉
+ |b|2〈ψ−|U †V |ψ−〉 + a∗b〈ψ+|U †V |ψ−〉
+ ab∗〈ψ−|U †V |ψ+〉|2

FIG. 6. State infidelity for the cases of c = 1/
√

2 (θ = π/2) and
0 (θ = π ). The initial state is taken to be |0〉. The solid, dashed,
and dot-dashed curves correspond to (n1, n2, n3) = (0, 0, 0), (1,0,0),
and (0,1,0), respectively. The dotted straight line represents the state
infidelity of the elementary operation with ORE. The error parameter
is set to f = 0.1. All curves for c = 0 have the same existence range
because c(1, n, ±) = ±√

3/2, regardless of n in this case. On the
other hand, the curve corresponding to (n1, n2, n3) = (0, 0, 0) for
the case of c = 1/

√
2 has a different existence range than the other

curves: c1,n,± depend on n unless c = 0.

= ||a|2eig + |b|2e−ig|2

= 1 − 2|a|2|b|2(1 − cos(2g))

= 1 − 4|a|2(1 − |a|2) sin2 g. (E18)

By subtracting the squared gate fidelity from the squared
fidelity, we obtain

|〈ψ |U †V |ψ〉|2 − |tr(U †V )|2/4

= sin2 g − 4|a|2(1 − |a|2) sin2 g

= [1 − 4|a|2(1 − |a|2)] sin2 g. (E19)

We can easily verify that the term in the parentheses is always
positive because the maximum of |a|2(1 − |a|2) is 1/4. Thus,
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we have shown that the state fidelity for any state is bounded
below by the gate fidelity. Accordingly, the state infidelity for
any state is bounded from above by the gate infidelity.

APPENDIX F: PERFORMANCE EVALUATION
VIA STATE INFIDELITY

As mentioned in the main text, the CORPSE family does
not necessarily have the best accuracy when we consider mea-
sures other than the gate infidelity. For example, we evaluate
the state infidelity Istate := 1 − |〈ψ |U †U ′|ψ〉|, where U ′ is
an operation with ORE and U is the corresponding errorless
operation. |ψ〉 is the initial state of the operation; hence, Istate

represents the difference between the final states with and

without ORE. We consider |ψ〉 = |0〉, which is an eigenstate
of σz with eigenvalue 1: σz|0〉 = |0〉.

Figure 6 shows the state infidelity with several combina-
tions of (n1, n2, n3) for the cases of c = 1/

√
2 (θ = π/2) and

0 (θ = π ) in the same way as Fig. 2. Evidently, the state
infidelity for several cases of (n1, n2, n3) takes its minimal
value at a point that is neither the left nor right end. Thus,
the CORPSE family and its twins do not necessarily have
the best accuracy for fixed (n1, n2, n3) when we take the state
fidelity as an accuracy measure. The minimum state infidelity
among the evaluated combinations of (n1, n2, n3) appears on
the curve representing (n1, n2, n3) = (1, 0, 0) as in the case of
the gate fidelity (Fig. 2) although the corresponding sequence
is not fundamental CORPSE when c = 0 (θ = π ).
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