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Localization and delocalization in networks with varied connectivity
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We study the phenomenon of localization and delocalization in a circuit-QED network with connectivity
varying from finite-range coupling to all-to-all coupling. We find a fascinating interplay between interactions and
connectivity. In particular, we consider (i) harmonic, (ii) Jaynes-Cummings, and (iii) Bose-Hubbard networks.
We start with the initial condition where one of the nodes in the network is populated and then let it evolve in time.
The time dynamics and steady state characterize the features of localization (self-trapping) in these large-scale
networks. For the case of harmonic networks, exact analytical results are obtained, and we demonstrate that
all-to-all connection shows self-trapping whereas the finite-ranged connectivity shows delocalization. The
interacting cases (Jaynes-Cummings and Bose-Hubbard networks) are investigated both via exact quantum
dynamics and via a semiclassical approach. We obtain an interesting phase diagram when one varies the range
of connectivity and the strength of the interaction. We investigate the consequence of imperfections in the cavity
or qubit and the role of inevitable disorder. Our results are relevant especially given recent experimental progress
in engineering systems with long-range connectivity.
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I. INTRODUCTION

The phenomenon of macroscopic self-trapping has been
a subject of great interest and has been shown to occur in
a variety of systems, both theoretically and experimentally.
Notable examples include bosonic Josephson junctions (BJJs)
consisting of cold-atomic Bose-Einstein condensates (BECs)
[1–7] and photonic systems [8–13] characterized by light-
matter interactions. Dissipative effects were also considered
and the delocalization-localization transition of photons was
theoretically predicted [12] in dissipative quantum systems
and subsequently experimentally observed [13].

Although self-trapping was achieved, the inevitable photon
leakage and spontaneous decay of the qubit limit the longevity
of self-trapped states in realistic systems. To circumvent this, a
drive was recently introduced, and it was shown theoretically
that a delicate interplay between drive, dissipation, interac-
tion, and kinetic hopping can lead to indefinitely-long-lived
self-trapped states [14]. This was an important step forward
as it provides a protocol to ensure indefinitely-long-lived lo-
calization in spite of cavity or qubit imperfections.

While most of the works above were either restricted to
dimer systems or one-dimensional (1D) arrays, there is an
important gap that needs to be addressed for the case when
one has a highly nontrivial network of interacting systems.
The properties of the network (such as connectivity) are
expected to have an interesting impact on the phenomenon
of localization and delocalization. This line of investigation
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is particularly important given recent experimental advances
[15–23] in designing networks with varied connectivity (from
finite range to long range) and success in establishing cou-
pling between distant qubits [24–26]. The recent experimental
designs are also amenable to an enhanced magnitude of
connectivity. Additionally, such designs are tunable [27], scal-
able [26,28–30], generalizable to a wider range of platforms,
and potentially relevant for quantum computation [15,16,19–
23,31–33], modeling artificial light harvesters in fully con-
nected networks [34,35], and quantum simulation schemes
[17,23].

In this paper, we consider the circuit-QED network with
varied connectivity which is shown schematically in Fig. 1.
We consider a general setup where each unit is connected to
other units (nodes) via a hopping term J that is preferably
uniform between units. The connectivity may extend to a finite
number of neighbors (Fig. 1, panel at right) or to all of them
(Fig. 1, panel at left).

Each unit could in principle be any local Hamiltonian Hi,
and we consider (i) harmonic, (ii) Jaynes-Cummings (JC),
and (iii) Bose-Hubbard (BH) models. Our main results can be
summarized as follows: (i) For harmonic networks, we present
exact analytical results and highlight the clear distinction be-
tween finite-range and all-to-all coupling scenarios in terms
of degree of photon localization. Here, one would naively
expect that an excited unit of a harmonic network is prone to
lose its excitation as its connectivity with the rest of the units
increases. Surprisingly, this expected feature is contradicted
by our observations. (ii) For the JC and BH networks, using
both exact quantum and semiclassical approaches, we show
the intricate interplay between connectivity and interactions,
demonstrating self-trapped and delocalized regimes. (iii) In-
teresting nonmonotonic features in the degree of localization
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FIG. 1. A schematic representation of the circuit-QED network
considered in this paper. The solid red circles denote the N units Hi,
where we label i = 0, 1, . . . , N − 1, and the blue lines denote the
interunit coupling with coupling strength J . The figure on the left
indicates a network with all-to-all coupling, and the figure on the
right indicates finite-range coupling with D = 2 nearest neighbors.
One can note from the figure on the right that if D � �N/2� (where
� � denotes the ceiling function), then the unit effectively couples to
all other units, which makes it fall under the all-to-all case.

are observed as one changes the number of units. (iv) The role
of cavity dissipation, qubit decay or dephasing, and inevitable
disorder has been highlighted.

II. THE HAMILTONIAN

We consider a system of N units Hi as shown in Fig. 1
which are connected to one another with a hopping term J .
The Hamiltonian for such a system when there is all-to-all
coupling is given by

H all-all =
N−1∑
i=0

Hi − J

2

N−1∑
i, j=0
i �= j

(a†
i a j + H.c.), (1)

where Hi is the Hamiltonian for the ith unit. Although in
Eq. (1) we have considered all-to-all coupling, later on we
will also present results for finite-neighbor coupling. In this
study, we explore three different cases: harmonic, JC, and
BH networks. In all these cases, bearing physical systems in
mind, our objective is to study networks with varied sizes and
connectivity keeping the hopping strength and total number of
excitations fixed.

III. HARMONIC NETWORK

In the case of a harmonic network, Hi = ωca†
i ai, where

ωc is the cavity frequency and a†
i and ai are the creation and

annihilation operators for the photons in the ith cavity. Such
a system is exactly solvable, and we obtain analytical results
for this network. We prepare the system in an initial state such
that there are Np bosons in the test unit (i = 0) and all other
units are empty. The system is allowed to evolve in time, and
one can compute observables such as the bosonic occupation
at the ith unit, ni(t ) = 〈a†

i (t )ai(t )〉, where 〈 〉 is the quantum
mechanical average. To study the dynamics of the bosons, we
define the quantity P(t ) = n0(t ) − ∑N−1

j=1 n j (t ), which gives
the population difference between the test unit and the rest of
the system (imbalance). We introduce a convenient diagnostic

tool to compute the degree of localization,

η = Np + Pmin

2Np
, (2)

where Pmin is the minimum value that P(t ) takes during its
entire time evolution. Complete localization is characterized
by η → 1, and complete delocalization (i.e., all the photons
have left the test unit) is characterized by η → 0. For other
values (0 < η < 1), the quantity η indicates the degree to
which bosons in the test unit stay trapped.

To obtain the evolution of P(t ), we calculate the Heisen-
berg equations of motion (EOMs) of the system operators. For
all-to-all coupling, we have (setting h̄ = 1)

ȧi = −iωcai + iJ
N−1∑
j=0

( j �=i)

a j, (3)

and for D-finite-neighbor coupling (note that D < �N/2�), we
have

ȧi = −iωcai + iJ
D∑

d=1

(ai+d + ai−d ). (4)

When D � �N/2�, we have the same setup as for all-to-all
coupling. Equations (3) and (4) can be written as ẋ = Ax,
where x = [a0 a1 · · · aN−1]T . This can be solved by evalu-
ating the eigenvalues {λα} and eigenvectors {uα} of A (α =
1, 2, . . . , N), i.e., x(t) = ∑N

α=1 cαeλαt uα , where cα are the
weights of the initial condition on the eigenvectors. We formu-
late an analytical solution for P(t ) by shifting to the Fourier
space, a†

j = 1√
N

∑N−1
k=0 e−i 2π

N k ja†
k . In this space, the Hamilto-

nian is diagonal,

Hfinite = ωc

N−1∑
k=0

a†
kak − 2JDa†

0a0 − 2J
N−1∑
k=1

f (k)a†
kak, (5)

and P(t ) for D finite neighbors becomes (see Appendix A)

P(t ) = 2Np

N2

{
1 +

N−1∑
k,k′=1

exp [i2Jt ( f (k′) − f (k))]

+ 2
N−1∑
k=1

cos [2Jt ( f (k) − D)]

}
− Np, (6)

where

f (k) = cos
(

D+1
N πk

)
sin

(
Dπk

N

)
sin

(
πk
N

) . (7)

For all-to-all coupling, we get

H all-all = ωc

N−1∑
k=0

a†
kak − JNa†

0a0 + JNp, (8)

and the imbalance becomes

P(t ) = Np

N2
[1 + (N − 1)(N + 4 cos(NJt ) − 3)]. (9)

From Eqs. (9) and (2), we get

η = 1 − 4

N
+ 4

N2
(all-to-all coupling), (10)
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FIG. 2. (a) P(t ) obtained in Eq. (9) as a function of time (in units
of 1/J) for a harmonic network for varying number of units with
all-to-all coupling. We prepare the system initially such that there
are Np = 10 bosons in the test unit. (b) η obtained in Eq. (10) as
a function of N , clearly indicating stronger localization for large
system sizes. The inset shows η as a function of the number of nearest
neighbors D for N = 50, illustrating the loss of localization on losing
the all-to-all configuration, i.e., when D < �N/2�.

which implies that we achieve stronger localization of photons
in the test unit as we increase the system size N . Note that
limN→∞ η = 1 (for the all-to-all coupling case). In Fig. 2(a)
we plot P(t ) as a function of time (in units of 1/J) for all-
to-all coupling. We notice that when the number of units is
small there is delocalization (accompanied by oscillations).
However, upon increasing the number of units the network
tends to get more localized, and eventually there is perfect
self-trapping in the large-N limit. Figure 2(b) shows the de-
gree of localization η as one increases the number of units,
which is given by Eq. (10). The inset in Fig. 2(b) demonstrates
the loss of self-trapping in the finite-range case.

This phenomenon can be further understood by inspecting
the dispersion relations in both the finite-range [Eq. (11)] and
all-to-all [Eq. (12)] cases,

εfinite(k) = ωc − 2DJδk,0 − 2J f (k)(1 − δk,0), (11)

εall-all(k) = ωc − J (N − 1)δk,0 + J (1 − δk,0). (12)

A detailed derivation for the dispersion relations is provided
in Appendix A.

The form of the dispersion relation in Eq. (12) reflects
two important features of the system. Firstly, the eigenen-
ergy spectrum ε(k) is nearly dispersionless (barring the k = 0
mode) as all the k �= 0 modes have the same eigenenergy
ε(k) = ωc + J . Secondly, with increasing N the energy gap
|ε(0) − ε(k)| ∼ N becomes wider, and the k = 0 mode is
singled out from the large number of degenerate finite k modes
(see Fig. 3, right panels). The imbalance P(t ) in the momen-

FIG. 3. Dispersion relation for the harmonic network with finite-
range coupling for N = 20, 40, and 80 units with D = 5, 10, and 20
nearest neighbors, respectively (left panels), and all-to-all coupling
for N = 20, 40, and 80 units (right panels). ωc = 1, and the energy
is measured in units of J .

tum space can be written as (see Appendix A)

P(t ) = 2

N

{
〈a†

0(t )a0(t )〉 +
N−1∑
k=1

〈a†
k (t )a0(t )〉

+
N−1∑
k=1

〈a†
0(t )ak (t )〉 +

N−1∑
k,k′=1

〈a†
k (t )ak′ (t )〉

}
− Np. (13)

From Eq. (8) it is clear that the evolution is determined only by
k = 0 mode dynamics as

∑N−1
k=0 a†

kak = Np. This implies that
the time dependence of P(t ) is dictated by the second and third
terms of Eq. (13). Terms a†

k (t )a0(t ) amount to destroying one
k = 0 mode boson and creating one with k �= 0. This process
becomes less probable or further suppressed as |ε(0) − ε(k)|
is enhanced (with increasing N). Therefore, for the large-N
limit, the population in an all-to-all network does not evolve,
and the bosons are completely stuck in the initial site. Here,
we would like to make an important connection with the
flat-band physics of localization. Flat bands, constituted by
the dispersionless energy spectrum, retain the localization of
the wave function in real space if the wave function is ini-
tially localized. Such a phenomenon has been experimentally
observed in various contexts such as light localization in lin-
ear photonic lattices [36] and Mott-like electronic phases in
graphene superlattices [37]. Engineered flat-band localization
is an attractive topic in many-body physics [38], and such
phases are accessible through bandwidth tuning [37,38]. In
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our model, a flat band is closely achieved for the all-to-all case
in the large-N limit. In contrast to this, for the finite-neighbor
case [in Eq. (11)] neither are the k �= 0 modes degenerate nor
is there an enhanced gap between k = 0 and k �= 0 modes
even for large N (see Fig. 3, left panels). This leads to the
dynamics of P(t ) [see Eq. (6)] and subsequent photon delo-
calization.

It is worth noting that alternatively, we can numeri-
cally compute the entire correlation N × N matrix C(t ) =
〈x(t )x†(t )〉 which is given by C(t ) = e−ihtC(0)eiht , where h
is the single-particle Hamiltonian (the N × N matrix which
contains information as to whether the network connectivity
is finite range or all to all) that appears in H = ∑N−1

i, j=0 hi ja
†
i a j .

From C(t ), we can extract P(t ) = 2C00(t ) − tr[C(t)] + (N −
2), and this is in perfect agreement with our analytical expres-
sions derived above [Eqs. (6) and (9)]. Next, we discuss the
case of on-site interactions or anharmonicity.

IV. JAYNES-CUMMINGS NETWORK

One can envision a situation where each cavity hosts a
qubit. This leads to the well-known Jaynes-Cummings sys-
tem, whose Hamiltonian is given by

Hi = ωca†
i ai + ωqσ

+
i σ−

i + g(aiσ
+
i + a†

i σ
−
i ), (14)

where ωc and ωq are the cavity frequency and the energy
gap of the qubit, respectively, g is the cavity-qubit coupling
strength, and σ+

i and σ−
i are the raising and lowering oper-

ators for the ith qubit, respectively. For the case of N = 2
(a dimer), the delocalization-localization transition was in-
vestigated theoretically [12] and was subsequently observed
experimentally [13]. Recently, the intricate role of drive in
circumventing inevitable imperfections was investigated for
the JC dimer and a 1D array leading to the proposal of an
indefinitely-long-lived self-trapped state [14]. Given recent
experimental advances in designing highly connected net-
works (which is a nontrivial generalization of a dimer), we
consider the setup with fully long-range (all-to-all) and finite-
range connectivities. Each unit Hi is described by Eq. (14),
and these units sit in networks such as the ones shown in
Fig. 1. The role of light-matter interaction g and the number
of neighbors D in the dynamics in such networks is investi-
gated for the resonant case (ωc = ωq). The system therefore
is an ideal platform for understanding the intricate interplay
between network connectivity D, interactions g, and kinetic
hopping J .

We present an exact quantum solution for Eq. (3) where
H now stands for the JC network. The system is initially
prepared with all the excitations (Np) in the cavity mode of
the test unit, and all other cavities and qubits are kept in the
ground state, i.e., n0(0) = Np, ni �=0(0) = 0, and 〈σ z

i (0)〉 = −1.
Since there is no drive in the system, the oscillators can never
be excited beyond |Np〉 (in each unit), and hence we truncate
the basis at |Np〉. The dimension Nd of this truncated Hilbert
space for the entire system is given by Nd = [2(Np + 1)]N .
For five units and ten photons, Nd = 225 (larger than 222), and
we numerically evolve the system with the Hamiltonian for
these parameters. In Fig. 4, we investigate P(t ) as a function
of time. One can notice that for small g the photons delocalize
and, for large g, the photons are localized in the test unit.

FIG. 4. The population imbalance P(t ) = n0(t ) − ∑N−1
j=1 nj (t ) as

a function of t (in units of 1/J) is plotted for a network of N = 5
JC units (resonant case ωc = ωq) for different values of g using exact
quantum numerics. This is the case of all-to-all coupling where the
initial condition is such that there are Np = 10 photons in the test unit
and the rest of the units are empty. Qubits in all units are initially
assumed to be in the ground state. It is evident from the figure that
for weak interactions g, one gets delocalization, and we reach a self-
trapped state when we increase the interaction. The left and right
insets show the degree of localization as a function of g (in units
of J) for the all-to-all coupling and nearest-neighbor coupling cases,
respectively.

This self-trapped phenomenon for large g is a result of an
interesting interplay between interaction, kinetic hopping, and
network connectivity. Figure 4 has two insets. The left inset
shows the degree of localization as one tunes the interaction
strength g for the all-to-all coupling case, and the right inset
demonstrates it for the nearest-neighbor (NN) coupling case,
clearly highlighting the consequence of all-to-all connectivity.
Even for small values of g the first case (all to all) shows
partial localization, whereas we see complete delocalization
in the second case (nearest neighbor).

Since the dimension Nd of the Hilbert space is very large,
it is evident that simulating this system with exact quantum
numerics for larger N is essentially impossible. Therefore,
to analyze the behavior of large networks, we resort to a
semiclassical approximation where we decouple correlation
functions, such as 〈aiσ

z
i 〉 ≈ 〈ai〉〈σ z

i 〉. When feasible, we have
benchmarked semiclassical results with direct quantum sim-
ulations thereby supporting the usage of the semiclassical
approach (see Appendix B). Introducing the definitions 〈ai〉 ≡
αi, 〈σ−

i 〉 ≡ βi, and 〈σ z
i 〉 ≡ wi, the semiclassical EOMs for

all-to-all connectivity are given by

α̇i = −iωcαi + iJ
N−1∑
j=0

( j �=i)

α j − igβi, (15)

β̇i = −iωqβi + igαiwi, ẇi = 2ig(α∗
i βi − αiβ

∗
i ). (16)

Such an approximation typically fails for small photon num-
bers, where quantum fluctuations play a significant role. In
Fig. 5(a), we show the heat map for the degree of localization
as one varies the light-matter interaction strength g and the
range of connectivity of the network D. We see that for a
given range of connectivity there exists a critical value of g
which demarcates the delocalization-localization transition.
In agreement with the left inset in Fig. 4, we observe that
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FIG. 5. Heat map for η with varying the numbers of nearest
neighbors D (as a fraction of the total number of units) and in-
teractions for (a) JC and (b) BH using the semiclassical approach.
The parameters are N = 50 and Np = 50. For the JC network the
resonant case, i.e., ωc = ωq, is considered. We find a transition from
the delocalized to the self-trapped regime.

for the case of all-to-all connectivity (D/N = 0.5), the sys-
tem is in the localized phase irrespective of the interaction
strength g, whereas for the case of NN coupling we observe
complete delocalization for smaller values of g as indicated
in the right inset in Fig. 4. However, the value of η might
vary depending on the system size as indicated in Sec. III. The
results presented here are for the resonant case (ωc = ωq) and
therefore correspond to the case of strongly anharmonic cavity
networks. Our results are generalizable to the off-resonant JC
case (ωc �= ωq). A well-known limit is the dispersive JC case,
where the detuning between the cavity and qubit frequencies
is large compared with light-matter interactions g. In this limit,
the system can map to an attractive or repulsive BH network
[39]. Irrespective of this connection between a dispersive JC
network and a BH network, the BH network with varied
connectivity is a fascinating many-body system in itself and
warrants a thorough investigation, which is done next.

V. NETWORK WITH BOSE-HUBBARD NONLINEARITY

The governing Hamiltonian for the Bose-Hubbard system
is the same as in Eq. (1) with the ith unit described by
the Hamiltonian Hi = ωca†

i ai − U
2 n2

i . Here, U quantifies the
strength of on-site attractive interaction. Our analysis involves
networks with a large number of cavity units and large photon
numbers. Tackling such a large-scale system is beyond the
scope of a fully quantum treatment due to numerical com-
plexity. Considering the success of semiclassical theory in
analyzing BH systems [1,3,5,40–42], we employ the semi-
classical approximation for our system and write the EOM
for all-to-all connectivity as

α̇i = −iωcαi + iJ
N−1∑
j=0

( j �=i)

α j + iU |αi|2αi, (17)

where 〈ai〉 ≡ αi. We initiate the system by populating just the
test unit, i.e., α0 = √

10 with the rest of them taken to be
empty, i.e., α j �=0 = 0.

With these initial conditions, we numerically solve the
set of coupled nonlinear differential equations [Eq. (17)] and
plot P(t ) in Fig. 6(a). We observe that the localization de-

FIG. 6. (a) P(t ) as a function of time (in units of 1/J) when
uniform on-site nonlinearity (all-to-all BH network) is present in
each cavity with U = J for various values of N . (b) Degree of local-
ization vs N for various values of BH nonlinearity for the all-to-all
network. The dashed vertical lines mark the threshold number N∗

after which the network resembles a linear behavior. The inset shows
the behavior of N∗ as a function of BH nonlinearity U . (c) Degree of
localization as a function of the number of neighbors D for various
values of U (N = 50, Np = 20).

teriorates as the number of units N increases from 2 to 8.
This feature is exactly opposite to the linear cavity network
discussed earlier. Interestingly, with a further increase of N
from 8 to 50, Fig. 6(a) shows enhancement of localization.
In other words, beyond a certain N (say, N∗) the system
behaves similarly to an almost linear network (the effect of U
is of course still there). This nonmonotonic feature is clearly
visible in Fig. 6(b) for three different values of U . The vertical
dashed lines mark the N∗ where the system transits from
nonlinear to almost linear in terms of localization. It is also
important to note that the transition point N∗ moves towards
higher values as U is increased, and the detailed relationship
between N∗ and U is captured in the inset of Fig. 6(b). We
further investigate the role of connectivity in Fig. 6(c), where
we plot the degree of localization η as a function of D for
N = 50 units and Np = 20 photons. For lower values of U
(= J, 2J), we observe that η initially decreases to 0 and then
again increases to its all-to-all connectivity value after being
completely delocalized over a range of D. For higher values
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of U (= 4J), the system is never in the completely delocalized
state; rather it falls from complete localization to its all-to-all
connectivity value. The initial fall in η takes place due to the
increase in the number of pathways for the photons to escape;
however, for higher values of D, the system closely resembles
the all-to-all configuration, and thus η increases again. For
higher U , the effect of connectivity is dominated over by
the on-site attractive interaction. In Fig. 5(b) we investigate
the role of D and U in η for N = 50 and Np = 50. A clear
transition from the delocalized to the self-trapped regime is
observed, and there is a linear relationship between the value
of U at which the transition takes place and the number
of neighbors. In the delocalized phase we observe a regime
of localized phase on increasing D/N . The phase boundary
here is a nontrivial function of U and D/N . Another region
or patch of slightly increased η is visible around U = 0.2J
and D/N ∈ (0.20, 0.35) which is an artifact of semiclassical
approximation.

The nonlinear cavity in the all-to-all network contains rich
physics of competing factors such as U and N . On the one
hand, increasing the number of units N increases the number
of pathways for the movement of photons. On the other hand,
the BH interaction U restricts photon flow due to on-site
photon-photon attraction. This is the reason that the degree
of localization decreases when one increases N for a fixed
U . However, after crossing some threshold N∗ the degree of
localization improves because the system closely resembles
a linear system. Needless to mention, it is paramount to es-
tablish that this nonmonotonic behavior is not an artifact of
semiclassical approximation [Eq. (17)]. To do so, when feasi-
ble we perform an exact quantum calculation and demonstrate
the nonmonotonic feature (see Appendix B).

VI. CONCLUSIONS AND OUTLOOK

Macroscopic self-trapping (or lack thereof) is a phe-
nomenon that has been a subject of intense investigation in
various physical platforms. We fill a major gap in this direc-
tion by studying localization physics in scalable circuit-QED
networks with connectivity that can be varied from finite
range to fully long range. For the case of harmonic networks
we demonstrate localization that is rooted in all-to-all con-
nectivity as opposed to disorder [43] or interactions [5,44].
Here it is worth mentioning that the disorder-induced local-
ization phenomenon has been studied in lattices with different
topologies [45–48]. Furthermore, localization physics and its
dependence on coordination number have been analyzed on
random regular graphs, which are important tools for solv-
ing many-body problems [47,48]. After providing analytical
results for the harmonic network, we unveiled the exotic inter-
play between anharmonicity or interactions, kinetic hopping,
and network connectivity that often leads to counterintuitive
behavior. We observe that as we increase the strength of
interaction, the effect of connectivity is suppressed, and the
localization phenomenon is dictated primarily by interactions.
Such interplay is expected to be robust to different types of
local interactions. In fact, to highlight this universality, we
used two entirely different types of local interactions, namely,
(i) Jaynes-Cummings and (ii) Bose-Hubbard interactions. In
this context it is important to mention that many-body lo-

calization has been extensively studied in networks where
interactions and disorder play pivotal roles [49–52]. We
present exact quantum numerics for feasible system sizes and
study large-scale networks using a semiclassical approach.
When possible, we perform a comparative study between
quantum and semiclassical approaches (Appendix B). Bearing
in mind realistic experimental setups, we investigate the role
of imperfections in the cavity or qubit and disorder. Our open
quantum system computations (Appendix C) show that for
experimentally accessible time scales one can still capture
the interesting results of localization. We also demonstrate
robustness to disorder (Appendix D).

Our findings are relevant for physical systems with long-
range connectivity. In recent experiments related to large
quantum computational architectures, designing nontrivial ge-
ometry and engineering connectivity through multiple qubits
have become objects of increasing focus [16–18,53,54]. Our
findings are potentially experimentally realizable in existing
circuit-QED platforms and are expected to play a pivotal
role in exploring other setups with nontrivial geometries.
Our investigation reveals experimentally realizable regimes
where the system retains information about its initial state
and hence provides a possible platform to store quantum
information [55,56]. As a future direction, it would be inter-
esting to consider driven-dissipative quantum networks (with
varied connectivity) and investigate their nonequilibrium
steady-state properties. It is worth noting that the network
configuration also contains rich chaotic regimes. The impact
of chaos on population or state transfer in large networks is an-
other interesting future aspect of study [57]. It is challenging
and interesting to explore level spacing statistics (and spectral
transitions) in these networks, and this is expected to have a
deep connection to the localization or delocalization phenom-
ena [58]. Our work can be further extended to more interesting
geometries such as hyperbolic lattices [59,60]. Such exotic
deformations of lattices have been realized in experiments
using coplanar waveguide resonators [59], and it would be
interesting to investigate the effect of curvature along with
connectivity on such networks.
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APPENDIX A: ANALYTICAL RESULTS FOR
HARMONIC NETWORKS

In this Appendix, we will derive analytical expressions for
P(t ) in both the finite-range coupling (Sec. A 1) and all-to-
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all coupling (Sec. A 2) cases when the units Hi are harmonic
oscillators, i.e., Hi = ωca†

i ai. We shift to the Fourier space,

a†
j = 1√

N

N−1∑
k=0

e−i 2π
N k ja†

k, (A1)

where j = 0, 1, 2, . . . , N − 1 is the lattice index and k rep-
resents the wave number. Substituting Eq. (A1) into the unit
Hamiltonian we get

N−1∑
j=0

Hj = ωc

N

j=N−1
k,k′=N−1∑

j=0
k,k′=0

a†
kak′e−i 2π

N (k−k′ ) j . (A2)

Now using the Fourier decomposition of the Kronecker delta,

1

N

N−1∑
j=0

e−i 2π
N (k−k′ ) j = δkk′ , (A3)

we get rid of the sum over j and contract the sum over k′,
which finally yields

∴
N−1∑
j=0

Hj = ωc

N−1∑
j=0

a†
j a j = ωc

N−1∑
k=0

a†
kak . (A4)

Now, to evaluate the coupling Hamiltonian, we will need
to simplify terms such as

∑N−1
j=0 (a†

j a j+d + H.c.), where d is
some integer. Performing a Fourier transform gives

N−1∑
j=0

(a†
j a j+d + H.c.)

= 1

N

j=N−1
k,k′=N−1∑

j=0
k,k′=0

(
e−i 2π

N k j+i 2π
N k′( j+d ) a†

kak′ + H.c.
)
. (A5)

Again, using Eq. (A3) and contracting the sum over k′, we
get

N−1∑
i=0

(a†
i ai+d + H.c.) = 2

N−1∑
k=0

a†
kak cos

(
2π

N
kd

)
. (A6)

1. Finite-range coupling

For finite-range coupling (D < �N/2�), using Eq. (A6), the
coupling part of the Hamiltonian (Hcoupl.) becomes

Hfinite
coupl. = −J

N−1∑
i=0

D∑
d=1

(a†
i ai+d + H.c.)

= −2J
N−1∑
k=0

D∑
d=1

cos

(
2π

N
kd

)
a†

kak

= −2JDa†
0a0 − 2J

N−1∑
k=1

f (k)a†
kak, (A7)

where

f (k) =
D∑

d=1

cos

(
2π

N
kd

)
= cos

(
D+1

N πk
)

sin
(

Dπk
N

)
sin

(
πk
N

) . (A8)

From Eqs. (A4) and (A7) we can write down the dispersion
relation for the finite range as

εfinite(k) = ωc − 2DJδk,0 − 2J f (k)(1 − δk,0). (A9)

Using ȧk = i[H, ak], where H is in the momentum basis,
the equations of motion become

ȧk =
{−iωcak + i2J f (k)ak, k �= 0
−iωcak + i2JDak, k = 0.

(A10)

Note that in the above equation (A10), we treat the k → 0
limit carefully and separately. The solution to Eq. (A10) reads

ak (t ) =
{

ak (0) exp[−i(ωc − 2J f (k))t], k �= 0

ak (0) exp[−i(ωc − 2DJ )t], k = 0.
(A11)

The initial values ak (0) are determined by a j (0) using
Eq. (A1),

ak (0) = 1√
N

N−1∑
j=0

e−ik ja j (0). (A12)

Now we initiate the system in such a way that there are Np

bosons in the test unit and all other sites are empty, i.e.,
〈a0(0)〉 = √

Np and 〈a j �=0(0)〉 = 0. Therefore we have

〈ak (0)〉 =
√

Np

N
. (A13)

The population difference operator P(t ) can be written as

P(t ) = 2n0(t ) −
N−1∑
j=0

n j (t ), (A14)

where we recall that ni(t ) = 〈a†
i (t )ai(t )〉. Since there are no

dissipative processes involved, we have
∑N−1

j=0 n j (t ) = Np.
Using Eq. (A1), we get

P(t ) = 2

N

N−1∑
k,k′=0

〈a†
kak′ 〉 − Np

= 2

N

{
〈a†

0(t )a0(t )〉 +
N−1∑
k=1

〈a†
k (t )a0(t )〉

+
N−1∑
k=1

〈a†
0(t )ak (t )〉 +

N−1∑
k,k′=1

〈a†
k (t )ak′ (t )〉

}
− Np.

(A15)

Substituting Eqs. (A11) and (A13), we get

P(t ) = 2Np

N2

{
1 +

N−1∑
k,k′=1

exp [i2Jt ( f (k′) − f (k))]

+ 2
N−1∑
k=1

cos [2Jt ( f (k) − D)]

}
− Np. (A16)

2. All-to-all coupling

For all-to-all coupling and for D � �N/2� we follow the
same steps as in the case of finite-range coupling, with the
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necessary changes in the coupling term.

H all-all
coupl. = −J

2

N−1∑
i, j=0
i �= j

(a†
i a j + H.c.)

= −J
N−1∑
k=0

N−1∑
d=1

cos

(
2π

N
kd

)
a†

kak

= −J (N − 1)a†
0a0

− J
N−1∑
k=1

cos (πk) sin
(

N−1
N πk

)
sin

(
πk
N

) a†
kak

= −J (N − 1)a†
0a0 + J

N−1∑
k=1

a†
kak

= −JNa†
0a0 + JNp. (A17)

From Eqs. (A4) and (A17) we can write down the dispersion
relation for the all-to-all coupling case as

εall-all(k) = ωc − J (N − 1)δk,0 + J (1 − δk,0). (A18)

Now, the equations of motion are given by

ȧk =
{−iωcak − iJak, k �= 0
−iωcak + iJ (N − 1)ak, k = 0,

(A19)

whose solution reads

ak (t ) =
{

ak (0)e−i(ωc+J )t , k �= 0
ak (0)e−i(ωc−(N−1)J )t , k = 0.

(A20)

Substituting Eq. (A20) into Eq. (A15), we get

P(t ) = 2

N

{
Np

N
+ Np

N
(N − 1)2

+ Np

N
(N − 1)2 cos(NJt )

}
− Np. (A21)

Rearranging the terms in Eq. (A21), we get

P(t ) = Np

N2
[1 + (N − 1)(N + 4 cos(NJt ) − 3)]. (A22)

APPENDIX B: COMPARISON BETWEEN EXACT
QUANTUM COMPUTATIONS AND
THE SEMICLASSICAL APPROACH

This Appendix is dedicated to comparing (whenever fea-
sible) exact quantum computations with the semiclassical
approach. This is of paramount importance since both the JC
and BH networks are nonlinear systems and hence doing ex-
act quantum calculations becomes unfeasible beyond a point.
Therefore it is important to have a benchmark so that one can
use the semiclassical approach for larger-scale problems. As
mentioned in Sec. IV, the dimension Nd of the Hilbert space
for the entire system of the JC network is extremely large and
is given by Nd = [2(Np + 1)]N . For example, if the number of
units is N = 5 and we take Np = 10 photons, then Nd = 225

(which is larger than 222). This means that beyond a few units,
the exact quantum calculations become unfeasible and one

needs to resort to other approaches such as the semiclassical
method.

In Fig. 7, we demonstrate the agreement between ex-
act quantum numerics and semiclassical results for the
JC and BH networks for both finite-range and all-to-all
coupling. In particular, we investigate the degree of local-
ization as a function of the strength of the nonlinearity.
We find that even the quantitative agreement is reasonably
good.

As a consequence of this agreement between semiclassical
and exact quantum methods, we elaborate on the nonmono-
tonic behavior of localization for the BH network that was
shown in Fig. 6(b). A natural question is whether this
nonmonotonic behavior (η versus N) is a consequence of
semiclassical approximation or whether it is also present in
fully quantum calculations. In Fig. 6(b), we have shown the
nonmonotonic behavior of localization for BH nonlinearity by
considering semiclassical theory. Here, we will show that this
nonmonotonic behavior can also be verified for the quantum
case. We observe in Fig. 6(b) that, in between the first two
vertical dashed lines, localization for the U = J case is better
when N is larger (the solid red line is curving upwards). On the
other hand, for U = 2J , the degree of localization decreases
when N increases (the green dashed-dotted line is curving
downwards). This is rooted in the fact that, upon increasing
N , the U = J case enters the linearlike region earlier than
the U = 2J case. This implies that for two values of N , say,
N = 3 and N = 4, the saturation values of P(t ) would have
the opposite trend for U = J and U = 2J . We find this also

FIG. 7. Comparison of exact quantum numerics and semiclas-
sical approach. (a) and (b) show η as a function of g (in units of
J) for the JC network with N = 4 and Np = 20, for all-to-all and
nearest-neighbor coupling, respectively. (c) and (d) show η as a
function of U (in units of J) for the BH network with N = 4 and
Np = 20, for all-to-all and nearest-neighbor coupling, respectively.
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FIG. 8. Results of fully quantum treatment for the BH network
(N = 3, 4 and Np = 10) with all-to-all connectivity. The population
difference is shown for (a) U = 0.1J and (b) U = J as a function of
time (in units of 1/J). It is clear that for U = 0.1J the case of N =
4 is more localized whereas for U = J the case of N = 3 is more
localized thereby showing nonmonotonicity in the quantum case.

to be true when we perform the exact quantum calculations.
Comparing Figs. 8(a) and 8(b), we see that the population
difference P(t ) for the N = 4 case lies above the N = 3 case
when U = 0.1J , whereas the order is reversed for the U = J
case. Therefore this feature is consistent with the observa-
tion we have for the semiclassical case and is a reflection of
nonmonotonicity.

APPENDIX C: CLOSED VERSUS OPEN
QUANTUM SYSTEMS

In this Appendix, we investigate the consequence of im-
perfections due to coupling with the environment, which are
inevitable in physical systems. Examples of such imperfec-
tions include dissipation in the cavity and qubit decay or
dephasing. In this paper, we neglected environmental effects
to focus mainly on the interplay between nonlinearity, kinetic
hopping, and connectivity. Here, we discuss the case in which
we have open quantum systems. The ranges of parameters that
we consider are motivated by experiments and summarized in
Table I. To incorporate environmental effects in the system
dynamics, we rely on the Lindblad formalism and exploit the
following local Lindblad quantum master equation:

ρ̇(t ) = −i[H, ρ(t )] + κ

N−1∑
j=0

L[a j] + γ

N−1∑
j=0

L[σ−
j ]

+ γφ

N−1∑
j=0

L
[
σ z

j

]
, (C1)

TABLE I. Summary of the typical range of parameter values
obtainable in circuit-QED [13,16,61–63].

Typical range of parameter values (×2π )

ωc 4–8 GHz
ωq 4–8 GHz
g 1–300 MHz
U 150–350 MHz
J 50 kHz to 50 MHz
κ 50 kHz to 50 MHz
γ 20–200 kHz
γφ 20–200 kHz

where L[Aj] = (2Ajρ(t )A†
j − A†

jA jρ(t ) − ρ(t )A†
jA j )/2. ρ(t )

is the reduced density matrix of the system, which is obtained
by tracing out the environmental degrees of freedom from the
full density matrix (of the system and the environment). It is
important to note that we restrict ourselves to local Lindblad
description although, in general, a rigorous derivation starting
from a microscopic system-bath Hamiltonian is expected to
lead to various variants of quantum master equations [64] de-
pending on the parameter regimes. Furthermore, we consider
the very low temperature T regime and neglect the effect
of thermal excitations in Eq. (C1). This is because typical
temperature regimes in experiments range from T ∼ 10 mK
to T ∼ 30 mK. For BH networks, qubit degrees of freedom
are absent, and the governing Lindblad master equation can

FIG. 9. Comparison of exact quantum numerics for closed and
open systems. (a) and (b) show the evolution of Z (t ) defined in
Eq. (C2) as a function of time (in units of 1/J) for the JC network
with N = 3, Np = 5, κ = 0.01J , γ = 0.01J , for g = 2J and g = 40J ,
respectively. (c) and (d) show the evolution of Z (t ) as a function of
time (in units of 1/J) for the BH network for U = 0.1J and U = 8J ,
respectively (N = 4, Np = 4, κ = 0.01J). In both cases, all-to-all
coupling is considered. This figure clearly demonstrates the intricate
interplay between connectivity, interaction, and dissipation channels.
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FIG. 10. Effect of disorder characterized by �ω on the degree
of localization for the exact quantum numerical solution. Results for
�ω = 0.00, 0.01, and 0.10ωc are compared. (a) and (b) show η as
a function of g (in units of J) for the JC network with N = 5 and
Np = 10, for all-to-all and nearest-neighbor coupling, respectively.
(c) and (d) show η as a function of U (in units of J) for the BH
network with N = 5 and Np = 10, for all-to-all and nearest-neighbor
coupling, respectively.

be obtained by putting γ = γφ = 0 in Eq. (C1). Since, in
the open-system case, the total number of excitations is not
conserved, we introduce a slightly modified variant of P(t ),
which is

Z (t ) = P(t )∑N−1
j=0 n j (t )

. (C2)

Z (t ) gives the ratio of the imbalance to the total number of
excitations at any given time. In Fig. 9, this is plotted both for
the JC network [Figs. 9(a) and 9(b)] and for the BH network
[Figs. 9(c) and 9(d)]. We notice that self-trapping in both cases
[Figs. 9(b) and 9(d)] persists for reasonably long times, after
which there is a decay of Z (t ).

APPENDIX D: ROBUSTNESS TO DISORDER

The role of disorder due to error margins in parameter
values of the network is discussed in this Appendix. In ex-
periments, it is almost impossible to design network elements
such as cavities and qubits of a given frequency or level gap
without any error margin. For example, in a typical experi-
ment, to design a cavity of frequency ωc = 7 × 2π GHz, there
is an error margin of ±70 × 2π MHz (0.01ωc). Throughout
this paper we have neglected such disorders in the network,

FIG. 11. Effect of disorder of the kinetic hopping J characterized
by �J on the degree of localization for the exact quantum numeri-
cal solution. Results for �J = 0.00, 0.01, and 0.10J are compared.
(a) and (b) show η as a function of g (in units of ωc) for the JC
network with N = 5 and Np = 10, for all-to-all and nearest-neighbor
coupling, respectively. (c) and (d) show η as a function of U (in units
of ωc) for the BH network with N = 5 and Np = 10, for all-to-all and
nearest-neighbor coupling, respectively.

and one might wonder about the consequence of disorder on
the phenomenon of self-trapping. Thus, for our theoretical
findings to be observed in potential experimental setups, it is
important to check their robustness upon the inclusion of dis-
order. In order to proceed, we modify the cavity Hamiltonian
in the following manner:

Hdisord.
cavity =

N−1∑
i=0

(ωci + εi )a
†
i ai, (D1)

where εi is drawn from a uniform distribution ranging from
−�ω to �ω. In Fig. 10, we plot the degree of localization η as
a function of the light-matter interaction g for the JC network
and the on-site attractive potential U for the BH network.
We present exact quantum numerical results for all-to-all
and nearest-neighbor connectivity with �ω = 0.01 and 0.1ωc.
The effect of disorder on the kinetic hopping strength J is also
investigated by considering the hopping between two units
i and j to be Ji j = J + εi j , where εi j = ε ji is again drawn
from a uniform distribution ranging from −�J to �J . In
Fig. 11 we present the degree of localization for the JC and
BH networks with all-to-all and nearest-neighbor coupling
with �J = 0.01 and 0.1J . The robustness to disorder in both
cavity frequency and kinetic hopping is clearly manifested in
Figs. 10 and 11.
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