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Self-testing is an examination for characterizing unknown quantum devices based on correlations of observed
statistics in a black-box scenario. With development of large-scale quantum networks, the requirement for
self-testing multipartite entangled measurements has become very demanding. We develop here a general
procedure for self-testing arbitrary generalized Greenberger-Horne-Zeilinger-state (GHZ-state) measurements
which applies to any number of parties. Moreover, it turns out that the existing result for the three-qubit
GHZ-state measurement is recovered as a special case. Our results will motivate operational certification of
quantum devices related to device-independent quantum information tasks for various scenarios in complicated
quantum networks.
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I. INTRODUCTION

The rapid development of quantum communication in re-
cent years has created an exigent requirement for devising
certification methods to guarantee the correctness of quantum
information tasks. To rule out any potential attacks by a mali-
cious third party, such certification methods must be device
independent. As the first device-independent tool, the Bell
nonlocality has been extensively studied in recent decades
[1]. It has brought great breakthroughs in quantum physics.
Recently, as the strongest form of certification for quantum
devices, self-testing has been developed [2], which is also
based on the Bell nonlocality. Such a certification method can
characterize target objects (quantum states, measurements)
fully only up to local isometries. Moreover, as the self-testing
is a black-box test, it can be considered a device-independent
certification under the assumption that quantum systems are
able to be prepared many times in an independent, identically
distributed (IID) manner.

Since the pioneering work of Mayers and Yao [3], self-
testing has attracted lots of attention. It can be used to certify
entangled pure states and measurements [4–23]. To date, a
wide range of entangled quantum states have been proved to
be self-testable, such as the elegant results for all pure bipartite
entangled states [24], three-qubit W states [25], and graph
states [26]. It has also been shown that all pure multipartite
Greenberger-Horne-Zeilinger (GHZ) states and Dicke states
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can be self-tested [27]. Moreover, a self-testing method for
quantum channels has also been developed [28]. In addition,
there have been many applications of self-testing, such as
quantum key distribution [29], randomness expansion [30],
detection for entanglement [31], certification of genuinely
entangled subspaces [32,33], coarse-grained self-testing of a
many-body singlet [34], and verification of quantum compu-
tations [35,36]. Recently, a device-independent quantum state
verification protocol under a more stringent concept of device
independence that drops the IID assumption was studied in
Ref. [37] based on self-testing methods.

In this work, we focus on self-testing entangled measure-
ments in quantum networks. Self-testing entangled quantum
measurements has great potential for developing practi-
cal quantum networks, which were preliminarily studied in
Refs. [38,39]. Consider a simple network connected by three
nodes (Alice, Bob, and Charlie), where two observers, Alice
and Bob, share entangled states with a central node, Charlie.
If one wants to efficiently perform some quantum information
processing tasks in such a network (e.g., the entanglement
distribution between remote parties Alice and Bob), a self-
testable entangled measurement on Charlie is essential. In
Ref. [38], the authors presented a self-testing method for
the Bell-state measurement (BSM) and three-qubit GHZ-state
measurement (GSM). Furthermore, a more robust self-testing
scheme for BSM was also proposed in Ref. [39]. However,
there has not been a detailed characterization for self-testing
multipartite (N > 3) entangled measurements directly.

By generalizing the idea of Ref. [38], we present herein a
self-testing method for an N-qubit generalized GSM whose
eigenstates are N-qubit generalized GHZ states. To verify
whether a measurement is generalized GSM or not, one
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FIG. 1. An entanglement-swapping scenario: Charlie shares a
maximally entangled two-qubit state with each of the other two ob-
servers (Alice and Bob). If Charlie performs tilted BSM and obtains
outcome b, then Alice and Bob will be projected into |Bellb

θ 〉; that
is, Alice and Bob can observe the maximal violation of the specific
tilted CHSH inequality with CHSHα

b = √
8 + 2α2.

should first confirm all of its measurement eigenstates are
really generalized GHZ states. Thus, the first step to self-test a
generalized GSM is self-testing all of its measurement eigen-
states, and the problem of self-testing a generalized GSM can
be converted to the problem of self-testing states. Motivated
by the method for self-testing multipartite entangled states in
Ref. [27], we have developed further a general method for
self-testing a multipartite generalized GSM in a star network,
and the method is operational from an experimental point of
view. We also show that one can self-test more entangled
measurements using our developed method straightforwardly.

This paper is organized as follows. In Sec. II, we provide a
preparation review of the tilted Clauser-Horne-Shimony-Holt
(CHSH) scenario which constitutes an important ingredient
of our self-testing method. In Sec. III, the self-testing method
for a multipartite generalized GSM is presented. In Sec. IV, a
noise-robust self-testing scheme of a three-qubit GSM is pre-
sented, with the help of semidefinite-program (SDP) method.
Finally, we conclude our results and discuss potential future
works in Sec. V.

II. PRELIMINARIES

Before studying the self-testing of multipartite generalized
GSM, let us introduce an entanglement-swapping scenario in
detail (see Fig. 1). It is shown that after Charlie performs an
entangled measurement, the remaining state of Alice and Bob
will be projected into the eigenstate of Charlie’s measurement.
Such a procedure presents direct insight into the relation
between the entangled measurement and its measurement
eigenstates, which is a fundamental idea for self-testing mul-
tipartite generalized GSM. Like in Appendix C in Ref. [38],
we consider the tilted BSM here. To certify the tilted BSM,
the tilted CHSH inequality is necessary [40]. Let us consider
a task: Alice and Bob share a two-qubit state, and they want
to know whether the shared state is entangled or not. They
perform local measurements (dichotomic observables) sepa-
rately. The tilted CHSH inequality is given by

α〈A0〉 + 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 � 2 + α, (1)

where the maximal value of quantum violation is√
8 + 2α2, α ∈ [0, 2), with Ai and Bi being observables

with outcomes {−1,+1} measured locally by Alice and
Bob. Here, we omit the notation ⊗ between systems A
and B and write A0 ⊗ I as A0 for short. After performing

local measurements, if Alice and Bob obtain the maximal
violation of the tilted CHSH inequality, the state shared by
them is certainly a partially entangled two-qubit state (tilted
Bell state). For the detailed case, the four tilted Bell states
|Bellbθ 〉, b = 0, 1, 2, 3, are

|Bellbθ
〉 = (−1)2k1+k2 cos θ |k1k2〉 + sin θ |k̄1k̄2〉,

where b = 2k1 + k2, ki ∈ {0, 1}, and k̄i = 1 − ki, i ∈
{1, 2}, θ ∈ (0, π

4 ]. Let μ satisfy tan μ = sin 2θ and σZ , σX be
Pauli matrices. If one fixes the measurement settings of Alice
and Bob as A0 = σZ , A1 = σX , B0 = cos μσZ + sin μσX ,
and B1 = cos μσZ − sin μσX , the output statistics
obtained with these measurements will maximally
violate some tilted CHSH inequalities. The maximal
violation is CHSHα

b = 〈Bellbθ |W α
b |Bellbθ 〉 = √

8 + 2α2, with

α = 2 cos 2θ/
√

1 + sin2 2θ , where

W α
0 = αA0 + A0B0 + A0B1 + A1B0 − A1B1,

W α
1 = αA0 − A0B0 − A0B1 − A1B0 + A1B1,

W α
2 = −αA0 − A0B0 − A0B1 + A1B0 − A1B1,

W α
3 = −αA0 + A0B0 + A0B1 − A1B0 + A1B1.

Here, W α
b is a Bell operator acting on the Hilbert space

HA ⊗ HB of Alice and Bob. It is easy to show that the eigen-
value

√
8 + 2α2 of the Bell operator W α

b is nondegenerate
with the associated eigenvector |Bellbθ 〉. Hence, if the maximal
violation of CHSHα

b is
√

8 + 2α2, the shared state will be
|Bellbθ 〉. One can discriminate the four tilted Bell states by
the maximal violations of four tilted Bell inequalities with
fixed measurement settings. Furthermore, other tilted Bell
states that are local unitary (constructed by σZ , σX ) equivalent
to the above four tilted Bell states can also be discrimi-
nated. For example, the state |�〉 = cos θ |00〉 − sin θ |11〉 =
σZA |Bell0θ 〉 can maximally violate the tilted CHSH inequal-
ity with CHSHθ = 〈σZAW α

0 σ
†
ZA

〉 = α〈A0〉 + 〈A0B0 + A0B1 −
A1B0 + A1B1〉 and fixed measurements given above.

In the entanglement-swapping scenario [41] shown in
Fig. 1, let Charlie perform a tilted BSM with outcomes b.
Then, the remaining state will be projected into one of the
four tilted Bell states |Bellbθ 〉 conditioned on the outcomes b.
Conversely, if one finds that Alice and Bob share tilted Bell
states |Bellbθ 〉 for b ∈ {0, 1, 2, 3}, Charlie’s performed mea-
surement is a tilted BSM. When it comes to the self-testing
scenario, the target for self-testing will be equivalent to one
of the four tilted Bell states or a tilted BSM, up to a local
isometry. Physically, a local isometry performed on a state
can be considered a local unitary operator after adding local
ancillas (e.g., |0 · · · 0〉) [2]. Motivated by this idea, we will
develop a procedure for self-testing a multipartite generalized
GSM.

III. SELF-TESTING A MULTIPARTITE
GENERALIZED GSM

As shown in Ref. [42], any completely positive and trace-
preserving (CPTP) map can be implemented by tracing out
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FIG. 2. Roy shares a Bell state with each of the other N observers
(Alice 1, Alice 2, . . . , Alice N). If Roy performs multipartite general-
ized GSM, then the state shared by Alice 1, Alice 2, . . . , Alice N will
be projected into |GHZr

θ 〉. Conversely, if Alice 1, Alice 2, . . . , Alice
N observe that it is projected into |GHZr

θ 〉 for all r, the measurement
performed by Roy is equivalent to the generalized GSM.

degrees of freedom that do not involve effective information
after applying a local isometry. Therefore, one can directly
generalize the definition in [2,16,38] to present the self-testing
of multipartite measurements via simulation: denote an ideal
d-outcome measurement for Roy acting on HR′

1
⊗ HR′

2
⊗

· · · ⊗ HR′
N

as P ′ = {P′r
R′

1R′
2···R′

N
}d

r=1 and a real measurement

acting on HR1 ⊗ HR2 ⊗ · · · ⊗ HRN as P = {Pr
R1R2···RN

}d
r=1.

If there exist completely positive and unital maps �Rj :
L(HRj ) → L(HA′

j
) for j ∈ {1, 2, . . . , N}, such that

�R1 ⊗ �R2 ⊗ · · · ⊗ �RN

(
Pr

R1R2···RN

) = P′r
R′

1R′
2···R′

N
(2)

for all r, we say P is capable of simulating P ′. In the above
definition, we adopt the assumption that the different physical
sources are independent in a quantum network. The construc-
tion of a quantum network as shown in Fig. 2 guarantees the
well-defined N partition for Roy’s measurement device, i.e.,
HR = HR1 ⊗ HR2 ⊗ · · · ⊗ HRN .

The idea of our self-testing method relies on the task of
entanglement swapping as shown in Fig. 2. There are N

initially uncorrelated parties Alice 1 (A1), Alice 2 (A2), . . . ,
Alice N (AN ). They are independently entangled with an ad-
ditional party, Roy. Specifically, Ai and Roy share a Bell state
|Bell0π/4〉AiRi ∈ HAi ⊗ HRi , i ∈ {1, 2, . . . , N}. To distribute en-
tanglement among A1, A2, . . . , AN in such a quantum star
network, Roy performs the generalized GSM and obtains
outcomes r = (k1k2 · · · kN ) with k1, k2, . . . , kN ∈ {0, 1}. For
simplicity, we denote the outcomes as r ∈ {0, 1, . . . , 2N − 1}.
Then, the states shared by A1, A2, . . . , AN are projected to
one of the 2N generalized GHZ states |GHZr

θ 〉 based on the
outcome r. The generalized GHZ states are measurement
eigenstates of the generalized GSM given by

|GHZr
θ 〉 = (−1)r cos θ |k1k2 · · · kN 〉 + sin θ |k̄1k̄2 · · · k̄N 〉,

where r =
N∑

i=1
ki2N−i, k̄i = 1 − ki, and ki ∈ {0, 1}, i ∈

{1, . . . , N}. The generalized GSM can be denoted as
GSMθ = {GHZr

θ }2N −1
r=0 , with GHZr

θ = |GHZr
θ 〉〈GHZr

θ |. If
A1, A2, . . . , AN obtain Roy’s outcomes r, they can apply a cer-
tain local unitary operation on their qubits, so that they share a
certain generalized GHZ state. With the above operations, we
have implemented the distribution of entanglement among N
remote parties.

The self-testing procedure is similar to the task of entan-
glement swapping without assumptions on the dimensions,
initial states, and operators. From now on, for any observable
Q acting on Hilbert spaces H, by adding a prime, we denote
Q′ as the observable acting on two-dimensional Hilbert spaces
H′. Let us start with presenting the self-testing method for
N-partite generalized GHZ states given in Ref. [27].

Lemma 1. (Refer to Ref. [27].) Suppose an N-partite
state |ψ〉 and a pair of binary observables A0,i and A1,i

for the ith party, with i = 1, . . . , N . For an observable D,
let Pa

D = [I + (−1)aD]/2, a ∈ {0, 1}. Let μ satisfy tan μ =
sin 2θ , Zi = A0,i, and Xi = A1,i for i = 1, . . . , N − 1. Then, let
Z∗

N be (A0,N + A1,N )/(2 cos μ) with zero eigenvalues replaced
by 1 and X ∗

N be (A0,N − A1,N )/(2 sin μ) with zero eigenvalues
replaced by 1. Define ZN = Z∗

N |Z∗
N |−1 and XN = X ∗

N |X ∗
N |−1. If

the relations

〈ψ |P0
A0,i

|ψ〉 = 〈ψ |P0
A0,i

P0
A0, j

|ψ〉 = c2
θ ∀ i, j ∈ {1, . . . , N − 1},〈

ψ |
N−2∏
i=1

Pai
A1,i

|ψ
〉

= 1

2N−2
∀ ai ∈ {0, 1},

〈
ψ

∣∣∣∣∣
(

N−2∏
i=1

Pai
A1,i

)
W

∣∣∣∣∣ψ
〉

=
√

8 + 2α2

2N−2
∀ ai ∈ {0, 1},

where

W =αA0,N−1 ⊗ IN + A0,N−1A0,N + A0,N−1A1,N

+ (−1)
∑N−2

i=1 ai (A1,N−1A0,N − A1,N−1A1,N ),
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α = 2 cos 2θ/
√

1 + sin2 2θ and cθ = cos θ, θ ∈ (0, π/4], are
satisfied, there exists a local isometry � such that

�(|ψ〉) = |junk〉|GHZ0
θ 〉.

Hence, the correlations that satisfy the above relations self-test
the state |GHZ0

θ 〉 = cos θ |0〉⊗N + sin θ |1〉⊗N .
The junk state in Lemma 1 can be any state and can be

removed by tracing out the A1A2 · · · AN space. Here, ZN and
XN act on |ψ〉 in the same way as (A0,N + A1,N )/(2 cos μ)
and (A0,N − A1,N )/(2 sin μ), respectively [2]. For details, the
ideal measurements achieving these correlations in Lemma
1 are A′

0,i = σZ and A′
1,i = σX for i = 1, . . . , N − 1, A′

0,N =
cos μσZ + sin μσX , and A′

1,N = cos μσZ − sin μσX .
Remarkably, for different r ∈ {0, 1, . . . , 2N − 1}, the

|GHZr
θ 〉 can all be self-tested by correlations in Lemma 1

with different measurement settings up to local isometries.
In other words, one can obtain a local isometry such that
�r (|ψ r〉) = |junk〉|GHZr

θ 〉 for each r. As the isometry �r

can always be constructed by local operations which do not
depend on r, one can always construct a single isometry such
that �(|ψ r〉) = |junk〉|GHZr

θ 〉. A detailed description will be
given in Lemma 2.

Now, let us first introduce some notations. For an ob-
servable O′ acting on Hilbert space H′ = ⊗N

i=1HA′
i
, let Õ′r =

U ′r†O′U ′r , where U ′r = ⊗N
i=1U

′r
A′

i
acts on H′. Here, HA′

i
, i ∈

{1, 2, . . . , N}, are two dimensional Hilbert spaces. The unitary
operator U ′r satisfies the equation U ′r |GHZr

θ 〉 = |GHZ0
θ 〉 and

is constructed by the product of the identity matrix I ′ and Pauli
matrices X ′ and Z ′. Then, one can define Õr = U r†OU r by
replacing I ′, X ′, and Z ′ in Õ′r with I, X , and Z . With the above
special unitary transformation, one can obtain Lemma 2.

Lemma 2. Let |ψ〉 be an N-partite state, and let A0,i and
A1,i be a pair of binary observables for the ith party for
i = 1, . . . , N . Suppose that, for all r ∈ {0, 1, . . . , 2N − 1}, the
following relations are satisfied:〈

ψ |P̃0
A0,i

r |ψ 〉 = 〈
ψ |P̃0

A0,i

r
P̃0

A0, j

r |ψ 〉
= c2

θ ∀ i, j ∈ {1, . . . , N − 1}, (3)〈
ψ

∣∣∣∣∣
N−2∏
i=1

P̃ai
A1,i

r

∣∣∣∣∣ψ
〉

= 1

2N−2
∀ ai ∈ {0, 1}, (4)〈

ψ

∣∣∣∣∣
(

N−2∏
i=1

P̃ai
A1,i

r

)
W̃ α

�a
r

∣∣∣∣∣ψ
〉

=
√

8 + 2α2

2N−2
∀ ai ∈ {0, 1}, (5)

where �a = a1 · · · aN−2 and

W̃ α
�a

0 = W α
�a = αA0,N−1 ⊗ IN + A0,N−1A0,N + A0,N−1A1,N

+ (−1)	
N−2
i=1 ai (A1,N−1A0,N − A1,N−1A1,N ).

The detailed forms for P̃0
A0,i

r
and P̃ai

A1,i

r
are easy to calculate,

and the details for W̃ α
�a

r
as an example are provided in Ap-

pendix B. The measurements here are the same as shown in
Lemma 1. Then, there exists a single local isometry such that
�(|ψ r〉) = |junk〉|GHZr

θ 〉 for all r.
Proof. For r = 0, the correlations in Lemma 2 are the

same as in Lemma 1. Hence, these correlations self-test state
|GHZ0

θ 〉. Denote |ψ〉 in the self-testing procedure as |ψ0〉.

FIG. 3. A SWAP gate is constructed by unitary X , Z , and H ′,
where H ′ is the Hadamard gate, and X and Z anticommute over the
support of the state |ξ f 〉 ∈ H. The |0〉 is in the qubit Hilbert space
H′.

From Lemma 1, there exists a local isometry � such that
�(|ψ0〉) = |junk〉|GHZ0

θ 〉. Meanwhile, X 2
f = Z2

f = I , and Xf

and Z f anticommute over the support of the state |ψ0〉 for
all f ∈ {A1, A2, . . . , AN } [27]. Then, one can construct this
isometry using ancillary qubits |0〉⊗N and SWAP gates {SXf ,Z f }
as

�(|ψ0〉) = ( ⊗N
i=1 SXAi ,ZAi

)|0〉⊗N |ψ0〉 = |junk〉|GHZ0
θ

〉
. (6)

The detailed form of a SWAP gate is shown in Fig. 3.
From Lemma 1 in Ref. [38], one knows that SXf ,Z f ·
X · |0〉|ξ f 〉 = X ′ · SXf ,Z f · |0〉|ξ f 〉 and SXf ,Z f · Z · |0〉|ξ f 〉 = Z ′ ·
SXf ,Z f · |0〉|ξ f 〉. Let SA1A2···AN = (⊗N

i=1SXAi ,ZAi
). As U r is con-

structed by I, X , and Z , one has

�(U r†|ψ0〉) = SA1A2···AN |0〉⊗NU r†|ψ0〉
= U ′r†SA1A2···AN |0〉⊗N |ψ0〉
= U ′r†�(|ψ0〉) = |junk〉 ⊗ U ′r†|GHZ0

θ

〉
= |junk〉 ⊗ |GHZr

θ 〉.
Here, U r†|ψ0〉 = |ψ〉. One has �(|ψ〉) = |junk〉|GHZr

θ 〉.
Therefore, the correlations that satisfy the relations in Lemma
2 self-test state |GHZr

θ 〉. |ψ〉 can be denoted as |ψ r〉. Thus,
one has �(|ψ r〉) = |junk〉|GHZr

θ 〉. �
From Lemma 2, the self-testing method with fixed mea-

surements can be used to distinguish special entangled pure
states. Here, let {|GHZr

θ 〉}2N −1
r=0 be reference states and |GHZ0

θ 〉
be a standard reference state. For example, there is a set
of states {|ψ s〉}2N −1

s=0 shared by A1, A2, . . . , AN . If one shared
state |ψ s1〉 satisfies the correlations in Lemma 2 with r =
0, one can specify the shared state |ψ s1〉 as state |ψ0〉 ac-
cording to the standard reference state |GHZ0

θ 〉. Then, for
another shared state |ψ s2〉 with s2 ∈ {0, 1, 2, . . . , s1 − 1, s1 +
1, . . . , 2N − 1}, if it satisfies correlations in Lemma 2 for one r
with r ∈ {1, 2, . . . , 2N − 1}, e.g., r = 3, then, one resets s2 as
s2 = 3. In other words, the state |ψ s2〉 can be rewritten as |ψ3〉,
and these correlations have self-tested the |GHZ3

θ 〉. Therefore,
the states |ψ s1〉 and |ψ s2〉 are actually different. Now, the main
result of the paper is as follows.

Theorem 1. Let A1, A2, . . . , AN share a pair of quan-
tum states with Roy as τA1R1A2R2···AN RN = τA1R1 ⊗ τA2R2 ⊗ · · · ⊗
τAN RN , and let R = {Rr

R1R2···RN
}2N −1

r=0 be a 2N -outcome measure-
ment acting on HR1 ⊗ HR2 ⊗ · · · ⊗ HRN . For A1, A2, . . . , AN ,
if there exist measurements such that the observed correlations
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conditioned on outcome r of Roy’s measurement satisfy the
relations in Lemma 2, then there exist completely positive and
unital maps �Ri : L(HRi ) → L(HA′

i
), i ∈ {1, 2, . . . , N}, for

dim(HA′
i
) = 2 such that

�R1 ⊗ �R2 ⊗ · · · ⊗ �RN

(
Rr

R1R2···RN

) = GHZr
θ (7)

for r ∈ {0, 1, 2, . . . , 2N − 1}.
A detailed proof is shown in Appendix A. Here, we present

a brief description. Let the τ r
A1A2···AN

= |ψ r〉〈ψ r | acting on
⊗N

i=1Hi be the state shared by A1, A2, . . . , AN conditioned on
outcome r. From Lemma 2, there exists a single isometry such
that �(|ψ r〉) = |junk〉|GHZr

θ 〉. By tracing out the subsystems
H1, . . . ,HN , one can construct a single set of SWAP channels
�Ai : L(HAi ) → L(HA′

i
), i ∈ {1, 2, . . . , N}, such that( ⊗N

i=1 �Ai

)(
τ r

A1A2...AN

) = |GHZr
θ 〉〈GHZr

θ |
for all r. With the help of a Choi-Jamiołkowski map [38], one
can construct completely positive and unital maps ⊗N

i=1�Ri ,
which are associated with the above SWAP channels, such that( ⊗N

i=1 �Ri

)(
Rr

R1R2···RN

) = ( ⊗N
i=1 �Ai

)(
τ r

A1A2···AN

) = GHZr
θ .

The 2N equations given by Eq. (7) imply that a real mea-
surement R = {Rr

R1···RN
}2N −1

r=0 is capable of simulating an ideal

generalized GSM, {GHZr
θ }2N −1

r=0 ; that is, Theorem 1 self-tests
the generalized GSM. The method presents a unified form
of the theorem for the multipartite case without resorting
to different Bell inequalities. Following our procedure, one
needs to check only whether the remaining two parties (AN

and AN−1) maximally violate the tilted CHSH Bell inequal-
ity after performing local measurements on the other N − 2
parties of state |ψ r〉A1···AN , where the measurement settings
are fixed by Lemma 2. Therefore, this approach is physically
operational from an experimental point of view. Moreover,
one can recover the case of a three-qubit GSM [38] when
α = 0, θ = π/4, and N = 3.

Remarkably, for any self-testing method of generalized
GHZ states, if the ideal measurements in the self-testing pro-
cedure are constructed using the linear combination of Pauli
matrices, it can be adopted to self-test the generalized GSM.
Such a property can be a rule to construct the self-testing
method for generalized GSMs in the qubit case.

IV. ROBUST SELF-TESTING OF THE GSM

The ideal self-testing method is an excellent tool to certify
quantum information tasks. However, due to the imperfec-
tion of quantum devices, accurate correlations in the above
theorem may not be satisfied. Hence, a robust version of
self-testing is necessary from an experimental point of view.
Here, we focus on investigating the feasibility for robust self-
testing of an arbitrary multipartite GSM. For convenience,
we study a robust self-testing scheme for a three-qubit GSM,
where N = 3, α = 0, and θ = π/4. The method for studying
robustness of other N parties is similar.

Before presenting the robustness of the GSM, let us first
study the robust self-testing of the GHZ state with the SDP
method. One can rewrite A1, A2, and A3 as A, B, and C
and let Ai,1 = Ai, Ai,2 = B, and Ai,3 = Ci, i ∈ {0, 1}. Let the

state shared by A, B, and C with outcome r = 0 be τ 0
ABC =

|ψ0〉〈ψ0|. In a general way, one can adopt the fidelity F =
〈GHZ|σ 0

A′B′C′ |GHZ〉 to capture the distance of the unknown
state from the target state [43], where |GHZ〉 = |000〉+|111〉√

2
and

σ 0
A′B′C′ = �A ⊗ �B ⊗ �C (τ 0

ABC ). The maps � f , f ∈ {A, B,C},
are defined in Fig. 3 as � f (|ξ 〉 f 〈ξ |) = TrH f (SXf ,Z f |0〉〈0| ⊗
|ξ 〉 f 〈ξ |S†

Xf ,Z f
), with f ∈ {A, B,C}. Here, the assumption that

X and Z are anticommutative in the definition of � has been
removed. The state σ 0

A′B′C′ can be written as

σ 0
A′B′C′ = TrABC (SABC |000〉A′B′C′ 〈000| ⊗ τ 0

ABCS†
ABC ). (8)

From the definition of fidelity, one has

F = 〈GHZ
∣∣σ 0

A′B′C′
∣∣GHZ〉

= 1

128
TrABC{8(1 + ZA)(1 + ZB)(1 + ZC )τ 0

ABC

+ 8(1 − ZA)(1 − ZB)(1 − ZC )τ 0
ABC

+ [ f ∈{A,B,C}(1 + Z f )Xf (1 − Z f )]τ 0
ABC

+ [ f ∈{A,B,C}(1 − Z f )Xf (1 + Z f )]τ 0
ABC}, (9)

where the fidelity can be expressed as a linear function of
the expectation values. Suppose the channel has white noise
(weight ε); one can transform the problem of robustness into
the problem of finding a lower bound on the fidelity. It can be
solved with the SDP [25,43–45]:

min F = 〈
GHZ|σ 0

A′B′C′ |GHZ
〉
,

such that M � 0,〈
ψ |P0

A0

∣∣ψ 〉 = 〈
ψ

∣∣P0
B0

∣∣ψ 〉 = 1
2 ,〈

ψ
∣∣P0

A0
P0

B0

∣∣ψ 〉 = 1 − ε

2
+ ε

4
,〈

ψ
∣∣Pa

A1

∣∣ψ 〉 = 1
2 for a ∈ {0, 1},〈

ψ
∣∣Pa

A1
[αB0 + B0C0 + B0C1 + (−1)a(B1C0 − B1C1)]

∣∣ψ 〉
=

√
2(1 − ε), a ∈ {0, 1} (10)

where M is a moment matrix defined as Mi j = Tr(τ 0
ABCD†

i D j )
with the set {D1 = I, D2 = ZA, D3 = XA · · · } [46]. For an
ideal case, the fidelity is 1 when error ε = 0. For other ε up
to 0.1225, the relations between the minimal fidelity and error
are shown in Fig. 4. Without loss of generality, one can define
the relation between the minimal fidelity and ε as a function
G(ε0), which will be used to study the robustness of the GSM.
Here, ε has been rewritten as ε0.

To define the quality of the real measurement R as a
simulation of the ideal GSM P , where R = {Rr

R1R2R3
}7

0 and
P = {GHZr}7

0, we directly extend the definition in Ref. [38]
to three parties as

Q(R,P ) = 1

8
× max

�R1 �R2 �R3

7∑
r=0

〈(�R1

⊗ �R2 ⊗ �R3 )
(
Rr

R1R2R3

)
, GHZr〉. (11)

Here, we omit the subscript of GHZr
π
4

and use GHZr ,
and �R1 , �R2 , and �R3 are unital CPTP maps with �R1 :
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FIG. 4. The lower bound on the fidelity F between the GHZ
state and the unknown state σ 0

A′B′C′ for different levels of white
noise ε. When the fidelity is above the nontrivial bound of 0.5 (i.e.,
ε � 12.25%), the unknown state is close to a GHZ state.

L(HR1 ) → L(HA′ ), �R2 : L(HR2 ) → L(HB′ ), and �R3 :
L(HR3 ) → L(HC′ ). For two matrices L1 and L2, the symbol
〈·, ·〉 is defined as

〈L1, L2〉 = Tr(L1L†
2 ).

Now, the robust version of the self-testing method is presented
as follows.

Theorem 2. Let A, B, and C share a pair of quantum
states with Roy as τAR1BR2CR3 = τAR1 ⊗ τBR2 ⊗ τCR3 , and let
R = {Rr

R1R2R3
}7

r=0 be an eight-outcome measurement acting
on HR1 ⊗ HR2 ⊗ HR3 . Let pr be the probability of Roy ob-
serving the outcome r. Define the function G(εr ) as the lower
bound on the fidelity between �A ⊗ �B ⊗ �C (τ r

ABC ) and GHZr

under noise εr . For A, B, and C, suppose there exist mea-
surements such that the observed correlations conditioned on
outcomes r satisfy the relations in Lemma 2 with error εr and
G(εr ) > 0.5. Define q = 	r prG(εr ); then one has

Q(R,P ) � 1

2[1 + 2
√

q(1 − q)]2

× min
u∈[0,2

√
q(1−q)]

(
2q − 1√
(1 − u2)

+ 1

(1 + u)

)
.

(12)

A detailed proof is given in Appendix C. One can always
let every εr be max{εr}7

r=0 and denote it as ε. Then, one has
q = G(ε), which can be obtained with the numerical method
of the SDP problem. The relation between the quality of the
unknown real measurement and the noise ε = max{εr}7

r=0 is
shown in Fig. 5. Along with the numerical results, we have
shown the robust self-testing scheme for the three-qubit GSM
in Theorem 2, where the noise tolerance can be up to 0.28%.
Although the noise tolerance is not satisfactory, Theorem 2
demonstrates that the self-testing scheme of the three-qubit
GSM is robust.

In fact, from the definition of the quality Q(R,P ), the
maximization in right hand side of Eq. (11) should go through
all possible unital CPTP maps �R1 , �R2 , and �R3 and then
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FIG. 5. The lower bound on the quality of the unknown real
measurement is numerically estimated as a function of the weight of
white noise ε. When the weight of white noise ε � 0.28% (i.e., the
quality is above the nontrivial bound of 0.5), the presented procedure
guarantees the unknown measurement is close to a three-qubit GHZ-
state measurement.

choose the maximal value. However, our result is currently
based on the Choi map, which is only one choice of these
CPTP maps. Thus, we do not acquire the optimal robustness
bound. Additionally, the improvement of robustness under the
Choi map is difficult, as the relaxation of some inequalities
shown in Appendix C is not tight. Therefore, a better ro-
bustness can be expected if one optimizes these questions.
Moreover, the above procedure for robust self-testing for a
three-qubit GSM can be directly generalized to an arbitrary
multipartite GSM. However, the maximal noise tolerance will
decrease quickly as the number of N increases.

V. CONCLUSION

In a quantum network, it is extremely vital to certify mul-
tipartite entangled measurements. Here, we have presented
a self-testing method for the important class of generalized
GHZ-state measurements. The procedure is operational for
an arbitrary number of parties from an experimental point of
views, which does not resort to N-partite Bell inequalities.
One needs to check only whether the remaining two states
maximally violate the tilted CHSH inequality after measuring
the other N − 2 parties. In addition, we have provided a proof
for the robustness of the self-testing procedure with the help of
the semidefinite program, where a noise tolerance up to 0.28%
is observed. It is known that improving the robustness of the
self-testing scheme to enable implementations of experiments
with the current technique is an extremely challenging task,
even in two-qubit states. For instance, the noise tolerance for
self-testing a singlet in Ref. [6] is only on the level of 10−4.
Therefore, our result is enough to show that the self-testing
scheme for the GHZ-state measurement is robust. For a quan-
tum network connected by bipartite entangled states, one can
always verify the entangled measurements in central nodes
using our self-testing scheme. The results provide insightful
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understanding and pave the way to the construction of large-
scale quantum networks.

For future works, it would be very beneficial to de-
velop further practical methods to promote noise tolerance
for self-testing multipartite entangled measurements and to
drop the IID assumption, which would enable implementa-
tions of experiments on self-testing quantum networks in a
device-independent manner. It is expected that our approach
can also be straightforwardly extended to high-dimensional
entangled measurements, like the self-testing method for
high-dimensional entangled states [27].
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APPENDIX A: PROOF OF THEOREM 1

As shown in Theorem 1, if the observed correlations con-
ditioned on the outcome of Roy’s measurement satisfy the
relations in Lemma 2, the measurement performed by Roy is
a generalized GHZ-state measurement. Now, let us present a
detailed proof of it.

Proof. Let pr be the probability of Roy observing
the outcome r and τ r

A1A2···AN
= |ψ r〉A1A2···AN 〈ψ r | be the

state shared among A1 · · · AN conditioned on the outcome
r ∈ {0, . . . , 2N − 1}, i.e., prτ

r
A1···AN

= TrR1R2···RN [(IA1A2···AN ⊗
Rr

R1R2···RN
)(⊗N

i=1τAiRi )]. One can always choose pr = 1
2N . From

the definition of the SWAP gate in Fig. 3, one can construct
SWAP channels as

� f (|ξ 〉 f 〈ξ |) = TrH f (SXf ,Z f |0〉〈0| ⊗ |ξ 〉 f 〈ξ |S†
Xf ,Z f

),

where f ∈ {A1, A2, . . . AN }. Define

σA′
iRi ≡ �Ai (τAiRi ), i ∈ {1, 2, . . . , N},

σ r
A′

1A′
2···A′

N
≡ ( ⊗N

i=1 �Ai

)(
τ r

A1A2···AN

)
=

(
1

pr

)
TrR1R2···RN

[
Rr

R1R2···RN

( ⊗N
i=1 σA′

iRi

)]
= (2N )TrR1R2···RN

[
Rr

R1R2···RN
(⊗N

i=1σA′
iRi )

]
. (A1)

Then, one has

(�A1 ⊗ �A2 ⊗ · · · ⊗ �AN )
(
τ r

A1A2···AN

)
= TrA1A2···AN

(
SA1A2···AN |0〉⊗N

A′
1···A′

N
〈0|⊗N ⊗ τ r

A1A2···AN
S†

A1A2···AN

)
= TrA1A2···AN (SA1A2···AN |0〉⊗N

A′
1···A′

N
|ψ〉r〈0|⊗N 〈ψ r |S†

A1A2···AN
)

= TrA1A2···AN

(|junk〉A1A2···AN 〈junk| ⊗ |GHZr
θ 〉

〈
GHZr

θ

∣∣)
= ∣∣GHZr

θ

〉〈
GHZr

θ

∣∣. (A2)

The third equality is from Lemma 2. From the definition of
the state σ r

A′
1A′

2···A′
N
, one has

σ r
A′

1A′
2···A′

N
= GHZr

θ

for all r ∈ {0, 1, . . . , 2N − 1}. Let us first present the
definition of the Choi-Jamiołkowski map [38]. If ρAB acts
on HA ⊗ HB, the Choi-Jamiołkowski map (�B : HB → HA)
associated with it is defined by �B(σB) = TrB[(IA ⊗ σ T

B )ρAB]
for all σB. Here, ρAB is the Choi state and can be
un-normalized. Now, let �Ri : L(HRi ) → L(HA′

i
) be the

Choi-Jamiołkowski maps associated with the operators
2σA′

iRi , i ∈ {1, 2, . . . , N}. By decomposing the operator
Rr

R1R2···RN
as Rr

R1R2···RN
= 	l

⊗
k ωr

k,l , where ωr
k,l is the operator

of HRk , one has �R1 ⊗ �R2 ⊗ · · · ⊗ �RN (Rr
R1R2···RN

) =
(2N )TrR1R2···RN [Rr

R1R2···RN
(⊗N

i=1σA′
iRi )] = σ r

A′
1A′

2···A′
N

= GHZr
θ .

Moreover, we will prove that these Choi maps �Ri , i ∈
{1, 2, . . . , N}, are unital maps. Let us first consider �R1 ,
with the other cases being similar. By the definition of the
Choi-Jamiołkowski map, one has

�R1 (IR1 ) = TrR1 (2σA′
1R1 )

= 2TrR1R2···RN A′
2···A′

N

( ⊗N
i=1 σA′

iRi

)
= 2	2N −1

r=0 TrR1R2···RN A′
2···A′

N

[
Rr

R1R2R3

( ⊗N
i=1 σA′

iRi

)]
= 1

2N−1
	2N −1

r=0 TrA′
2···A′

N

(
σ r

A′
1A′

2···A′
N

) = IA′
1
,

where we have used the fact that 	2N −1
r=0 Rr

R1R2···RN
= I and

σ r
A′

1A′
2···A′

N
= GHZr

θ .
Therefore, we have proven that the joint measurement

performed by central node Roy is actually a generalized GHZ-
state measurement under the conditions in Lemma 2. It should
be noted that the proof of Lemma 1 still holds if one replaces
|ψ〉 with a general ρ [27]. Thus, the proof of our Theorem 1
can also be repeated by starting from a general τ r

A1A2···AN
.

APPENDIX B: THE DETAILED FORM OF ˜W α
ā

r
IN LEMMA 2

In Lemma 2, a new form of self-testing statement
was presented. The notation ·̃r in Õr means that local
unitary transformations are performed on the observable
O. Here, we will provide the details for W̃ α

�a
r
, where

�a = a1 · · · aN−2. For convenience, let N = 3. Rewrite A1, A2,
and A3 as A, B, and C, and let Ai,1 = Ai, Ai,2 = Bi,
and Ai,3 = Ci, i ∈ {0, 1}. Now, �a is a1 and rewritten as
a ∈ {0, 1}. W α

0 and W α
1 can been obtained from Lemma

2 as W α
0 = αB0 ⊗ I + B0C0 + B0C1 + B1C0 − B1C1 and

W α
1 = αB0 ⊗ I + B0C0 + B0C1 − B1C0 + B1C1. First,

by adding a superscript in the formulas for W α
0 and

W α
1 , one has W ′α

0 = αB′
0 + W ′

0 and W ′α
1 = αB′

0 + W ′
1 ,

where W ′
0 = B′

0C
′
0 + B′

0C
′
1 + B′

1C
′
0 − B′

1C
′
1 and W ′

1 =
B′

0C
′
0 + B′

0C
′
1 − B′

1C
′
0 + B′

1C
′
1. From Lemma 1, one

knows that B′
0 = Z ′, B′

1 = X ′, C′
0 = cos μZ ′ + sin μX ′,

and C′
1 = cos μZ ′ − sin μX ′, with tan μ = sin 2θ . The

local unitary transformation performed on W ′α
a is

U ′r = U ′r
A′ ⊗ U ′r

B′C′ . As U ′r is the local unitary transformation
between generalized GHZ states, one can always
choose U ′r

B′C′ ∈ {X ′ ⊗ X ′, I ′ ⊗ X ′, X ′ ⊗ I ′, I ′ ⊗ I ′}. For the
r = 7 case, one has X ′Z ′ ⊗ X ′ ⊗ X ′|GHZ7

θ 〉 = |GHZ0
θ 〉,
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where |GHZ7
θ 〉 = sin θ |000〉 − cos θ |111〉 and |GHZ0

θ 〉 =
cos θ |000〉 + sin θ |111〉. Here, U ′7 = X ′Z ′ ⊗ X ′ ⊗ X ′.
Thus, W̃ ′α

0

7 = U ′7†W ′α
0 U ′7 = −αB′

0 + W ′
0 and W̃ ′α

1

7 =
U ′7†W ′α

1 U ′7 = −αB′
0 + W ′

1 . After calculating W̃ ′α
a

r
for all

r ∈ {0, 1, . . . , 7} and a ∈ {0, 1}, the detailed formulas for
W̃ ′α

a
r

can be obtained. By replacing the symbols I ′, B′
i, and

C′
i , i ∈ {0, 1}, in W̃ ′α

a
r

with I, Bi, and Ci, i ∈ {0, 1}, one can
obtain the detailed form of W̃ α

a
r
.

In short, W̃ α
�a

r
is acquired by deleting the superscript prime

of W̃ ′α
�a

r
. W̃ ′α

�a
r

is obtained by performing local unitary trans-
formations on W ′α

�a . The local unitary transformation depends
on the transformation between states |GHZr

θ 〉 and |GHZ0
θ 〉.

Therefore, one can easily write the detailed form of W̃ α
�a

r
in

Lemma 2.

APPENDIX C: PROOF OF THEOREM 2

In this Appendix, we give a proof of Theorem 2 that shows
the robust self-testing of the three-qubit GHZ-state measure-
ment. If the observed correlations cannot perfectly satisfy the
conditions in Lemma 2, one cannot adopt the ideal self-testing
method presented in Theorem 1 directly. We should bound
the quality of the unknown measurement under the certain
white noise, i.e., study how close the unknown measurement
performed by Roy is to the ideal three-qubit GHZ-state mea-
surement. Before presenting the proof of Theorem 2, we first
generalize the result of the semidefinite program in the main
text as the following lemma.

Lemma 3. Let A0, A1, B0, B1, C0, and C1 be the pairs of
observables for the three parties. If the correlations in Lemma
2 with error εr (θ = π/4, α = 0) satisfy the relations〈

ψ
∣∣P̃0

A0

r∣∣ψ 〉 = 〈
ψ |P̃0

B0

r |ψ 〉 = 1
2 , (C1)〈

ψ
∣∣P̃0

A0

r
P̃0

B0

r∣∣ψ 〉 = (1 − εr )

2
+ εr

4
, (C2)〈

ψ
∣∣P̃a

A1

r∣∣ψ 〉 = 1
2 , a ∈ {0, 1}, (C3)〈

ψ
∣∣P̃a

A1

r
W̃ α

a
r∣∣ψ 〉 =

√
2(1 − εr ), a ∈ {0, 1}, (C4)

then there exist fixed CPTP maps �A, �B, and �C as shown in
Appendix A such that

F ((�A ⊗ �B ⊗ �C )
(
τ r

ABC

)
, GHZr

A′B′C′ ) � G(εr )

for all r ∈ {0, 1, . . . , 7}. The function G(x) is defined in the
main text as a function of the lower bound of the fidelity and
white noise εr . It is a numerical solution from the SDP.

Proof. For r = 0, we gave the detailed process of the SDP
to derive this result in Sec. IV. The CPTP maps are fixed for all
r ∈ {0, 1, . . . , 7}. For different r, the observables in the above
correlations are all equivalent to the r = 0 case, up to local
unitary transformations. Thus, the lower bounds of the fidelity
for different r have the same form; that is, they have the same
function G(x).

Now, we start to prove Theorem 2 for finding the lower
bound on the quality of the unknown real measurement
{Rr

R1R2R3
}7

r=0. As GHZr
A′B′C′ are pure states, from Eq. (A1), one

has

prF
(
(�A ⊗ �B ⊗ �C )

(
τ r

ABC

)
, GHZr

A′B′C′
)

= pr〈(�A ⊗ �B ⊗ �C )
(
τ r

ABC

)
, GHZr

A′B′C′ 〉
= 〈

σA′R1 ⊗ σB′R2 ⊗ σC′R3 , GHZr
A′B′C′ ⊗ Rr

R1R2R3

〉
.

From Lemma 3, we have〈
σA′R1 ⊗ σB′R2 ⊗ σC′R3 , GHZr

A′B′C′ ⊗ Rr
R1R2R3

〉
� prG(εr ).

(C5)
To derive the main result, one should construct unital CPTP
maps �R1 : L(HR1 ) → L(HA′ ), �R2 : L(HR2 ) → L(HB′ ),
and �R3 : L(HR3 ) → L(HC′ ) and then find the lower bound
on 〈�R1 ⊗ �R2 ⊗ �R3 (Rr

R1R2R3
), GHZr

A′B′C′ 〉. Let λA′R1 , λB′R2 ,
and λC′R3 be the Choi states of the maps �R1 ,�R2 , and �R3 .
One has〈

�R1 ⊗ �R2 ⊗ �R3

(
Rr

R1R2R3

)
, GHZr

A′B′C′
〉

= 〈TrR1R2R3

{
(λA′R1 ⊗ λB′R2 ⊗ λC′R3 )

[
IA′B′C′

⊗ (
Rr

R1R2R3

)T ]}
, GHZr

A′B′C′ 〉
= 〈

λA′R1 ⊗ λB′R2 ⊗ λC′R3 , GHZr
A′B′C′ ⊗ (

Rr
R1R2R3

)T 〉
= 〈

λT
A′R1

⊗ λT
B′R2

⊗ λT
C′R3

, GHZr
A′B′C′ ⊗ Rr

R1R2R3

〉
. (C6)

To utilize the relation in Eq. (C5) in the above equation, the
Choi states should be constructed by σA′R1 , σB′R2 , and σC′R3 ,
respectively. One can bound the marginals σA′ , σB′ , and σC′

to guarantee the marginals of the constructed Choi states are
proportional to I . From Eq. (A1), we have

F ((�A ⊗ �B ⊗ �C )
(
τ r

ABC

)
, GHZr

A′B′C′ )

= F
(
σ r

A′B′C′ , GHZr
A′B′C′

)
= 〈

σ r
A′B′C′, GHZr

A′B′C′
〉

� G(εr ).

Here, we adopt the definition in the main text regarding the
notation ˜{· · · }r

and define

σ ′
A′B′C′ =

7∑
r=0

pr
(
˜σ r

A′B′C′
r)†

=
7∑

r=0

pr
(
U ′r

A′ ⊗ U ′r
B′ ⊗ U ′r

C′
)
σ r

A′B′C′
(
U ′r

A′ ⊗ U ′r
B′ ⊗ U ′r

C′
)†

.

By calculation, one has

F
(
σ ′

A′B′C′ , GHZ0
A′B′C′

) = 〈
σ ′

A′B′C′ , GHZ0
A′B′C′

〉
=

7∑
r=0

pr
〈
σ r

A′B′C′, GHZr
A′B′C′

〉
�

7∑
r=0

prG(εr ) = q.

(C7)
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Furthermore, the spectrum of σA′ is the same as σ ′
A′ because

σA′ = TrR1σA′R1 = TrB′C′R1R2R3 (σA′R1 ⊗ σB′R2 ⊗ σC′R3 )

= 	rTrB′C′R1R2R3

[
Rr

R1R2R3
(σA′R1 ⊗ σB′R2 ⊗ σC′R3 )

]
= 	r prTrB′C′σ r

A′B′C′ = 	r prσ
r
A′ = σ ′

A′ ,

where we use 	2N −1
r=0 Rr

R1R2R3
= I. Next, we will bound

the spectrum of σ ′
A′ . One can always find a pure

state σ ′
A′B′C′ to achieve the upper and lower bounds.

Without loss of generality, let σ ′
A′B′C′ = α|000〉 + β|111〉.

From inequality (C7), 0.5 < q � 1, and α2 + β2 = 1, one
has 1−2

√
q(1−q)
2 � α2 � 1+2

√
q(1−q)
2 . Thus, spectrum(σA′ ) =

spectrum(σ ′
A′ ) ∈ [ 1−2

√
q(1−q)
2 ,

1+2
√

q(1−q)
2 ]. One can write the

spectrum of σA′ as

spectrum(σA′ ) =
{

1 − ηA′

2
,

1 + ηA′

2

}
,

where 0 � ηA′ � 2
√

q(1 − q) < 1. The same bounds on ηB′

and ηC′ will be obtained in a similar way as

spectrum(σB′ ) =
{

1 − ηB′

2
,

1 + ηB′

2

}
and

spectrum(σC′ ) =
{

1 − ηC′

2
,

1 + ηC′

2

}
.

Now, the detailed forms of the Choi states are

λT
A′R1

= (
σ

−1/2
A′ ⊗ I

)
σA′R1

(
σ

−1/2
A′ ⊗ I

)
,

λT
B′R2

= 2

1 + ηB′
σB′R2 + σR2 ⊗

(
I − 2

1 + ηB′
σB′

)
,

λT
C′R3

= 2

1 + ηC′
σC′R3 + σR3 ⊗

(
I − 2

1 + ηC′
σC′

)
, (C8)

where σA′ = TrR1σA′R1 , σB′ = TrR2σB′R2 , σC′ = TrR3σC′R3 ,
σR2 = TrB′σB′R2 , and σR3 = TrC′σC′R3 . As spectrum(σB′ ) =
{ 1−ηB′

2 ,
1+ηB′

2 } and spectrum(σC′ ) = { 1−ηC′
2 ,

1+ηC′
2 } are bounded

by 0 � ηB′ � 2
√

q(1 − q) and 0 � ηC′ � 2
√

q(1 − q),
σR3 ⊗ (I − 2

1+ηC′ σC′ ) and σR2 ⊗ (I − 2
1+ηB′ σB′ ) are positive

semidefinite. Thus, one has

λT
A′R1

⊗ λT
B′R2

⊗ λT
C′R3

� λT
A′R1

⊗ 2

1 + ηB′
σB′R2 ⊗ 2

1 + ηC′
σC′R3 .

From Lemma 3 in the Supplemental Material of Ref. [38], the
inequality

λT
A′R1

� s(ηA′ )σA′R1 − t (ηA′ )
I

2
⊗ σR1

(C9)

holds, where s(x) = 2√
1−x2 , t (x) = 4√

1−x2 − 4
1+x , and σR1 =

TrA′σA′R1 . Therefore, one has

λT
A′R1

⊗ λT
B′R2

⊗ λT
C′R3

�
[

s(ηA′ )σA′R1 − t (ηA′ )
I

2
⊗ σR1

]
⊗ 2

1 + ηB′
σB′R2 ⊗ 2

1 + ηC′
σC′R3 ,

(C10)

where the inequality is from Eq. (C9) and positive semidefi-
nite matrices 2

1+ηB′ σB′R2 and 2
1+ηC′ σC′R3 . As

〈
σR1 ⊗ σR2 ⊗ σR3 , Rr

R1R2R3

〉
= TrR1R2R3

[
(σR1 ⊗ σR2 ⊗ σR3 ) · Rr

R1R2R3

]
= TrA′B′C′R1R2R3

[
(σA′R1 ⊗ σB′R2 ⊗ σC′R3 ) · Rr

R1R2R3

]
= prTrA′B′C′σ r

A′B′C′ = pr,

one has 〈I ⊗ σR1 ⊗ I ⊗ σR2 ⊗ σC′R3 , GHZr
A′B′C′ ⊗ Rr

R1R2R3
〉 =

1
2 〈σR1 ⊗ σR2 ⊗ σR3 , Rr

R1R2R3
〉 = pr

2 . Then, one arrives at

〈
λT

A′R1
⊗ λT

B′R2
⊗ λT

C′R3
, GHZr

A′B′C′ ⊗ Rr
R1R2R3

〉
� 4s(ηA′ )prG(εr ) − t (ηA′ )pr

(1 + ηB′ )(1 + ηC′ )
.

The inequality is derived from the fact that the fidelity can
only increase after tracing out the subsystem. Now, we can
obtain

Q(R,P ) � 1

8

7∑
r=0

〈
λT

A′R1
⊗ λT

B′R2

⊗ λT
C′R3

, GHZr
A′B′C′ ⊗ Rr

R1R2R3

〉
� 1

8
(
4s(ηA′ )

∑7
r=0 prG(εr ) − t (ηA′ )

∑7
r=0 pr

(1 + ηB′ )(1 + ηC′ )
)

= 4s(ηA′ )q − t (ηA′ )

8(1 + ηB′ )(1 + ηC′ )
.

As 0.5 < q � 1, the numerator is positive. Hence, one obtains
the result

Q(R,P ) � 1

2(1 + 2
√

q(1 − q))2

(
2q − 1√
(1 − η2

A′ )
+ 1

(1 + ηA′ )

)

� 1

2[1 + 2
√

q(1 − q)]2

× min
u∈[0,2

√
q(1−q)]

(
2q − 1√
(1 − u2)

+ 1

(1 + u)

)
.

Here, we have presented a lower bound for the quality of
the unknown joint measurement performed by Roy under
certain white noise. The quality implies the ability of the
unknown measurement to simulate the ideal three-qubit GHZ-
state measurement. Thus, a robust self-testing statement for
the three-qubit GHZ-state measurement has been shown.
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[41] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys.

Rev. Lett. 71, 4287 (1993).
[42] M.-D. Choi, Linear Algebra Appl. 10, 285 (1975).
[43] X. Li, Y. Cai, Y. Han, Q. Wen, and V. Scarani, Phys. Rev. A 98,

052331 (2018).
[44] J.-D. Bancal, M. Navascués, V. Scarani, T. Vértesi, and T. H.

Yang, Phys. Rev. A 91, 022115 (2015).
[45] L. Vandenberghe and S. Boyd, SIAM Rev. 38, 49 (1996).
[46] M. Navascués, S. Pironio, and A. Acín, New J. Phys. 10, 073013

(2008).

042608-10

https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.5555/2011827.2011830
https://doi.org/10.1103/PhysRevA.87.050102
https://doi.org/10.1088/1751-8113/45/45/455304
https://doi.org/10.1103/PhysRevA.91.052111
https://doi.org/10.1088/1367-2630/18/3/035013
https://doi.org/10.22331/q-2021-03-23-418
https://doi.org/10.1103/PhysRevA.98.022311
https://doi.org/10.1038/s41534-021-00490-3
https://doi.org/10.1103/PhysRevLett.122.250403
https://doi.org/10.1109/JSAC.2020.2968994
https://doi.org/10.1103/PhysRevA.98.052115
https://doi.org/10.1103/PhysRevA.99.052123
https://doi.org/10.1103/PhysRevA.95.062323
https://doi.org/10.1103/PhysRevA.98.062307
https://doi.org/10.1103/PhysRevA.93.062121
https://doi.org/10.1103/PhysRevLett.113.040401
https://doi.org/10.1103/PhysRevResearch.2.033014
https://doi.org/10.1103/PhysRevResearch.1.033073
https://doi.org/10.22331/q-2021-04-06-424
http://arxiv.org/abs/arXiv:2104.13035
https://doi.org/10.1038/ncomms15485
https://doi.org/10.1103/PhysRevA.90.042339
https://doi.org/10.1088/1367-2630/aad89b
https://doi.org/10.1103/PhysRevLett.121.180505
https://doi.org/10.1145/2885493
https://doi.org/10.1103/PhysRevLett.121.180503
https://doi.org/10.1103/PhysRevLett.125.260507
https://doi.org/10.1088/1367-2630/abee40
https://doi.org/10.1103/PhysRevLett.127.240401
https://doi.org/10.1088/1367-2630/aa5cff
https://doi.org/10.4086/toc.2016.v012a003
https://doi.org/10.1103/PRXQuantum.3.010317
https://doi.org/10.1103/PhysRevLett.121.250507
https://doi.org/10.1103/PhysRevLett.121.250506
https://doi.org/10.1103/PhysRevLett.108.100402
https://doi.org/10.1103/PhysRevLett.71.4287
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1103/PhysRevA.98.052331
https://doi.org/10.1103/PhysRevA.91.022115
https://doi.org/10.1137/1038003
https://doi.org/10.1088/1367-2630/10/7/073013

