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We perform an in-depth comparison of quantum annealing with several classical optimization techniques,
namely, thermal annealing, Nelder-Mead, and gradient descent. The focus of our study is large quasicontinuous
potentials that must be encoded using a domain wall encoding. To do this, it is important to first understand
the properties of a system that is discretely encoded onto an annealer, in terms of its quantum phases, and the
importance of thermal versus quantum effects. We therefore begin with a direct study of the 2D Ising model on a
quantum annealer, and compare its properties directly with those of the thermal 2D Ising model. These properties
include an Ising-like phase transition that can be induced by either a change in “quantumness” of the theory (by
way of the transverse field component on the annealer), or by scaling the Ising couplings up or down. This
behavior is in accord with what is expected from the physical understanding of the quantum system. We then go
on to demonstrate the efficacy of the quantum annealer at minimizing several increasingly hard two-dimensional
potentials. For all potentials, we find the general behavior that Nelder-Mead and gradient descent methods are
very susceptible to becoming trapped in false minima, while the thermal anneal method is somewhat better
at discovering the true minimum. However, and despite current limitations on its size, the quantum annealer
performs a minimization very markedly better than any of these classical techniques. A quantum anneal can be
designed so the system almost never gets trapped in a false minimum, and rapidly and successfully minimizes
the potentials.
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I. INTRODUCTION

Finding the ground state of a complex system is a task
of utmost importance in many research fields. In biology,
for example, protein folding, namely, the dynamical process
whereby a protein chain folds into its characteristic three-
dimensional structure, is a well-known phenomenon. This
unique structure corresponds to the energetic ground state
of its configuration space [1]. In chemistry and drug design,
bindings between molecules result in an energy potential
that leads the compounds to self-assemble in a specific con-
figuration into their energy ground states [2–4]. In finance,
quantitative optimization of portfolios can yield increased
profitability [5–7] and, in physics, the scope of applications
ranges from complex systems in classical mechanics [8]
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through quantum mechanics [9–12] and condensed-matter
systems [13–17] all the way to models in string theory [18–22]
and high-energy physics [23–27]. Further, broad classes of
mathematical problems, for example, finding the solution to
a differential equation [28–30], can by variational methods be
rephrased as an optimization task that ultimately corresponds
to finding the extremum of a complicated system.

Due to the importance and prevalence of optimization
problems, many methods have been devised to find the ex-
tremum of a system. Such methods include various sampling
algorithms for discretized or latticized systems [31], optimiza-
tion algorithms for continuous systems [32–34] and, in recent
years, machine learning algorithms [35], i.e., self-adaptive
neural networks. See Ref. [27] for a review of several popular
classical optimization algorithms.

However, the performance of any such optimization algo-
rithm is characterized by the speed at which it can reliably
locate the global extremum of the problem. Often, even a
posteriori, it is impossible to assess whether an optimization
algorithm has actually managed to find the global optimum
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or whether it only settled in a local extremum. Surveying
the entire configuration space of a problem can quickly be-
come prohibitive and, for NP-hard problems, the difficulty
typically increases exponentially with dimensionality. Some
confidence can sometimes be regained by repeating the search
from different starting conditions, but even then, classical
optimization algorithms are often overwhelmed by the local
structure of the configuration space, such that it is hard to
prevent them falling into the domain of attraction of a nearby
local minimum.

With the advent of powerful near-term quantum devices
and quantum algorithms, it is natural to ask if these devices
could provide a qualitatively different solution to the problem
of finding the ground state of a complex system, specifically
if they provide a novel avenue to find the global minimum
of a system reliably and quickly. In fact, finding the ground
state of a complex system was one of the first highly antici-
pated applications of quantum computers [36]. While several
different quantum computing paradigms have been proposed,
one type of quantum computer, even though non-universal,
has been designed with the very task in mind of minimizing a
potential: namely a quantum annealer (QA) [37–48].

The purpose of this paper is to demonstrate the qualita-
tive difference between classical and quantum optimization
algorithms. Our focus is on QAs, but we should remark that
our discussion remains valid for other quantum computing
paradigms, such as gate quantum computers. Indeed, as quan-
tum gate computers are universal quantum computers, they
can perform the same quantum calculations as a QA. Specif-
ically, qubits can be connected so as to construct a domain
wall encoded potential and the Hamiltonian of an Ising model
can be encoded on a quantum gate device (see, for example,
Ref. [48] for one of many such implementations). However, at
the time of writing accessible QAs, for example, the devices
provided by D-Wave Systems [49], have a significant advan-
tage over quantum gate computers in that they offer systems
with several thousand qubits [50].

The study we present is relatively straightforward, but to
provide arguments in support of the procedures we follow, our
discussion will be relatively methodical. Thus our study be-
gins by comparing QAs to their close thermal annealing (TA)
cousins in Sec. II. We discus how both kinds of annealers sam-
ple the configuration space, and we outline the different ways
that these systems find the energetic ground state. We then
apply both methods to solve the 2D Ising model in Sec. III. We
choose the 2D Ising model as the simplest nontrivial example
of a latticized system that has a vast configuration space,
scaling as 2N with N spins, and a highly degenerate energy
landscape. The Ising model is of course of interest in and of
itself, and we provide an analysis of the physics of its quantum
incarnation.

To go beyond the basic Ising model, we use the do-
main wall encoding (DWE). Using DWE, one can encode
a lattice approximation of a continuous function, as well
as perform operations on such functions by employing the
finite difference method. This extends the applicability of
QAs to continuous systems. In Sec. IV, we first recap DWE,
which we use for the quantum and thermal annealers. We
then study three example functions to make a quantitative
comparison between optimization using the gradient descent

FIG. 1. Anneal schedule parameters. The thermal contribution is
shown as a dotted line, while A and B are the coefficients scaling the
transverse field and classical Ising contributions, respectively.

method (Appendix A 1), Nelder-Mead (NM) method (Ap-
pendix A 2), thermal annealing (Appendix A 3), and quantum
annealing algorithms. We find a clear qualitative and quantita-
tive difference in the performance of quantum versus classical
algorithms in solving such optimization problems. We offer a
summary and conclusions in Sec. V.

II. QUANTUM ANNEALING AND ISING MODEL
ENCODING

Quantum versus classical annealers

The device that we will be studying here is the QA [51,52],
a system of linked qubits with adjustable couplings. Such
devices made available by D-Wave [49] have been able to
successfully simulate condensed-matter systems, sometimes
showing advantages over classical counterparts [38,53–58].

QAs operate in a dissipative rather than fully coherent way.
This means that they are not useful for studying, for example,
interference properties that depend on coherence, but can in
principle be very effective for studying long timescale quan-
tum processes, for example, those in which quantum tunneling
allows barrier penetration that would classically be forbid-
den [59]. This makes them ideal for finding the energetic
minimum in systems with complicated energetic landscapes
and many barriers and minima.

The basic characteristics of the QA are embodied in its
Hamiltonian, which takes the form of a generalized Ising
model,

H =, B(s)

(∑
i j

Ji jσ
z
i σ z

j +
∑

i

hiσ
z
i

)
+ A(s)

∑
i

σ x
i , (1)

where i, j label the qubits, σ z
i are the z−spin Pauli matrices,

and σ x
i are the transverse field components, while the cou-

plings hi and Ji j between the qubits are set and kept constant.
The parameter s(t ) (with t being time) is a user-defined

control parameter that can be adjusted, while A(s) and B(s)
describe the consequent change in the quantum characteristics
of the annealer. As shown in Fig. 1, smaller s ∈ [0, 1] means
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FIG. 2. Thermal versus quantum annealing.

larger transverse field parameter A compared to B, which
induces more hopping of σ z spins, which overall means a
system that is more characteristically quantum.

To perform the task of finding a global optimization, the
first objective is to encode the problem to be solved into the
classical Ising model Hamiltonian represented by the B terms,
such that the energetic minimum would correspond to the
desired solution. One then adjusts s to alter the relative sizes
of the parameters A, B to perform a so-called anneal in the
hope that the systems ends up in the global minimum.

Indeed, although we will be comparing quantum optimiza-
tion with several classical optimization methods, which are
summarized in Appendix A, it is really TA which is the closest
classical equivalent. For example, both classical and quantum
annealers are typically based on the kind of Ising spin model
displayed in Eq. (1). In the two panels of Fig. 2, we show
schematically the different optimization strategies in a system
with two competing minima that has been encoded on such
an Ising model. The strategy for TA with the Metropolis al-
gorithm, see Appendix A 3, is based on Boltzmann-weighted
excitation and is shown in the first panel of Fig. 2. The generic
approach is to perform many trials that begin with a raised
temperature T which is gradually reduced, with the probabil-
ity of energetically unfavorable transitions being suppressed
by a factor e−�E/kT , where �E is the would-be gain in energy.

Finessing the temperature as a function of time, i.e., the anneal
schedule, is a crucial factor in the success or otherwise of the
search strategy. Clearly, the initial temperature should be high
enough that the system can clear the barriers. It must then be
cooled slowly enough so as to avoid the system freezing into a
suboptimal state. We can also appreciate from the figure what
can go wrong with a thermal anneal. Aside from the possi-
bility of getting stuck in a local minimum, a very tall thin
barrier surrounding the global minimum is clearly hard for
this technique to overcome. Moreover, high dimensionality is
also likely to be a detrimental factor, as the excited state will
have a large phase space to explore and may never return to
the domain of attraction of the global minimum.

The second panel of Fig. 2 illustrates the contrasting be-
havior and search strategy for a QA. In quantum annealing,
it is the parameter s(t ) that is adjusted to perform the anneal.
The anneal schedule typically begins by taking the system to
a highly quantum state, i.e., low s. This allows the system to
tunnel to the global minimum but its wave function will be
very wide, so precision will at that point be low. (Note that
here we are thinking of the wave function in the potential
encoded in the Ising σ z spins, so the wave function is wide
in the Z direction: It is really the quantum hopping induced
by the transverse σ x term that is dialling the quantumness in
the Ising model up or down.)

Then, by increasing s in the anneal schedule, the system
will remain trapped in the deeper minimum with the wave
function becoming narrower as the system becomes more
classical, and the precision increases. As in the thermal case,
the solution is found by performing many trials. In the case
of a QA, the tunneling is very rapid when the barriers are
thin and the wells are deep but becomes less efficient when
the barrier is wide compared to its depth. However, it is also
somewhat less affected by the dimensionality of the problem.
Barrier penetration goes more or less in a straight line between
the two minima shown (although the rate does have some
dimension dependence). In addition, it is less easy for the
system to get lost in the phase space, for example, if the flat
directions surrounded the minima in Fig. 2 were to become
large.

We can appreciate this different behavior using a semiclas-
sical approximation to the tunneling rate. Indeed, it is well
established in field theory that the action of the tunneling in-
stanton bounce solution can still be approximated by the WKB
approximation even in multidimensional tunneling systems,
as discussed at length in the review of Ref. [60]. From this,
we can conclude that the rate at which quantum tunneling
takes place is roughly proportional to the instanton tunneling
factor e−ω

√
2m�E/h̄, where here ω is a measure of the width

of the barrier, �E is its height, and the parameters m and h̄
in this rate are implicit in the Schrödinger equation and are
difficult to determine in the present context. The exponent in
this approximation isgiven by the instanton action along a path
that goes directly between the two minima. Note the different
expected response to tall, thin barriers, namely, the exponent
increases as only by the square root of the height, whereas
the wide barriers are in principle more of an obstruction.
(Although as we shall see, not much in practice). A particular
aspect of this rate that will be important is that the height of the
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FIG. 3. Comparison of quantum (a) versus classical (b) annealers. Here we take s = 0.2 for all the quantum Ising cases, with an anneal
time of 100μs. To produce these plots, the coupling is kept constant but the anneal schedule is set to turn on the s = 0.2 quantumness and then
ramp it down as rapidly as possible (i.e., in 0.8μs) to take a snapshot of the system.

barriers, �E , clearly scales with the couplings in H. Thus the
parameter that corresponds most closely to the temperature T
in the Metropolis algorithm is actually not s itself but rather
the square root of the typical inverse Ji j coupling: It will
therefore be useful to introduce an overall scaling of H by
a factor λ, and then to compare the behavior of the thermal
system at different T with the behavior of the quantum system
at different λ but at constant s, with the expectation that in that
case,

T ∼ 1/
√

λ. (2)

Note that by Eq. (1), this overall coupling factor is really just
another way of changing the relative values of A and B, but
it has the distinct advantage that the relation to the barrier
heights is better understood, and also that the barriers and
the quantumness of the system are not being simultaneously
adjusted, so there is more control. In this sense, the coupling
and s are not really separate parameters because B(s) is itself
changing as we vary s. For the quantum system, there are then
two distinct kinds of strategies: studying the behavior of the
system at constant s for different values of λ provides the most
direct comparison of the physical properties of the quantum
and the thermal Ising models, whereas for the more practical
purpose of performing an optimization, the typical strategy
would be to set λ to a constant value and implement a suitable
anneal schedule s(t ). In the next section, we shall consider
both possibilities: Indeed, as we shall see, the former provides
a guide for how best to perform the latter.

III. SOLVING THE 2D ISING MODEL

Given the similar Ising encodings used on quantum and
thermal annealers, the first interesting analysis that can be

made on these two particular systems is simply to probe the
phase diagram of the basic 2D Ising model in each case.
This can be thought of as a way to understand and calibrate
the behaviors of the two systems to guide the design of the
anneal schedule for more complicated problems. However
the 2D Ising model is, of course, a well-studied statistical
mechanical system in its own right, and in the thermal case
it famously displays a characteristic phase transition (which
partly explains its ability to solve Ising-encoded problems).
There has been surprisingly little equivalent analysis of the
2D Ising model on the QA [61]. In this section, we perform
such a study of the behavior of the quantum Ising model to
compare and contrast it with the thermal one.

Let us begin by defining the standard Ising 2D model. This
model is essentially the Hamiltonian in Eq. (1) with only
adjacent couplings, which are degenerate and negative (i.e.,
ferromagnetic). We can implement this model by defining a
2D N × N grid, with grid positions (î, ĵ) ∈ (1 . . . N, 1 . . . N )
corresponding to N2 qubits labeled i ∈ (1 . . . N2) as follows:

i = îN + ĵ.

The negative coupling between adjacent qubits in the grid then
corresponds to

JîN+ ĵ,k̂N+�̂ = − λ(δî,k̂−1δ ĵ,�̂ + δî,k̂+1δ ĵ,�̂

+ δî,k̂δ ĵ,�̂−1 + δî,k̂δ ĵ,�̂+1), (3)

where δî ĵ is the Kronecker-δ. (As each coupling provides a
negative contribution if opposite spins are adjacent, it can
also be thought of as an encoding that provides a solution to
the following discrete and somewhat trivial problem: Given
two different possible colors, how can one fill an N × N grid
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FIG. 4. Comparison of the calculation of the energy and the magnetization using either thermal [(a), (c)] or quantum annealing [(b), (d)].
(a) shows the energy η and magnetization M for the 2D Ising model at different temperatures and with N = 40. (b) shows the result for
quantum annealing (N = 40, s = 0.3, t = 100μs) when, similarly for thermal and quantum annealing, the uncertainty bands are obtained by
running the same setup 100 times.

so there are as few differently colored adjacent squares as
possible?)

We begin by simply observing how the two systems behave
in Fig. 3. As explained in the Introduction, the parameter
in the QA that corresponds to temperature T of the thermal
annealer is 1/

√
λ. One can see that the behaviors of the two

systems on varying these parameters are remarkably similar.
We, of course, wish to quantify this by, as usual, studying

and comparing how the energy η and magnetization M of the
Ising models varies with T and 1/

√
λ. As λ is our variable for

the quantum system, we must for comparison remove it from
the Hamiltonian by defining these quantities as follows:

η = 1

λN2

N2∑
i, j

Ji jσ
z
i σ z

j ,

M = N−2

〈∣∣∣∣∣
N2∑
i=1

σ z
i

∣∣∣∣∣
〉
, (4)

where they are defined as a density normalised per qubit (cf.
volume). Note that with these normalizations, the energy is
0 � η � −1, with −1 corresponding to the perfect solution
(i.e., with all spins aligned), while the magnetization is, cor-
respondingly, 0 � M � 1, with M = 1 for perfectly aligned
spins.

Beginning with the thermal system, the Ising model was
placed on a grid with N = 40. For each temperature, we
allowed the TA process to iterate 100 times to find the equi-
librium before iterating another 100 times to find the energy
of the system. From this latter 100 iterations, the mean energy
was found and standard deviation error bars drawn. The same
initial starting point was used in all runs, initially chosen by
randomly assigning the spins. Figures 4(a) and 4(c) show how
the energy and magnetization of the system then depends on
temperature for a suitable choice of parameters and shows the
expected Ising phase transition behavior.

Figures 4(b) and 4(d) show the equivalent set of plots for
the QA, with the temperature replaced by 1/

√
λ and where
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FIG. 5. A comparison of four thermal annealing schedules. In (a), we show our choice of different schedules, ranging from a very sharp
drop in temperature to a slow drop. In (b), the results of performing thermal annealing with these schedules are shown. We choose a grid of
N = 40 and run each setup 100 times to generate the error bars

we have again set the number of qubits in the system to be
40 × 40. Here and throughout, we perform reverse annealing,
that is, the anneal schedule starts with the annealer at s = 1,
the classical scenario, then it decreases s to a set value where
it is held for a tunnelling period before then returning to s = 1.
Unless otherwise specified, when we refer to a given value of
s in a run, we are referring to the value during this tunnelling
period. The ramp-up and ramp-down times in the schedule are
limited by the physical constraints of the annealer, such that
the minimum ramp-up or -down time is (1 − s)μs.

For the plots in Figs. 4(b) and 4(d), we took s = 0.3 and
a relatively short quantum tunneling period of 100 μs. This
optimizes the number of reads we can perform (i.e., 100 in
practice) for each value of λ to find the mean and error bars.
Despite the short time period for the runs, it was sufficiently
long for the system to reach its equilibrium for s = 0.3, as we
shall discuss shortly. Of course, to freeze the results and read
them, the annealer must be brought back to the classical state

s = 1 as quickly as possible, namely, in 0.7 μs for the choice
of parameters. From these figures, it is clear that the quantum
2D Ising system exhibits a remarkably similar kind of phase
transition to the thermal system.

We can now probe this characteristic behavior of the re-
spective Ising models to devise a set of annealing procedures
for both systems to carry forward to the study of optimization
of more generic problems. For thermal systems, this will con-
sist of a suitable temperature or time profile. For the quantum
system, the procedure consists of a suitable choice of overall
typical coupling λ, together with a time profile for the param-
eter s(t ). We are also interested in the dependence on lattice
size N , as clearly this will limit the achievable precision.

Beginning with the thermal system, the equilibration is
mainly determined by the anneal schedule, which is a profile
of decreasing temperature. For comparison, we set four sched-
ules: a constant schedule, one where the temperature falls off
dramatically, a gentle decay, and one where there is a slow
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FIG. 6. Effect of changing the anneal time [in (a)] and N [in (b)] on the average energy, for several values of s.
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FIG. 7. A comparison of the distribution of minimum energies of the Ising model found using thermal and quantum annealers is shown
in (b), starting from randomized initial states. The thermal annealer uses the medium schedule from (a). For the quantum annealer, we chose
s = 0.3 with a quantum anneal period of 100 μs and the very simple reverse annealing schedule (which is shown for completeness) in (a).
Both setups are applied to grids of N = 40. We use 50 and 25 randomized initial states for the thermal and quantum anneal, respectively.

decay. The schedules, and the corresponding results (which
are displayed in terms of energy) are shown in Fig. 5. To draw
the standard deviation bands, we ran each model 100 times.
Each schedule scenario begins from its own randomized initial
set of spins and is repeated 100 times.

Turning to the QA, the important parameter to gain control
over is s. Figure 6 shows the effect of changing this value.
We see the QA’s ability to optimize is heavily dependent on
our choice. However, with a value of s = 0.3 we consistently
optimize the system even for very short times. To determine
the mean and standard error bars for these plots, a run for
each choice of s was performed 25 times. We note that the
performance of the QA to find the ground state of the Ising
model is not monotonic in s. Instead, we find that for s = 0.3
the QA finds the global minimum with a tunneling time of
t � 100 μs very efficiently, whereas smaller s tends to lead
to randomized fluctuations that simply prevent the system
from ever settling in the correct minimum. Indeed, we can
appreciate from Fig. 3(b) that the optimal choice of s (and also
λ) is in this sense (much like the maximum temperature in the
thermal system) a compromise between focusing on deeper
minima and enabling quantum tunneling. Note that it would
be interesting in a future in-depth comparison of just these
two methods to optimize the parameters using reinforcement
learning techniques, as in Ref. [62].

In Fig. 6(b), we show how changing lattice size N affects
the performance. Here, each model was again run for 25
times. Unsurprisingly, for larger values of N it becomes more
difficult to sample the configuration space within the tun-
neling time of t � 100 μs. However, while the performance
of the QA for s � 0.3 or s � 0.3 clearly deteriorates with
growing N , for s = 0.3 the QA finds the global minimum
very reliably even for the largest N that can physically be
placed on the annealer. It is also worth mentioning at this
point that, of course, the physical limitations of the D-Wave
annealer itself limits N . In particular, the annealer does not
provide the most general Ising model as in Eq. (1), but only

provides a subset of the Ji j couplings. Therefore, in practice,
any desired model has to be embedded onto the annealer using
locked spin chains. Thus, due to the physical constraints of
the annealer (in particular, the fact that the maximum number
of available qubits is ∼5000), large N embeddings begin to
become artificially frustrated for N > 40.

The results are shown in Fig. 7(b). The QA clearly shows
a higher probability of finding the correct ground state and
with a smaller variance. It is also notable that the evaluation
time is vastly longer for TA: Although this is obviously a
function of the available architecture, a TA run takes approx-
imately O(106) times longer than a run on the QA, which
takes O(100 μs). We conclude that the QA has a clear edge
in speed and reliability over simulated TA in calculating the
ground state of the 2D Ising model, a discrete highly complex
system.

We now wish to compare the thermal and quantum meth-
ods with each other to see how efficient each method is at
finding solutions and, conversely, how dependent the results
are on the choice of initial conditions. To do this, we ran both
the quantum and thermal annealers for a number of random-
ized initial states with an optimal annealing configuration in
each case.

For the QA, we selected a value of s = 0.3 and a schedule
with a quantum period of 100 μs with ramp-up and -down
times of (1 − s) μs as shown in Fig. 7(a). We then ran 25
initial states, 25 times each. For the TA, we chose the medium
schedule from Fig. 5(a). For each initial state, we ran the TA
process 50 times to find an average energy for 50 initial states.
Both setups use N = 40 and λ = −2.0.

IV. FUNCTION OPTIMIZATION

We now wish to extend our study to consider the solution
of more practical problems that are encoded onto nonminimal
Ising models. The problem we shall discuss is the very generic
one of finding the minimum of a continuous function of two
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FIG. 8. The potential U1 of Eq. (5) rendered in 3D in (a) and as a contour plot in (b).

variables. The useful aspect of such a generic study is that
the analysis can now be broadened to bring in for comparison
other optimization techniques that do not use Ising model en-
codings at all. In this paper, as mentioned in the Introduction,
we also consider the gradient descent method and the NM
method, described in Appendices A 1 and A 2, respectively.
However, as a first step, let us describe the Ising encoding of
a continuous function which will be central to this part of the
paper. This is the subject of the next subsection.

A. Domain wall encoding of a continuous function

To have a specific problem in mind, we will consider mini-
mizing the following function of two variables φ,ψ shown in
Fig. 8:

U1(φ,ψ ) = − λ[φ(1 − φ) + ψ (1 − ψ )

+ 12 cos(φψ ) sin(ψ + 2φ)]. (5)

This corrugated function has, of course, been chosen because
it is particularly unpleasant to minimize due to its many local
minima. Indeed, even in the domain shown in Fig. 8, namely,
φ,ψ ∈ [−3, 3], we can identify six minima.

Naturally, the minimization of such a function will be im-
plemented by adopting it directly as the Hamiltonian (i.e., we
regard U1 as a potential). Therefore, per the discussion in the
Introduction and the previous section, we have introduced an
overall scaling of the couplings λ that we can use to tune the
efficiency of the annealers. Here Fig. 8 shows the potential for
λ = 0.5.

The scalar values of the two variables φ,ψ can be rep-
resented using the DWE introduced in Ref. [63]. The basic
idea of the DWE is to discretize the continuous φ and ψ

domains into N elements of sizes ξ and ζ , respectively. Then
the value of each of the scalars is represented by the position
of a frustrated spin on a spin chain where the spin flips signs
from negative to positive, the so-called domain wall. Thus,
the total number of qubits in a chain is 2N , with the first N
qubits encoding φ and the second N qubits encoding ψ . (For

convenience of presentation, we will use the same number
of qubits for φ and ψ but, of course, this is not mandatory.)
Clearly, to approximate the continuous function, N should be
as large as possible (we will usually take either N = 40 or
N = 30 depending on the difficulty of the problem we are con-
sidering). Two scalar values are then faithfully described when
there is a single frustrated position encoding φ in the lower
block at i = r1 ∈ [1, N], where the spin flips from negative
for all lower indices to positive for higher indices up to N , and
a second frustrated position encoding ψ in the upper block at
i = r2 ∈ [N + 1, 2N]. In other words, a faithful encoding of
two scalar field values is defined to have the following spin
structure:

(6)

The scalar values are extracted from such a configuration by
counting the negative spins, as follows:

φ = φ0 + ξ (r1 − 1) = φ0 + ξ

2

N∑
i=1

(
1 − σ z

i

)
,

ψ = ψ0 + ζ (r2 − 1) = ψ0 + ζ

2

2N∑
i=N+1

(
1 − σ z

i

)
, (7)

where φ0, ψ0 are fiducial minimum values.
This is the way that we wish the scalar values to be

represented, but how do we enforce only such faithful rep-
resentations of φ and ψ , and not, for example, meaningless
configurations in which the spins flips signs at more positions
or at no positions at all? This is done by adding two cru-
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cial components to the Hamiltonian, a domain-wall enforcing
component in the linear hi term of the Ising model in Eq. (1),
and a ferromagnetic coupling in the Ji j terms that encourages
spin alignment between neighboring sites:

h(chain)
i = ′ (δi,1 − δi,N + δi,N+1 − δi,2N ),

J (chain,φ)
i<N, j<N = − 

2
(δi, j+1 + δi+1, j ),

J (chain,ψ )
i�N, j�N = − 

2
(δi, j+1 + δi+1, j ), (8)

where ,′ are parameters that are somewhat larger than the
largest energy scale in the problem. (For the best performance,
they should not be very much larger.)

The couplings h(chain)
i force the system to have negative spin

σ z
1 = −1 at the bottom of each block, i.e., for i = 1 and N + 1,

and positive spin σ z
i = +1 at the top of each block, i.e., for

i = N and 2N . This is in accord with the desired spin structure
in Eq. (6) and it forces an odd number of spin flips between
the two ends of a block. Meanwhile J (chain,φ)

i j gives a (relative)
penalty of 2 for each domain wall in the lower block, and
separately J (chain,ψ )

i j gives a (relative) penalty of 2 for each
domain wall in the upper block. This favors just a single wall
in each block as required.

Having enforced only faithful representations of φ and ψ ,
it is then straightforward to see how one can now further
encode the potential terms in U1(φ,ψ ). To describe this, let
us split the potential as

U1(φ,ψ ) = Ua(φ) + Ub(ψ ) + Uc(ψ, φ), (9)

where Ua,b are the terms that involve only one of the two
variables, φ and ψ respectively, while Uc is the mixed term, in
this particular case:

Uc = −12λ cos(φψ ) sin(ψ + 2φ).

Note that one has to be a little circumspect making this desig-
nation, as we shall see.

Consider first the simpler Ua term. This piece can be
encoded into either hi or Ji j . The encoding into hi can be
performed by noting that the desired potential can be written

Ua(φ) = 1

2

N∑
j=1

Ua(φ0 + ξ j)
(
σ z

j+1 − σ z
j

)
, (10)

since there is a contribution only where σ z
j and σ z

j+1 have
different signs, namely, at the position of a domain wall where
j = r1 − 1. Assuming that Ua is differentiable, and ξ � 1,
this is equivalent to a linear coupling of the form

h(Ua )
j = − ξ

2
∂φUa(φ0 + ξ j). (11)

Alternatively, the same coupling can be encoded into Ji j by
instead adding the couplings

J (Ua )
i j = 1

2Ua(φ0 + ξ j)(δi j − δ(i−1) j ). (12)

It is easy to see that again this picks out a contribution from
the location of the domain wall similarly to hi above. Indeed,
clearly there is no contribution from Eq. (12) unless i, j are
equal or adjacent. If we consider then summing i past a given

j, the above term reduces to

1
2Ua(φ0 + ξ j)

(
1 − σ z

j+1σ
z
j

)
, (13)

which is then to be summed over j. Upon performing the j
sum, there again remains a contribution only at the domain
wall, where j = r1 − 1. The equivalent encoding for Ub(ψ ) is
trivially performed by summing instead over the upper block
of indices i ∈ [N + 1, 2N], swapping ξ for ζ , and obviously
swapping Ua for Ub.

In the present context, it does not matter if we decide to
encode Ua and Ub into hi or Ji j . Where it does, however, make
a difference is if one wishes to alter the potential at some point
in the anneal to study some particular physical process. This
was the case, for example, in Ref. [59] where the system was
first allowed to settle into a minimum before the potential
was changed by scaling hi (using the h-gain parameter) to
develop a lower “true vacuum” into which the system could
then tunnel by barrier penetration. This possibility will not be
used here.

By contrast, the Uc(φ,ψ ) terms in the potential that involve
both variables can only be encoded in Ji j . The logic for such
terms follows that of the encoding of a single variable term
into hi in Eq. (11). That is, we add

Uc(φ,ψ ) ≡
N∑

i, j=1

Uc(φ0 + iξ, ψ0 + jζ )

× 1

4

(
σ z

i+1 − σ z
i

)(
σ z

N+ j+1 − σ z
N+ j

)

= ξζ

4

N∑
i, j=1

∂φ∂ψUc(φ0 + iξ, ψ0 + jζ ) σ z
i σ z

N+ j,

(14)

which upon symmetrising implies that

JUc
i, j+N = JUc

N+ j,i =,
μ

8
ξζ ∂φ∂ψUc(φ0 + iξ, ψ0 + jζ ). (15)

We now return to our somewhat cryptic comment above
about care being needed to decide which encoding is appropri-
ate, which is something of a technicality but we discuss it for
completeness: The issue is that Eq, (14) may not be sufficient
to encode the whole of Uc because it is a double derivative.
Suppose, for example, that the coupling Uc contained a con-
tribution φψ2. Then, written in discretized form, we see that
there is a single-field term effectively given by the fiducial
field values:

φψ2 ⊃ φ0ψ
2 + ψ2

0 φ + . . . . (16)

Such terms could not be incorporated by the double deriva-
tives implicit in Ji j and Eq. (15), and instead hi would have
to be augmented to cancel spurious single field terms: In this
particular case, the required additional terms would be

h(Uc )
j=1...N = − ξ

4
μψ2

0 , (17)

h(Uc )
N+ j = − ζ

2
μφ̄ (ψ0 + jζ ), (18)

where φ̄ is the average φ in the interval, i.e., φ̄ = φ0 + Nξ

2 .
In principle, a similar consideration by trigonometric identi-
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ties applies for the actual Uc terms in the U1 of Eq. (5). In
practice, we find that this issue is resolved by multiplying the
potential by a factor that forces a constant value for U1 at the
boundaries, but is unity everywhere inside the domain away
from the boundaries. For the functions we will consider, we
find that this issue does not make a significant difference but
it is something to be aware of for other studies.

B. Results for the corrugated potential U1

To provide a baseline to compare the QA against, we will
use three classical optimization methods. As well as TA, we
will consider NM and conjugate gradient descent (GD). The
NM method uses a simplex to traverse the function space to
find a minimum. The GD method chosen is an extension to
classical GD, which includes an adaptive step size. Both these
methods, alongside TA, are discussed further in Appendix A.

While the NM and GD methods use the continuous form
of the potential, both the QA and TA methods will use the
discretized Ising encoding of the potential described in the
previous subsection. Here, for the TA we chose to use N = 50.
Due to limitations imposed by the QA device, we discretize
the potential such that N = 20 for most of the QA runs.
This decision is kept for most of the paper. However, later
in Sec. IV C 2, we will discuss how the choice of N might
effect our findings, and will in fact conclude that it does not.
In the near future, when larger devices becomes available, we
believe all the conclusions we reach here will carry forward.

Our choice of overall λ is also influenced by the method.
For the classical methods, larger λ generally hinders the
ability to find the minimum as it would be harder to es-
cape local minima—although, of course, given the Boltzmann
weighting, for the TA any change in λ can be absorbed in a

redefinition of T . This is not the case with quantum annealing,
where as explained in Secs. III and IV C 1, scaling the poten-
tial will make the global minimum more visible. Therefore, a
slightly larger value for λ is taken for the QA: here we take
λ = 0.7 instead of λ = 0.5 for the classical runs.

Guided by the studies in Sec. III, the thermal anneal sched-
ule is set such that it runs for 4000 iterations, starting at a
temperature of T = 1.1. After 500 iterations, the temperature
is halved, then reduced to 5% of its value every 500 iterations
afterward. The QA schedule is set such that the ramp-up
period is 15 μs. It then tunnels for 100μs during which time s
is set to 0.1, before ramping down for 250 μs. Note there is a
somewhat different approach now: To find a global minimum
we are free to choose a slow ramping down to ensure we do
not excite the system.

Note that we refine the values of the QA and TA parameters
to optimize the performance on the annealer, for example, to
reduce the number of chain breaks occurring in the minor
embedding which appears to be sensitive to these parameters:
hence the parameter values differ somewhat for the three
potentials, although this is not crucial for the conclusions
which are derived from the successful runs. Indeed, the same
schedule,  and s for the different examples, would result
in a quite suboptimal optimization for some potentials, but
essentially the same diagrams.

For each of the four optimization methods, we start the runs
for a selection of initial starting points. This leads to Fig. 9.
Here we show the distribution of results from the methods. For
the classical methods, we use 2500 initial conditions while for
the QA, fewer initial conditions are used, around 100 due to
the limited time on the device. As is usual when performing
quantum annealing, each initial position is run multiple times.
Here, we choose the number of reads to be 100, with Figs. 9(g)

FIG. 9. For a range of initial φ and ψ values, the distance between the predicted minimum and true minimum for corrugated potential U1 is
given. This is done for Nelder-Mead in (a), (b); gradient descent in (c), (d); thermal annealing in (e), (f); and quantum annealing in (g), (h). For
(a)–(f), a grid size of N = 50 and λ = 0.5 is chosen with the models being initialized from 2500 different points. For the quantum annealing
in (g) and (h), we take N = 20 and λ = 0.7 and the model is initialized from ∼100 points. Each point is used to produce 100 reads, with the
peak of the probability distribution being identified as the predicted minimum for that setup.
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FIG. 10. The potential U2 of Eq. (19) rendered in 3D in (a) and as a contour plot in (b).

and 9(h) showing every successful point. (An unsuccessful
point would be one, for example, that had ended up with more
than two domain walls so it does not faithfully describe the
two variables). We see that the three classical methods are
more liable to fall into and get trapped in false minima than
the QA.

This effect is surprisingly marked, but ]to quantify it, it is
instructive to plot the mean distance from the true minimum
that the system ends up, for each given starting point. That is,
for each run [i.e., for each particular (φinit, ψinit )], we take the
result and calculate the distance of the result to the correct
true minimum, �. For the three classical methods, this is
straightforwardly run by run. However, for each set of initial
conditions, the QA has already been run multiple times when
the results are collected. To select the predicted value from the
set of 100 annealer runs corresponding to a given (φinit, ψinit ),
we therefore take the peak of a fitted probability distribution.
We justify this (namely, that taking the peak of the distribution
of 100 reads is not unfairly favoring the QA) using the results
presented in Appendix B, where we show the distribution of �

for a selection of initial starting points. We see that for the QA
runs, the distribution is already very focused around � = 0
for each of the 100 reads for a choice of φinit and ψinit. (For
example, taking instead the mean of the 100 reads would have
produced very similar results.)

The right panels of Fig. 9 show the resulting �’s. Clearly
NM and GD perform very badly in such a potential, and we
can identify basins of attraction around the local minima from
which they never escape. The TA performs noticeably better
in the sense that it is not susceptible to just getting trapped
in the closest minimum to its starting point, but on the other
hand there is a remaining randomness to the minimum that
it eventually does end up in. However, we see again that the
QA gets consistently much closer to the true minimum of the
potential from virtually any starting point. Moreover, this does
not appear to depend on the size of the array (i.e., N), as we
shall shortly demonstrate.

C. Multiwell potential U2

To show the versatility of our method, we now perform the
same analysis on another potential that is even more difficult.
This potential has the form of a flat plateau with multiple holes
of varying depths, and is given by

U2( �φ = (φ,ψ )) = λ ( p0 tanh2(| �φ|/ω)

−
∑

a

pa sech2(| �φ − �va|/ω)), (19)

where (p0, pa) is a choice of minimum depths with p0 > pa,
where �va is a choice of positions for each minimum, ω is the
width of all the dips, and where λ is again an overall scaling
parameter. We select ω to be 0.3 and λ to be 0.5 and 10 for
the classical and quantum methods, respectively. The depths
of the minima we took to be

(p0, pa) = ( 3, 0.9, 0.3, 1.2, 1.8, 1.5, 1.8, 2.4 ), (20)

while the positions are given by

�va = [ (−1.2,−1.35), (−1.95, 0.9),

× (0.9, 1.95), (1.5,−1.65),

× (1.8, 0.6), (−0.6, 1.8), (1.65,−0.9) ]a. (21)

The resulting potential U2 is shown in Fig. 10.
We now carry out the same analysis as in Sec. IV A. During

this analysis, the thermal annealer is run on the same schedule
as before. The QA is scheduled to ramp up for 15 μs before
tunneling for 50 μs and ramping down for 50 μs. During the
tunnel phase of the anneal, s = 0.15.

Running these optimizers, alongside the NM and CG meth-
ods, results in Fig. 11. As was the case with the first potential,
the QA performs more consistently than the classical methods.
Instead of falling into one of the many local minima. it is able
to find the true minimum on almost every run. So far, we have
focused on the consistency of the QA. Another benefit is its
speed. The QA’s runtime is decided by its schedule. Here,
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FIG. 11. For a range of initial φ and ψ values, the distance between the predicted minimum and true minimum for multiwell potential U2 is
given. This is done for Nelder-Mead in Figs. 9(a) and 9(b), gradient descent in Figs. 9(c) and 9(d), thermal annealing in Figs. 9(e) and 9(f), and
quantum annealing in Figs. 9(g) and 9(h). For Figs. 9(a)–9(f), a grid size of N = 50 and λ = 0.5 is chosen with the models being initialized
from 2500 different points. For the quantum annealing in Figs. 9(g) and 9(h), we take N = 20 and λ = 0.7 and the model is initialized from
∼100 points. Each point is used to produce 100 reads, with the peak of the probability distribution being identified as the predicted minimum
for that setup.

that comes to 115], μs. The classical NM and GD methods
are very dependent on the number of iterations each takes. By
timing how long each optimization takes that is used to create
Fig. 11, we can find an average run time for each method.
Table I shows the results. For the NM, an average optimization
takes 0.0049 s; for the GD method it takes 0.0029 s. TA, by
far, takes the longest. One thermal anneal run takes around
half a second. For fair comparison, the thermal annealer time
is calculated for an N = 20 scenario. As the NM and GD runs
largely depend on the step size of the optimizer, changing N
does not effect the timing. However, for TA a change of N has
a large impact on the time required to optimize, with a larger
N resulting in a longer time. (These tests were performed on
a 1.2 GHz Intel Core m3.)

1. Scaling the potential up or down

All three potentials chosen can be scaled up or shrunk
down by adjusting the factor λ. Such a uniform operation
does not change the position of the global minimum in the
(φ,ψ ) plane. Intuitively, it is clear what effect modifying

TABLE I. Timings for the four optimization methods solving
potential 2. For NM and CG, N = 50 while a value of N = 20 is
used to calculate both annealing methods.

Method Time/run (μs)

Nelder-Mead 4900
Gradient descent 2900
Thermal annealing 5 × 105

Quantum annealing 115

this has on one of the classical methods. By increasing the
depth of both local and global minima by the same amount,
the probability for the classical algorithms to settle in a local
minimum rather than the global remains unchanged to a good
approximation. Classical algorithms that do not sample the
entire configuration space are unaware of the depth of the
extremum and whether they located the global one. However,
the QA is instead aware of the depth of the potential well
and by increasing the depth the quantum annealing process
becomes more successful.

We demonstrate this using the the multiwell potential ex-
ample of Sec. IV C. Figure 12 shows the results of running the
QA for a variety of values of λ. Starting from a low value of λ,
the QA has difficulty finding the minima. As we increase the
depth of the potential’s minima from λ = 0.5 to λ = 10 (the
choice we made in Sec. IV C) the annealer’s ability greatly
increases.

2. Effect of varying the grid size

It is worth briefly discussing our choice of N in all the
examples we have discussed. In particular, an obvious re-
maining question is whether the different choices of N and
the lower possible N values for the QA may somehow have
favored it. A direct comparison shows that this possibility
can be dismissed. In Fig. 13(a), we perform a thermal anneal
taking N = 20. This shows us that the TA processes are not
greatly influenced by the fineness of the discretization of the
potential. We can see it is still unable consistently to find
the true minimum. Likewise for the quantum annealer, the
result is also independent of N . In Fig. 13(b), we present
an N = 30 run, showing that the same good results obtain
and that the superior performance of the quantum annealer
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FIG. 12. The quantum annealer optimizing the multiwell potential, U2, for three values of the scaling parameter λ = 0.5, 5, 10, in (a)–(c),
respectively. All runs use N = 20, a tunneling and ramp-down period that are both 50 μs, and s = 0.15.

persists even when it has a finer lattice. The grid size does
not effect the qualitative features of the annealer’s ability to
find the minimum. Indeed, the performance of both kinds of
annealers is relatively independent of N as would be expected
on physical grounds. As mentioned, our choice of N = 20
for most of the QA studies shown here is mostly a technical
limitation, not a conceptual one.

D. Volcano crater potential U3

Finally we consider a third potential that takes the follow-
ing form:

U3(φ,ψ ) = λ (2 e−(φ4+ψ4 )/2

− 10 e−20(φ2+ψ2 ) cos2(ψ ) cos2(φ)), (22)

where λ is again a scaling factor, which is here chosen to be
1.7 for all the cases. This particular volcano crater potential is
actually adapted directly from Ref. [27]. As can be seen from
Fig. 14, it is perhaps the single most difficult potential of all to
minimize as it has a very narrow global minimum, surrounded
by a repulsive potential that in principle rejects all attempts to
try and find it. We perform the same analysis as before, but
this time the thermal annealer schedule is modified, allowing
it to run for 1000 iterations before the temperature decay
begins. This ensures that the result is not dependent on the

initial starting condition. The quantum schedule ramps up for
15 μs, then the annealer tunnels for 100 μs at s = 0.01 before
ramping down for 250 μs.

Figure 15 shows the distribution of results from the
optimization processes. It is clear that the NM and GD
methods are very poorly equipped to deal with this potential.
From Figs. 15(a)–15(f), it appears that most of the results
from these runs are no longer contained within the plotted
grid or, rather, they run away to the boundary. Thermal and
quantum annealing both perform much better. Once again, the
quantum annealer in Figs. 15(g) and 15(h) is able to perform
consistently.

V. CONCLUSIONS

optimization tasks are at the heart of many quantitative
techniques across all sciences. Thus, various numerical opti-
mization algorithms have been proposed and implemented on
classically operating systems. As quantum computers, in par-
ticular, QAs, perform calculations in a fundamentally different
way compared to classical computers, they are anticipated
to have a qualitatively different and possibly transformative
impact on the way optimization tasks are realized.

In this paper, we have performed a detailed comparison
between quantum annealing and three of the most popular
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FIG. 13. The results of thermal annealing on an N = 20 grid in (a) and quantum annealing on an N = 30 grid in (b) for the multiwell
potential.
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FIG. 14. The volcano potential U3 of Eq. (22) rendered in 3D in (a) and as a contour plot in (b).

classical optimization algorithms, namely, TA, NM, and GD.
First, we have shown that quantum annealing can quickly and
reliably solve the 2D Ising model, a highly complex latticized
system. Indeed, in many respects it displays a similar phase
transition with respect to a change in overall scale of the
potential, λ. For the QA, this scaling plays a similar role to
the temperature in a thermal anneal.

Then, using DWE, we were able to show that a QA can find
the ground state of various continuous two-dimensional func-
tions much more reliably than classical methods. That is, it is

far less dependent on the initial conditions of the optimization
algorithm and on the topographical profile of the function,
as well as being much faster than classical algorithms. It is
notable that scaling the function λUi(φ,ψ ) up by increasing
λ improves the performance of the QA. This indicates that the
QA samples the configuration space by tunneling underneath
potential barriers, for which a deeper well increases the tun-
neling rate, rather than by sampling the configuration space by
following the topographic structure of Ui(φ,ψ ) in the lateral
direction.

FIG. 15. For a range of initial φ and ψ values, the distance between the predicted minimum and true minimum for volcano potential U3 is
given. This is done for Nelder-Mead in (a), (b); gradient descent in (c), (d); thermal annealing in (e), (f); and quantum annealing in (g), (h). For
(a)–(f), a grid size of N = 50 and λ = 0.5 is chosen with the models being initialized from 2500 different points. For the quantum annealing
in (g) and (h), we take N = 20 and λ = 0.7 and the model is initialized from ∼100 points. Each point is used to produce 100 reads, with the
peak of the probability distribution being identified as the predicted minimum for that setup.
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For many problems it can be very hard, even a posteriori,
to know if a classical optimization algorithm has settled into a
local or a global minimum. Thus, finding the global minimum
reliably is one of the biggest challenges for any optimization
task, which is often only heuristically addressed by rerun-
ning the algorithms with different initial conditions multiple
times, or by performing other partial scanning manoeuvres.
However, the depth awareness of a quantum algorithm seems
to offer an entirely different approach to locating a global
extrema and may have implications for optimization tasks in
many areas.
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APPENDIX A: CLASSICAL OPTIMIZATION
ALGORITHMS

1. Gradient descent method

Simple GD optimization techniques can face difficulties
converging to the correct solution. An example of this is when
they are getting close to the bottom of the valley they are
descending into. By following the steepest gradient, depend-
ing on the step size, it is possible to step entirely over the
solution. This results in the algorithm oscillating over the
correct answer but never finding it.

Conjugate GD aims to resolve this by accounting for pre-
vious gradients when calculating its next step [33,34]. GD
methods, generally, follow the form

xi+1 = xi + αdi, (A1)

where xi and xi+1 is your current location and next location,
respectively. The form also depends on α, a step size, and di,
a vector describing the direction in which you will move. For
a standard GD method, di will typically be −∇ f (xi ), the neg-
ative gradient of the function you are finding the minimum of.

In the conjugate gradient method, di will be a combi-
nation of gradients. Here, it will depend on −∇ f (xi ) and
−βi∇ f (xi−1). The term βi is designed such that the new
directional vector is conjugate to the previous. By accounting
for the previous gradient when finding the next step, and using
an adaptive step size, the likelihood of taking a step in the
direction you have previously come from is reduced. This
results in the optimization performance increasing.

2. Nelder-Mead method

NM is an optimization technique that uses a geometric
structure known as a simplex [32]. The simplex, through the
optimization procedure, traverses the function space to find
a minimum. For an N-dimensional feature space, a simplex
with (N + 1) vertices can be initialized. The vertices xi will
each have a corresponding value found from evaluating the
function f (xi ). At each iteration, these vertices are shifted
according to a set of rules. The process repeats until either
a maximum number of iterations is reached or the standard
deviation of the points decreases under a threshold.

Specifically, we can describe the original NM optimization
method with three repeating steps. In step (i), f (x) is evaluated
for each simplex vertex. The vertices are then put in ascending
order (x0, x1,..., xN+1) based on this evaluation. A centroid,
xc, is then calculated in step (ii). This is simply the mean of
all the points evaluated in step (i), excluding xN+1. At step
(iii), the algorithm will shift the simplex. We will consider a
few important vertices of the simplex, namely, the best point
x0, the second-worst point xN , the worst point xN+1, and the
centroid. The updates are done using one of four rules:

1. Reflection: A new point, xR, is found from xR = xc +
α(xc − xN+1), where α > 0. If xR is better than xN but worse
than x0, then xN+1 (the worst point in the simplex) is replaced
with xR.

2. Expansion: If xR was less than x0 and therefore the new
best point, another point xE = xc + γ (xR − xc), where γ > 1,
can be found. Here, we aim to check if another, even better,
point can be found. If xE is the new best point, it can replace
xN+1, otherwise xN+1 will be replaced by xR.

3. Contraction: This is the case where xR � xN . A
new point xcont = xc + β(xN+1 − xc), where 0 < β � 0.5, is
found. If this new value xcont is better than the worst point, it
can replace xN+1.

4. Shrink: In the case the previous three checks fail, and
xcont is worse than xN+1, the shrink procedure can be per-
formed. Here, all points are replaced, except x0. A point xi

is shifted such that xi = x0 + σ (xi − x0), where σ is typically
0.5.

For a low-dimensional example, the simplex manipulations
are shown in Fig. 16. After the appropriate update is per-
formed, the iteration is complete and the process begins again.
After step (i), the algorithm has the chance to be terminated.
This depends on the standard deviation of the values found
from evaluating the vertex values. If this is under a certain
threshold or a maximum number of iterations is reached, then
the optimization ends. The smallest value found from evaluat-
ing the vertices is returned as the minimum of the function.

3. Thermal annealing with Metropolis algorithm

We can consider our potential as being a system that con-
tains various states. These states, each representing different
points in the potential, will have an associated energy. The
minimum of the potential will be the state with the low-
est energy. TA aims to optimize a system by finding this
state [31]. At each iteration of the algorithm, the energy of the
system can be measured and compared against the energy of
a neighboring state. Depending on the energy of the neighbor,
there is a probability it will be accepted. If accepted, this new
configuration replaces the current state and the next iteration
can begin.

By beginning in a state A, an associated energy EA can be
found. This state can be changed to create B, a potential new
state with an energy EB. If EB < EA, then the new state has
lower energy and can be accepted as our new state. If EB >

EA, then the candidate state is not energetically preferable.
However, there is still a chance to accept it with a probability
e−(EB−EA )/T . This probability, and hence the likelihood of the
algorithm accepting a new configuration, is guided by a tem-
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FIG. 16. The four variations of how the simplex vertices can be updated during a Nelder-Mead optimization iteration: Reflection in (a),
expansion in (b), contraction in (c), and shrink in (d).

perature T . Being allowed to take steps away from a minimum
reduces the likelihood of falling into local minima.

The choice of temperature is an important factor in TA. A
higher temperature will result in more configurations being
accepted. It is typical then to perform the annealing process
with a schedule. By starting at a high temperature, space can
be quickly explored. After a select number of iterations, the
temperature can be reduced until the algorithm settles into the
global minimum.

APPENDIX B: PERFORMANCE COMPARISON BETWEEN
OPTIMIZERS WITH DISTINCT INITIAL CONDITIONS

To visualize the performance differences of the four
optimizers, we choose four distinct initial conditions of
(φinit, ψinit ), run each of them multiple times and plot the
distribution of distances � in Figs. 17–19. That is, similarly
to what was done previously for each of the potentials in
Figs. 9, 11, 15. We again see that the classical methods are
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FIG. 17. A comparison of the distance a predicted point is away from the true minimum, for the four initial starting points in the legend,
using potential U1. Four optimization techniques are shown: Nelder-Mead in (a), gradient descent in (b), thermal annealing in (c), and quantum
annealing in (d). Each initial condition was run 100 times.
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FIG. 18. A comparison of the distance a predicted point is away from the true minimum, for the four initial starting points in the legend,
using the multiwell potential U2. Four optimization techniques are shown: Nelder-Mead in (a), gradient descent in (b), thermal annealing in
i(c), and quantum annealing in (d). Each initial condition was run 100 times.

more dependent on their initial starting point, and the behavior
is in accord with what was concluded before: namely, NA and
GD always get stuck in the wrong minimum for some of the
points, and only (but always) find the true minimum if they
happen to start in its basin of attraction. On the other hand,

TA is reasonably good at jumping into the deepest well but
gets stuck some of the time, while the QA almost always finds
the deepest well but, at least for the limited N system available
to us, retains a small spread. We would anticipate that larger
N would allow us to eliminate this final spread.
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FIG. 19. A comparison of the distance a predicted point is away from the true minimum, for the four initial starting points in the legend,
using the volcano potential U3. Four optimization techniques are shown: Nelder-Mead in (a), gradient descent in (b), thermal annealing in (c),
and quantum annealing in (d). Each initial condition was run 100 times.
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