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Dynamics of a dispersively coupled transmon qubit in the presence
of a noise source embedded in the control line
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We describe transmon qubit dynamics in the presence of noise introduced by an impedance-matched resistor
(50 �) that is embedded in the qubit control line. To obtain the time evolution, we rigorously derive the circuit
Hamiltonian of the qubit, readout resonator and resistor by describing the latter as an infinite collection of bosonic
modes through the Caldeira-Leggett model. Starting from this Jaynes-Cummings Hamiltonian with inductive
coupling to the remote bath comprised of the resistor, we consistently obtain the Lindblad master equation for
the qubit and resonator in the dispersive regime. We exploit the underlying symmetries of the master equation to
transform the Liouvillian superoperator into a block diagonal matrix. The block diagonalization method reveals
that the rate of exponential decoherence of the qubit is well-captured by the slowest decaying eigenmode of a
single block of the Liouvillian superoperator, which can be easily computed. The model captures the often used
dispersive strong limit approximation of the qubit decoherence rate being linearly proportional to the number of
thermal photons in the readout resonator but predicts remarkably better decoherence rates when the dissipation
rate of the resonator is increased beyond the dispersive strong regime. Our work provides a full quantitative
description of the contribution to the qubit decoherence rate coming from the control line in chips that are
currently employed in circuit QED laboratories and suggests different possible ways to reduce this source of the
noise.
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I. INTRODUCTION

The study of the influence of environmentally induced
noise on solid-state qubits is an active field both theoretically
and experimentally [1–5]. A practical aim of understanding
noise in quantum systems is to mitigate its effect on gate-
based computing devices [6]. In fact, quantum noise is directly
relevant to applications in optimal quantum state control
[7].

A common scenario in experimental implementations is
that a quantum system—comprised of a superconducting
qubit and its readout resonator—is thermalized to the base
temperature of a dilution refrigerator measurement system
with thermodynamic temperature of order T = 10 mK. De-
spite this low temperature compared to relevant energy scales,
the system must be connected to a remote bath of a higher
temperature via control lines that enable qubit-specific mea-
surement [8]. Input signals are delivered to the device through
control wires that are thermalized through a series of cryo-
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genic microwave attenuators [9]. An attenuator can act as a
thermal reservoir that emits photons into the control line at the
frequency of the readout resonator to induce random photon
number fluctuations and dephasing via the ac Stark effect for
a qubit that is readout dispersively [10,11]. Although design
[12,13] and placement [9] of attenuators can be optimized to
decrease the temperature of the remote bath that is connected
to a quantum system, it is not uncommon that photon shot-
noise induces dephasing at rates that are much higher than
what would be predicted from the base temperature of the
device [13]. This effect motivates a detailed understanding
of the interplay between a remote bath and quantum system
for a dispersively coupled qubit from the starting point of its
electrical circuit parameters.

To distinguish between various functions of the solid-state
qubit wiring in a cryogenic measurement system, the lines
are typically classified as drive lines, flux lines, or output
lines [6,9]. The drive lines enable different functionalities
dependent upon system architecture including: (1) delivery of
signals to a readout resonator to detect its state, or (2) delivery
of signals directly to a qubit through capacitive coupling for
control pulses. In some superconducting qubit device designs
(cf. Ref. [14]), the same drive line can be used for both
functions using frequency-domain multiplexing, and in other
cases dedicated XY-control lines are utilized [15]. However,
the primary focus of this paper is on the former type of drive
line that is coupled to the readout resonator and throughout
the paper we use the terms “drive line” and “control line”
interchangeably.
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The scope of the present theoretical study is as follows. We
seek an accurate and complete solution to the dynamics of a
superconducting qubit when it is in the presence of a remote
thermal bath that is connected to the qubit-resonator system
through its control lines. We obtain the solution through ap-
plying the theory of open quantum systems to the quantized
circuit Hamiltonian of the Jaynes-Cummings form [16,17],
which in turn is derived by applying the tools of circuit quan-
tum electrodynamics. The resulting master equation is solved
by exploiting its underlying symmetries [18], allowing it to be
transformed into a block diagonal form. This form simplifies
our study of decoherence effects as we can focus only on one
block of the whole Liouvillian matrix.

We study the decoherence rate by exploring broad pa-
rameter ranges of the values of resistor temperature, of
qubit-resonator and of resonator-resistor couplings, and we
focus in particular on both the dispersive strong and dispersive
weak regimes [19]. We notice that in the dispersive strong
limit our model agrees with the often used approximation of
the qubit decoherence rate being linearly proportional to the
number of thermal photons in the readout resonator. However,
in the dispersive weak regime the model predicts remarkably
better decoherence rates as the dissipation rate of the resonator
is increased. This suggests that working in the dispersive weak
regime may significantly improve the decoherence time of the
transmon qubit.

The paper is organized as follows. First we describe the
derivation of the Hamiltonian and master equation in Sec. II.
We then present results of the model and discuss the so-
lutions as they apply to experimentally relevant qubit and
resonator parameters in the dispersive regime in Sec. III.
Within Sec. III A we briefly review the influence of a control
line with direct capacitive coupling to the qubit. In Sec. IV, we
summarize the primary conclusions of the study and outlook
for its impact on qubit circuit design.

II. DERIVATION OF THE CIRCUIT HAMILTONIAN
AND MASTER EQUATION

In order to characterize the time evolution of the disper-
sively coupled transmon qubit [20], we need to derive a master
equation describing the dynamics of the quantum state. To
obtain the Lindblad master equation, we first need to find a
Hamiltonian describing the quantum system of interest, the
environment, and the interactions [21]. The quantum system
we consider is the superconducting circuitry of the qubit and
its readout resonator, and the environment is an attenuator in
the drive line, which is modelled as a bosonic bath.

A. Circuit Hamiltonian

Our approach for deriving the Hamiltonian starts from
the circuit diagram describing the qubit including its readout
circuitry and the drive line. The form of the circuit we consider
is motivated by the device in Ref. [14] with the inclusion of
a resistive element in the drive line such as an attenuator.
The circuit diagram is shown in Fig. 1, where the qubit is
capacitively coupled to the readout resonator via capacitance
Cg and the resonator is inductively coupled to the drive line
via mutual inductance M. It should be noted that in this model

FIG. 1. Lumped element circuit model. On the left is the drive
line with inductive coupling to the readout resonator, which in turn
is capacitively coupled to the qubit.

both the drive and readout signals travel through the readout
resonator in the middle [14].

As a physical implementation, the readout resonator is
manufactured as a coplanar waveguide (CPW), which is a
transmission line resonator with distributed inductance and
capacitance values [22]. We construct the lumped element
circuit diagram in Fig. 1 by treating the CPW resonator as
a parallel LC oscillator with fixed capacitance Cf and induc-
tance Lf. The exact values for these parameters can be derived
from the CPW geometry [22]. The transmission line readout
resonators commonly used in circuit QED systems have many
frequency harmonics. Approximating the resonator as a single
LC mode as shown in Fig. 1 assumes that the qubit transition
frequency is far red-detuned from the fundamental mode of
the resonator so that interaction with higher modes can be
neglected in description of phenomena such as Purcell decay
[23]. For this reason, using the single resonator mode ωf is
instructive and practical for the dispersive regimes described
in the results of Sec. III.

Our goal is to derive the Hamiltonian of the circuit in
Fig. 1. We first consider each energy term in the circuit to
derive the classical Lagrangian, then move to the Hamilto-
nian description via the Legendre transformation, and finally
quantize the classical Hamiltonian [24,25]. The details of the
derivation are discussed further in Appendixes A and B.

The general idea of the derivation is based on the rep-
resentation of the resistor in the input line of Fig. 1 as an
infinite collection of harmonic oscillators (bosonic modes)
with dense frequencies, which emit Johnson-Nyquist thermal
noise [26,27] through the input line. This sort of Caldeira-
Leggett [28] representation of the resistor was introduced by
Devoret in 1995 [29] and allows us to consider the physical
degrees of freedom of the resistor as a circuital element as the
dynamical variables (quadratures q and p) of the collection
of harmonic oscillators. In this way, we are able to introduce
dissipation in the mathematical language of circuit QED by
adding an infinite number of dynamical variables, which de-
scribe the modes of the resistor, to the circuit Hamiltonian. We
refer the interested reader to Appendix A and to Refs. [29,30]
for further details and explanations.

Our approach follows the standard mathematical descrip-
tion of quantum superconducting circuits [24,25]. Within this
framework, the dynamical variables that describe the circuit of
interest are the node fluxes in the different nodes of the circuit
in Fig. 1, and an additional set of node fluxes that are internal
to the resistor. The time derivatives of these node fluxes give
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the voltage differences across each circuit element [24]. Find-
ing the Hamiltonian of this dynamical system starting from
the Lagrangian is not a trivial task, due to an infinite number
of dynamical variables. To obtain the final solution, we rely
on a method developed by Parra-Rodriguez et al. [31,32]
and recently discussed in Ref. [30] from the perspective of
open quantum systems. This method (see Appendix B for
details) makes use of a point transformation of the node fluxes
to obtain a new set of dynamical variables that we label as
z, and a set of conjugate momenta that we label as p. The
corresponding circuit Hamiltonian is

H = p2
A

2

Cf + Cg

D
+ V (zA)︸ ︷︷ ︸

Qubit

+ pA pf
Cg

D︸ ︷︷ ︸
Qubit-resonator

interaction

+ p2
f

2

CA + Cg

D
+ z2

f

2

1

Lf︸ ︷︷ ︸
Resonator

+
∞∑

k=1

M

LLLf
fkzkzf︸ ︷︷ ︸

Resistor-resonator
interaction

+
∞∑

k=1

(
p2

k

2M0

1

LkCk
+ M0

2
z2

k

)
︸ ︷︷ ︸

Resistor

. (1)

In Eq. (1), the variables zA, zf, and zk describe the transformed
fluxes of the qubit, resonator and resistor nodes respectively.
The variables pA, pf and pk are the corresponding conju-
gate momenta. The coefficient D = CACf + CfCg + CgCA is
the determinant of the upper-left corner block of the capac-
itance matrix C [25] describing the qubit-resonator system,
and M0 is some constant with units of inverse inductance (see
Appendix B for details). V (zA) denotes nonlinear inductive
potential of the qubit, that will give rise to the anharmonicity
of the qubit energy levels.

We observe that the Hamiltonian in Eq. (1) can be written
as H = HSystem + HBath + HInt, which is the standard structure
of the Hamiltonian of an open quantum system [33]. Here
the system part includes the terms for the qubit, the resonator
and their interaction. The bath term includes only the resistor
contribution, while HInt describes the interaction between the
(qubit-resonator) system and the bath (the resistor).

Equation (1) behaves well in the limits of vanishing qubit-
resonator coupling (Cg → 0) and vanishing resistor-resonator
coupling (M → 0). We can see that in these limiting cases
the corresponding terms of the Hamiltonian decouple as the
interactions vanish.

In order to be able to quantize the Hamiltonian (1)
completely, we need to set the inductive potential of the
qubit V (zA) explicitly. Here we use the transmon potential

[20] V (zA) = −EJ cos (2πzA/φ0), where EJ is the Joseph-
son energy and φ0 the magnetic flux quantum. We assume
now that the manufactured qubit is in the transmon regime
characterized by low anharmonicity (EJ � EC [20]) and,
simultaneously, that it is operated at a thermodynamic tem-
perature sufficiently low so that we can neglect the excitations

to second and higher energy levels.1 Thus we can confidently
truncate the Hilbert space of the transmon qubit to the ground
state |g〉 and first excited state |e〉 only.

After the quantization procedure discussed in more detail
in the Appendix B, the circuit Hamiltonian can be written as

H = 1

2
h̄ωAσz︸ ︷︷ ︸
Qubit

+ h̄ωfa
†
f af︸ ︷︷ ︸

Resonator

+
∞∑

k=1

h̄ωka†
kak︸ ︷︷ ︸

Resistor

− ih̄gfσy(a†
f − af )︸ ︷︷ ︸

Qubit-resonator
interaction

+ M

LL

∞∑
k=1

hk (a†
k + ak )(a†

f + af )︸ ︷︷ ︸
Resistor-resonator interaction

. (2)

The Pauli matrices act on the truncated Hilbert space of the
qubit. The ladder operators a†

f /af and a†
k/ak create and destroy

excitations respectively in the single mode of the resonator
and in the kth mode of the resistor. The coefficient hk describes
the interaction strength between the resonator and the mode k
of the resistor. Its form is given in Eq. (B22) of Appendix B.
The qubit-resonator coupling strength gf is given in terms of
the circuit parameters from the circuit in Fig. 1 as

gf ≡ Cg

2

√
ωAωf

(Cf + Cg)(CA + Cg)
. (3)

Before discussing the derivation of the master equation,
we can compute the spectral density of the bath by using its
standard definition [30,33]. We obtain

J (ω) = 1

h̄2

∞∑
k=1

|hk|2δ(ω − ωk )

= χ
ω2

c

πω
(
ω2

c + ω2
) , (4)

where we introduced a factor χ = Rμ2/(h̄L2
f ), where μ can

be found in Eq. (B21) of Appendix B.

B. The master equation

For the microscopic derivation of the master equation, we
need to find so called “jump operators” of the system [33–35],
which requires diagonalizing the system Hamiltonian HSys =
1/2h̄ωAσz + h̄ωfa

†
f af − ih̄gfσy(a†

f − af ). We do this by mov-
ing to the dispersive frame [36]. In the dispersive frame we
assume that the detuning between the qubit and resonator res-
onance frequencies, 	 = |ωA − ωf|, is large compared to the
coupling strength gf between them, such that λ = gf/	 � 1.
This process, which is shown in detail in Appendix C, will
give us the dispersive Jaynes-Cummings Hamiltonian [37]
with added interaction between the resonator and the resistor

1Note that this is not in contradiction with the presence of a hot re-
sistor in the input line. In fact, we will assume to be in the dispersive
regime of the qubit-resonator coupling. Therefore the thermal fluc-
tuations coming from the input line will affect the qubit coherence
only, while they will not induce any changes in the energy of the
qubit, i.e., they will not create excitations in the higher qubit levels.
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embedded in the qubit drive line,

HD = HD
Sys + HBath + HD

Int, (5)

where

HD
Sys = 1

2 h̄(ωA + 2gfλ)σz

+ h̄(ωf + gfλσz )a†
f af + h̄gfλσ−σ+, (6)

HBath =
∞∑

k=1

h̄ωka†
kak, (7)

HD
Int = M

LL
(a†

f + af + λσx )
∞∑

k=1

hk (a†
k + ak ). (8)

Here the superscript “D” denotes the dispersive frame. We can
see that in this frame the qubit-resonator part given in Eq. (6)
is diagonal in the {|e, n − 1〉 , |g, n〉} basis, where the first
part denotes the state of the qubit and the second part denotes
the number of quanta in the resonator. The eigenenergies of
the different eigenstates are given by

Eg,n =
(

n − 1

2

)
h̄ωf − h̄	

2
− nh̄gfλ,

Ee,n−1 =
(

n − 1

2

)
h̄ωf + h̄	

2
+ nh̄gfλ. (9)

The dispersive Hamiltonian from Eq. (5) along with the
eigenenergies in Eq. (9) are the starting points for the deriva-
tion of the master equation, which describes the dynamics
of the qubit-resonator system. The derivation of the master
equation along with a careful consideration of the secular
approximation [35] is discussed in Appendix D. To ob-
tain the master equation, we make additional use of two
important approximations: (i) Born-Markov approximation,
which requires weak coupling between resonator and resistor
(M/LL � ωf/ωA in Eq. (2), which sets the resonator-resistor
interaction energy to be much smaller than the energy of
the resonator) and that the autocorrelation functions of the
bath decay sufficiently fast in time [33]. The latter is typi-
cally true for the Johnson-Nyquist thermal fluctuations of the
voltage across the resistor [30]. (ii) Approximation of local
master equation [35,38–40], valid when the coupling energy
between the transmon qubit and the resonator is much smaller
than their energies (gf � ωA, ωf); as we are in the dispersive
regime, this approximation is always valid. Finally, the master
equation we obtain is the following:

ρ̇Sys = L[ρSys] = − i

h̄

[
HD

Sys + HLS, ρSys
]

+ γ n̄

(
a†

f ρSysaf − 1

2
{afa

†
f , ρSys}

)

+ γ (1 + n̄)

(
afρSysa

†
f − 1

2
{a†

f af, ρSys}
)

.

(10)

L is the generator of the Markovian master equation driving
the system dynamics, and it is the so-called “Liouvillian su-
peroperator” [33,41]. The Lamb-shift Hamiltonian HLS arises
from the environmental interaction and effectively renormal-
izes the resonator’s resonance frequency. HLS does not have a

considerable effect on the qubit dynamics, therefore we will
neglect it in the following discussion. The coefficient γ is the
dissipation rate of the resonator and it is dependent on the
spectral density of the bath as

γ = 2πα2J (ω f ), (11)

with α = M/LL describing the interaction strength between
the bath and the resonator. The factor n̄ is the expected num-
ber of quanta in the resonator. Following the Bose-Einstein
distribution, it depends on temperature T and the resonance
frequency of the resonator ωf [33].

III. RESULTS AND DISCUSSION

Now that we have obtained the master equation describing
the time evolution of the dispersively coupled transmon cou-
pled to the resistive bath in the drive line, we need to solve
it for the qubit dynamics. The master equation of the type in
Eq. (10) has been solved analytically at the absolute zero [42]
and more generally in Ref. [43], both studies assuming that the
atom (corresponding to our resonator) is in a coherent state.
Our approach to solving the master equation involves finding
out its inherent symmetries and representing the Liouvillian
superoperator as a block diagonal matrix [41]. This approach
reveals an analytical expression for the long-time decoherence
rate of the qubit and makes the numerical solution of the
dynamics easier by reducing the number of needed Liouvillian
matrix elements from s4S4 to s2S2, where s is the truncation
of the qubit’s Hilbert space and S is the size of Hilbert space
truncation for the resonator. Moreover our solution makes no
a priori assumptions about the state of the system but can be
utilized to compute the dynamics of an arbitrary initial state.
The block structure of the Liouvillian is discussed in more
detail in Appendix E.

Before considering the dynamics of the dispersive trans-
mon with decoherence, we review the solution for a simple
XY control of the qubit where the resistor in the drive line
is directly coupled to the transmon. In this simpler case, the
solution is obtainable analytically. Comparing this scenario
with the one with the readout resonator in between shows that
the addition of the resonator in the dispersive regime yields
pure dephasing and no dissipation in the qubit dynamics.

A. Dissipation in the case of direct resistor-qubit coupling

A drive line directly coupled to the qubit without any
intermediate resonator in between is used for the XY control
of the qubit [15] as it couples the qubit’s σx and σy operators
to the bath operators, allowing for the excitation of the qubit
energy levels. The effect of coupling a resistor directly to the
qubit is discussed in detail in Ref. [30]. This direct coupling
is described by the following Hamiltonian:

H = 1

2
h̄ωAσz +

∞∑
k=1

h̄ωka†
kak + ζ

∞∑
k=1

gkσy(a†
k − ak ), (12)

where ζ describes the interaction strength between the qubit
and the resistor. In this case we can notice that the qubit expe-
riences transverse noise through the σy coupling, which leads
to dissipation. Taking the qubit-resistor coupling to be weak,
the above Hamiltonian leads into a master equation describing
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the state of the qubit ρQ at some time t ,

ρ̇Q = − i

h̄

[
1

2
h̄ωAσz + HLS, ρQ

]

+ �↓

(
σ−ρQσ+ − 1

2
{σ+σ−, ρQ}

)

+ �↑

(
σ+ρQσ− − 1

2
{σ−σ+, ρQ}

)
. (13)

Here the absorption and emission rates �↑ and �↓ depend on
the bath temperature and its spectral density, which is propor-
tional to the number of thermal photons in the resistor, given
by the Bose-Einstein distribution. This master equation leads
to decay of qubit populations, that is dissipation, given by the
rate �↑ + �↓, and decay of the coherence, that is decoherence,
given by the rate (�↑ + �↓)/2 [33]. The rate of dissipation and
decoherence grows linearly as the number of thermal photons
in the resistor increases with temperature.

B. Decoherence through dispersive
qubit-readout resonator coupling

Let us now consider the case with a resonator between
the qubit and the resistor, which is the central focus of this
work. The master equation of Eq. (10) describes the decay of
a resonator that is dispersively coupled to the transmon qubit.
So, we may expect to observe no dissipation on the quantum
state of the qubit. This can be proved by computing the adjoint
master equation, which is essentially the Heisenberg picture
equivalent to the normal Schrödinger picture master equa-
tion [33]. In the adjoint master equation, the time dependency
is transferred from the states to the operators. In our case, the
adjoint master equation is

Ȯ(t ) =L†[O(t )] = i

h̄

[
HD

Sys, O(t )
]

+ γ n̄

(
afO(t )a†

f − 1

2
{afa

†
f , O(t )}

)

+ γ (1 + n̄)

(
a†

f O(t )af − 1

2
{a†

f af, O(t )}
)

. (14)

Setting O = σz in the above equation will yield us the time
evolution of the σz operator describing the qubit populations.
It is easy to see that σ̇z = 0 because σz commutes with the
ladder operators af and a†

f , which sets the dissipator (i.e.,
the terms in the master equation proportional to γ that are
responsible for the nonunitary open dynamics) to zero. It also
commutes with the dispersive system Hamiltonian in Eq. (6)
and therefore also the unitary part of the master equation van-
ishes. Thus σ̇z = 0 and so the qubit experiences no dissipation.

One key issue in the theory of open quantum systems is
the search for the steady states of the dynamics [33]. Since, as
stated above, total energy is a conserved quantity in the system
dynamics, the steady state is not unique [18]. The subspace
of the steady states is two-dimensional and it is spanned by
product states of the qubit and resonator. The qubit part is easy
to find to be either |g〉 〈g| or |e〉 〈e|. The resonator contribution

turns out to be the thermal state given by

ρTh(ω) = 1

1 + n̄(ω)

∞∑
n=0

(
n̄(ω)

1 + n̄(ω)

)n

|n〉 〈n| , (15)

where n̄(ω) is the Bose-Einstein distribution. So the most
general steady state of the system can be written as

ρSteady = a |e〉 〈e| ⊗ ρTh + (1 − a) |g〉 〈g| ⊗ ρTh, (16)

where a ∈ [0, 1]. If there are no oscillating coherences [18]
(i.e., coherences that survive and oscillate even at infinite
time), this is the family of steady states towards which we
can expect the combined qubit-resonator quantum state to
evolve in time. We will later see that we can find oscillating
coherences only in the case of zero temperature or very small
ratio γ ′/g′2

f , where the primed parameters are normalized with
the qubit frequency ωA.

We solve the master equation (10) by transforming it into
the Liouville space [44], where the quantum state density
operators become vectors and the Liouvillian superoperators
are represented as matrices operating on the state vectors. In
this formalism the Liouvillian superoperator describing the
master equation can be written as

L = − i

h̄

(
HD

Sys ⊗ 1 − 1 ⊗ HD�
Sys

)
+ γ n̄

(
a†

f ⊗ a†
f − 1

2
afa

†
f ⊗ 1 − 1

2
1 ⊗ afa

†
f

)

+ γ (1 + n̄)

(
af ⊗ af − 1

2
a†

f af ⊗ 1 − 1

2
1 ⊗ a†

f af

)
.

(17)

It can be shown (see Appendix E) that L as a superoperator
matrix commutes with the total-number-of-particles superop-
erator defined as N = N ⊗ 1 − 1 ⊗ N� in Liouville space,
with N = σz + a†

f af. Therefore we can block-diagonalize L
by labeling each block through an eigenvalue of N . It turns
out that to study the evolution of the qubit coherences (i.e.,
the mean values of σx(t ) and σy(t )) we can focus on a single
Liouvillian block only, namely L1, associated with the eigen-
value 1 of N . Therefore the property [L,N ] = 0 simplifies
the solution of the master equation for the observables we
need to track to study the qubit decoherence. The dimension
of the block L1 is in principle infinite, but will depend on the
truncation of the Hilbert space of the resonator when comput-
ing the dynamics numerically. The block diagonalization of
the Liouvillian is discussed in detail in Appendix E.

To understand how the thermal noise coming from the
resistor affects the qubit coherences, we study the behavior
of a coherence measure, such as the l1-norm [45]:

C(ρ) =
∑
i, j
i �= j

|ρi j |. (18)

In the two-dimensional case of the qubit Hilbert space, the
coherence measure is simply given by

C(ρQ) =
∑
i, j
i �= j

|ρi j | = |ρ01| + |ρ10| =
√

〈σx〉2 + 〈σy〉2. (19)
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The required expectation values 〈σx〉 and 〈σy〉 can be obtained
from the eigenmodes of the Liouvillian block L1 as [46,47]

〈σx(t )〉 =
∑

i

2
∣∣c(1)

i pi

∣∣eRe[λ(1)
i ]t cos

(
Im
[
λ

(1)
i

]
t + Arg

[
c(1)

i pi
])

.

(20)

Here the coefficients c(1)
i describe the initial conditions of the

qubit-resonator quantum state, pi describe the projection of
the vectorized operator σx into the eigenvectors of the Liouvil-
lian and λ

(1)
i are the eigenvalues of the Liouvillian block with

d = 1, where d is an eigenvalue of N (see Appendix E for
details). The expectation value of σy are computed in a similar
manner but with pi describing the projection of σy onto the
suitable eigenspaces of L1. Importantly, Eq. (20) reveals that
the coherences can be thought of as being constructed from a
sum of different modes of the Liouvillian, each with a specific
eigenvalue λ

(1)
i that determine how fast that mode decays in

time due to the exponential factor eRe[λ(1)
i ]t . Note that all of the

Liouvillian eigenvalues are nonpositive, with the eigenvalue
zero corresponding to the steady state [18].

To quantify the rate of decoherence due to the presence of
the resistor, we define the thermalization rate (being the rate
at which the qubit coherence decays in time) as the slowest
decaying mode of the Liouvillian block d = 1 given by

�2,R = min
i

(∣∣Re
[
λ

(1)
i

]∣∣). (21)

The equation above expresses the inverse of the timescale
for the complete disappearance of all the qubit coherence.
However, this does not give us any information about the
rate of qubit decoherence at any instant of the dynamics. For
instance, we will see that the decoherence rate of the qubit at
an arbitrary time t also depends on the initial state of the res-
onator. This decoherence rate is slower [approaching Eq. (21)]
when the reduced state of the resonator gets closer to its
thermal state with no off-diagonal elements (see Appendix F
for further discussions and some numerical examples).

The eigenvalues λ
(1)
i in Eq. (21) depend on all of the

circuit parameters used to derive the circuit Hamiltonian and
the master equation. Therefore we are able to compute the
qubit dynamics in terms of the physical circuit parameters.
Moreover, the eigenvalues depend also on the temperature of
the environment, so we can find the temperature dependency
of the decoherence time by computing the eigenvalues λ

(1)
i for

different temperatures and applying Eq. (21) to pick the one
that describes the slowest decay.

C. Decoherence blockade at zero temperature

The master equation [Eq. (10)] has a unitary part U , which
is the standard Liouville-von Neumann equation, and the
dissipative part D, which is responsible for the decoherence
effects. In general, we can write the Liouvillian superopera-
tor as L = U + D [33,41]. Looking at this structure, we can
readily make an important remark: if the dissipative super-
operator D commutes with the unitary superoperator U =
−i/h̄[HSys, ·] on the subspace of states written as ρQ ⊗ ρTh,
where ρTh is the thermal state of the resonator, then there will
be a subspace of the dynamics with no decoherence. In other
words, if [U ,D]|ρQ⊗ρTh = 0, then �2,R in Eq. (21) will be zero,

i.e., there will be some oscillating coherences [18] in the qubit
dynamics. Indeed, if the unitary propagator and the dissipator
commute on this subspace, then the action of the Liouvillian
on the same subspace can be separated into two parts as

ρ(t ) = eLtρ(0) = eUt eDtρ(0), (22)

for ρ(0) = ρQ ⊗ ρTh. Using D[ρTh] = 0, we get

ρ(t ) = eUt [ρQ ⊗ ρTh]. (23)

That is to say, the qubit and the resonator follow a purely
unitary evolution, therefore the qubit will never lose all of its
coherences.

Let us now compute the commutator [U ,D] for the master
equation in Eq. (10) on a separable state ρQ ⊗ ρTh. We find

[U ,D]ρQ ⊗ ρTh = igfλ[σz, ρQ]D[a†
f afρTh]. (24)

In the limit of zero temperature, the thermal state of the
resonator is simply |0〉 〈0|, as can be easily observed from
Eq. (15). This sets the dissipator part D[a†

f af |0〉 〈0|] = 0,
which thus leads to commuting unitary and dissipative parts.
Therefore, at absolute zero, the system does not experience
any decoherence when the resonator is initialized in the
ground state. If the resonator is initially not in a thermal
state, then there will be a transient dynamics during which the
resonator reaches the thermal state and the qubit is allowed
to decohere. After this transient, the joint state of system and
resonator will once again be written as ρQ ⊗ |0〉 〈0|, and all the
remaining qubit coherences will oscillate in a purely unitary
fashion according to Eq. (23). Additionally, if the quantum
state of the qubit commutes with the σz operator, then no
coherences are present and thus no decoherence can happen,
which is also captured by Eq. (24).

D. Numerical solutions

In order to solve the master equation numerically, we be-
gin with the Liouvillian in Eq. (17). The solution for some
arbitrary time t can be obtained by exponentiating the Liou-
villian matrix: ρ(t ) = eLtρ(0). However, to use this method,
the generally infinite dimensional Hilbert space of the ladder
operators af and a†

f has to be truncated to a finite size S, which
describes the dimensionality of the matrix representation of
the ladder operators. The truncation S effectively sets the
upper limit for the resonator excitations. Therefore we choose
S so that the resonator has a sufficient amount of available
exited states, such that it can get close enough to its ideal
steady state, the thermal state. In practice we choose S such
that the probability of occupying the highest energy state for
a given temperature T is 10−7 or less.

In order to compute the qubit dynamics of the circuit in
Fig. 1, we set the values for the circuit elements to be the fol-
lowing: the resistance R = 50 �, the capacitances Cf, Cg, and
CA are 800, 5, and 90 fF, respectively and the resonance fre-
quencies of the qubit and resonator are ωA = 2π × 4 GHz and
ωf = 2π × 6.1 GHz, respectively. The coupling inductance is
LL = 140 pH and the mutual inductance is M = k

√
LLLf, with

k = 0.005 and Lf is obtained from the resonator’s capacitance
and resonance frequency as Lf = 1/(Cfω

2
f ).

The values listed above determine the dynamics of the
qubit as the qubit-resonator coupling gf and the environmental
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FIG. 2. Time evolution of the qubit coherence measure C(ρ ) =√〈σx〉2 + 〈σy〉2 for different temperatures in blue. Red squares show
pure decaying exponential with the decay time computed using
Eq. (21). We observe that the qubit coherences decay almost exactly
as predicted by this equation. The listed parameters have been nor-
malized by the qubit frequency ωA.

coupling parameter γ are completely determined as a function
of the circuit parameters [see Appendix B and Eqs. (3) and
(4)]. The coupling rates can be written as

gf/(2π ) = Cg

2

√
ωAωf

(Cf + Cg)(CA + Cg)
≈ 44.7 MHz

⇒ g′
f = gf

ωA
≈ 0.0112 (25)

and

γ /(2π ) = 2π

(
M

LL

)2
R(CA + Cg)

2(CACf + CfCg + CgCA)ωfL2
f

× ω2
c

πωf
(
ω2

c + ω2
f

) ≈ 1.41 MHz

⇒ γ ′ = γ

ωA
≈ 3.53 × 10−4. (26)

The cutoff frequency ωc is taken to be 1 THz.
The master equation is numerically solved for the given

values and the time evolution of the qubit coherence is pre-
sented in Fig. 2 for three different resistor temperatures. The
qubit was initially in the superposition state |�Q〉 = |+〉 =

1√
2
( |g〉 + |e〉 ) and the resonator in the thermal state for the

given temperature. The blue lines show numerically exact
solutions to the qubit time evolution. We can see that they
almost exactly match an exponential decay, marked by the red
squares, where the decay rate was computed using the deco-
herence rate from the resistor in Eq. (21). This corroborates
the validity of Eq. (21) to estimate the long-time decoherence
rate, and shows that the qubit experiences a slower decoher-
ence when the reduced state of the resonator is its thermal
state. This means that when the resonator is in a thermal state
there is a decaying eigenmode of the Liouvillian that is the
only relevant contribution to the system evolution, as can be
deduced from Eq. (20). In other cases where the resonator

does not start in the thermal state, the other modes of the
Liouvillian give a nontrivial contribution to the system dy-
namics, and decay at a faster rate until the resonator reaches
its steady state, at which point the rest of the dynamics is once
again mostly governed by the exponential decay rate given by
Eq. (21). Further discussions can be found in Appendix F.

E. Dependence of T2 on resistor temperature

The noise emanating from the qubit drive line resistor is not
the only source of decoherence (see Ref. [6] and references
therein). Other factors contributing to the coherence loss are
for example quasiparticle tunneling [48], magnetic flux noise
of the field penetrating the circuit [49] and phonon radiation of
the surrounding lattice [50]. All of these factors have their own
nontrivial contribution to the physical decoherence rate. These
different contributions can, in general, depend on temperature
and on other aspects of the circuit and the environment but
for simplicity we assume their contribution to the true deco-
herence rate to be some constant amount �B, that we term the
background decay rate. This background decay rate together
with the decoherence rate coming from the resistor �2,R, given
by Eq. (21), gives the total decoherence rate of the qubit

�2 = �2,R + �B. (27)

Assuming the other decoherence factors constant, we can
concentrate on the exact nature of the decoherence driven by
the resistor. Especially, solving the master equation (10) using
the block diagonalization method allows for the computation
of the temperature dependency of the decoherence rate �2,R

by picking the coherence decay rate from the eigenvalues
of the Liouvillian block L1. In practice, the eigenvalues for
the Liouvillian block for a specific temperature are computed
using a proper Hilbert space truncation size S for that temper-
ature, as explained earlier. Then Eq. (21) is applied to those
eigenvalues. This gives an estimate on how the decay behaves
with respect to temperature.

From the decay rates we can obtain the characteristic deco-
herence times T2 = 1/�2. In Fig. 3, the decoherence timescale
is plotted as a function of the bath temperature using the same
circuit parameters as in Fig. 2. The decoherence effect coming
purely from the resistor is plotted as the black dashed line,
which diverges for low temperatures as predicted in Sec. III C.
The additional background decay rate from other sources
makes the T2 timescale stabilize to a value close to 200 μs,
as can be seen from the blue line. This behavior is what is
observed experimentally when the temperature of the mixing
chamber is reduced [12]. The existence of excess thermal
photons that leak to the readout resonator from the attenuators
[12,13] and other background decay processes can explain this
saturation effect.

We observe that the effect of resistor decoherence becomes
negligible for low enough temperatures compared to the other
sources. The diverging behavior of the resistor contribution
can be explained by noting that near absolute zero the res-
onator’s steady state, the thermal state, approaches the state
|0〉 〈0|. Thus the absolute value of the real part of the eigen-
values gets smaller, indicating a situation where coherence
decays very slowly. At absolute zero the decoherence effect
from the resistor vanishes completely because in that case the
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FIG. 3. Temperature dependency of the decoherence time with
and without an additional background decay rate of �B = 5026 s−1,
which corresponds to a T2 time of about 200 μs. The listed parame-
ters have been normalized by the qubit frequency ωA.

unitary part of the master equation commutes with the dissi-
pators, leading to purely unitary dynamics when the resonator
is in a thermal state, as explained in more detail in Sec. III C.

F. Trade off between γ and gf

Not fixing the coupling parameters to specific values al-
lows us to compute dynamics of the qubit in different coupling
regimes. This allows for the study of how changing the cou-
pling parameters affects the time evolution of the qubit and
specifically the decoherence rate. This is shown in Figs. 4
and 5, where the resistor’s contribution to the decoherence
rate �2,R is plotted versus the resonator dissipation rate γ for
some values of qubit-resonator coupling gf and temperature
respectively.

FIG. 4. Resistor’s contribution �2,R to the decoherence rate as
a function of resonator dissipation rate γ for several qubit-resonator
couplings gf with resistor temperature T = 150 mK. The blue dashed
line shows the often used approximation of decoherence rate being
linearly proportional to both γ and the average number of thermal
photons n̄.

FIG. 5. �2,R as a function of γ ′ = γ /ωA for different tempera-
tures with fixed qubit-resonator coupling of gf = 0.01ωA.

In Fig. 4, we observe how the decoherence rate be-
haves as a function of γ , normalized by the qubit frequency
[see Eqs. (25) and (26)], for a specific temperature of T =
150 mK. We can notice that for small values of the ratio
γ ′/g′2

f , the increase in γ ′ increases the decoherence rate of
the qubit due to the resistor. In this dispersive strong regime
[19] the decoherence rate coincides with the often used ap-
proximation of decoherence rate being driven linearly by the
number of thermal photons in the resonator [12], according to

�2 = γ n̄, (28)

where n̄ is the expected number of quanta in the resonator.
This approximation is valid when the coupling rates γ and
gf are small enough compared to the resonator’s resonance
frequency [12] and in addition, when the ratio γ ′/g′2

f is small
[51] (see Fig. 4). If the ratio γ ′/g′2

f is not small enough, we
observe that Eq. (28) predicts too large coherence decay rates.
Remarkably, outside the regime of validity of Eq. (28) we ob-
serve the opposite behavior, that is, increasing the dissipation
rate of the resonator actually improves the decoherence rates.
One way to explain this is observing that, if we consider the
limit γ ′/g′2

f � 1, then the timescale of the resonator-resistor
dissipative interaction is much faster than the timescale of the
unitary resonator-qubit interaction. This situation may intu-
itively resemble the well-known quantum Zeno effect [33].
Indeed, neglecting momentarily the local unitary dynamics
of the resonator and resistor only, we can write the master
equation driving the system evolution as

L[ρ(t )] = −igfλ[σza
†
f af, ρ(t )] + γD[ρ(t )], (29)

where the structure of the dissipator D can be found in
Eq. (10). Since γ ′/g′2

f � 1, after a time interval that is almost
infinitesimal (in comparison to the timescale given by g′−2

f ) the
system will be driven toward a state ρQR such that D[ρQR] =
0, i.e., the reduced state of the resonator will be thermal. Then,
this master equation looks like the one describing the quantum
Zeno effect (e.g., consider Eq. (3.359) of Ref. [33]), and the
state of the overall system will “freeze” in ρQR. Reintroducing
the local unitary dynamics of the qubit and resonator, we
observe that the qubit dynamics is effectively detached from
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the one of the resonator. Therefore the qubit will not feel the
presence of a source of dissipation and decoherence (i.e., the
resistor), and will oscillate unitarily for any time t .

In Fig. 5, we can see a similar behavior as in Fig. 4, but this
time the different lines correspond to different temperatures
with fixed gf = 0.01ωA. We observe that the resistor’s contri-
bution to the decoherence rate is exponentially suppressed if
the temperature of the resistor is decreased, as can be seen
from the difference of several orders of magnitude in �2,R

between T = 20 and 50 mK. This behavior coincides with
what was shown in Fig. 3 for the case of no added background
decay rate. We can also notice in Fig. 5 that the decoherence
rates are lower than what would be predicted by the linear
approximation (28). This approximation is starting to be valid
on the left side of the figures, before the maxima of the graphs.
It should be noted that changing the value of gf changes
the position of the maxima as the approximation (28) either
becomes better (for lower γ ′/g′2

f ) or worse (for higher γ ′/g′2
f ).

Then, we recover the same behavior as in Fig. 4, where the
decoherence rate improves when the resonator dissipation rate
γ is increased after a certain value, when the ratio γ ′/g′2

f is no
longer small.

IV. CONCLUSIONS

We have shown a direct method for obtaining the dynamics
of a dispersive transmon qubit in the presence of noise from
the qubit control line. Our derivation connects the circuit
components of the lumped element model of the circuit di-
rectly to the time evolution of the qubit by expressing the
coupling parameters of the master equation as functions of
the circuit parameters. This allows for exact study of how
each of the individual components affects the time evolution
of the qubit. We have solved the master equation numer-
ically by setting values to the circuit elements that could
correspond to the ones used in a real life implementation
of a superconducting circuit. This has allowed us to obtain
results that could be directly tested experimentally, by mea-
suring the time evolution of the qubit coherences for different
temperatures.

In solving the master equation numerically, we have ex-
ploited the symmetries of the Liouvillian superoperator and
have been able to transform it into a block diagonal form. This
method has been particularly useful because, when studying
the decoherence effects, it has allowed us to concentrate only
on a small part of the, possibly very large, Liouvillian matrix.
This method reduces the number of needed matrix elements
from s4S4 to s2S2, where s is the truncation of the qubit’s
Hilbert space (so s = 2) and S is the size of Hilbert space
truncation for the resonator. The block diagonalization of the
Liouvillian is also completely general and can be done to any
Liouvillian that satisfies the requirements given in Ref. [41]
so that this method can be employed also when discussing
different master equations arising from other superconducting
circuits.

Starting from the master equation derived in Sec. II, we
have proven the intuitive result that the contribution to the
decoherence rate coming from thermal noise in the drive
line vanishes when the resistor temperature goes to zero.
Moreover, our numerical analysis (see Fig. 3) shows that, for

values of the circuit parameters that are currently employed
in circuit QED laboratories, bringing the resistor temperature
below 50 mK improves the qubit decoherence rate by several
orders of magnitude. This highlights the importance of being
able to tune the temperature of the attenuator in the drive
line.

In addition, we have explored the qubit decoherence rate
for different parameter regimes of γ (resonator dissipation
rate) and gf (qubit-resonator coupling), and the results of
our analysis are depicted in Figs. 4 and 5. We see that in
the dispersive strong limit, where γ ′/g′2

f � 1 (the primed
values are the physical values renormalized by the qubit
frequency) our model agrees with the often used approxi-
mation of the decoherence rate being linearly proportional
to the amount of thermal photons in the resonator. Accord-
ing to this approximation, if the resonator dissipation rate
is increased then the decoherence rates get worse. However,
we notice a seemingly counter-intuitive behavior when we
move away from the dispersive strong regime to dispersive
weak regime where γ ′/g′2

f � 1. In this regime, we see that
the decoherence rates are improving when γ is increased.
We may explain this phenomenon as follows: if the decay
time of the resonator is much shorter than the timescale of
the unitary qubit-resonator dynamics, then the state of the
overall system “freezes,” and this is similar to what happens
in the quantum Zeno effect, when very fast measurements
are performed repetitively on the system. So, in this regime,
the dynamics of the qubit and of the resonator are effectively
detached, and the qubit experiences only its free unitary time
evolution.

Although the weak dispersive limit has the downside that
the ac Stark shift is too small to dispersively resolve individual
photons, quantum nondemolition experiments of the qubit can
still be performed [19]. Moreover, it has recently been shown
that high fidelity state preparation in the dispersive weak
regime is possible [52]. This result combined with the pos-
sibility of improved decoherence rates in the dispersive weak
regime suggests that more research should be conducted also
in this regime of cQED applications in order to push forward
the development of superconducting qubits. In particular, our
results in Figs. 4 and 5 show that the contribution to the qubit
decoherence rate from the thermal noise in the drive line may
be reduced by several orders of magnitude by working in the
dispersive weak regime.

As a next step, the extension of this work to describe
drive-line-induced decoherence for transmon qubits coupled
to multiple resonator modes [53–55] deserves further investi-
gation. A theoretical treatment beyond the single-mode Rabi
model will also be required for description of ultra strong
qubit-resonator coupling regimes where higher modes no
longer play a weak perturbative role in dynamics [56,57].
Simulation of systems with engineered frequency-dependent
impedances—such as Purcell filtered resonators—is also di-
rectly relevant to optimization of fast high-fidelity readout
schemes in the presence of noise [58].
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FIG. 6. The impedance Z of a resistor is represented as an infinite series of LC oscillators using the extended Foster’s first form.
Figure adapted from Ref. [30].
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APPENDIX A: CALDEIRA-LEGGETT MODEL
FOR THE RESISTOR

To get a model for quantum dissipation that describes the
lossy nature of a resistor, we extend (following the example
of Refs. [24] and [30]) a series of parallel LC oscillators
encountered in Foster’s first form [59] to be infinitely long
(see Fig. 6). This transforms our model from a simple one
degree of freedom model (that is resistor with resistance R)
into one that has an infinite number of degrees of freedom,
which are the node fluxes between each of the parallel LC
oscillators in Fig. 6. The change from a finite number of
degrees of freedom to an infinite one allows for the emer-
gence of irreversible dynamics of the system on physical
timescales [24].

The first step in the derivation of the model of quantum
dissipation is to analyze the impedances in Fig. 6. Each of the
parallel LC oscillators have an impedance of

Zj (ω) = i

2Cj

(
1

ω + ω j
+ 1

ω − ω j

)
, (A1)

where ω j is the resonance frequency of the jth oscillator
given by ω j = 1/

√
LjCj . Although the impedance of the LC

oscillator seems purely complex, the divergence at resonance
frequencies ±ω j will also yield a real part for the impedance.
To see this, we need to apply the inverse Fourier transform
to move to the time domain. However, in order to do this,
we need to allow the frequency to take complex values as
ω → ω + iε for some small ε ∈ R. In this way, the impedance
codifies causality and is correctly defined as a boundary dis-
tribution in the limit of ε → 0+. Now the inverse Fourier
transform of the impedance function Zj (ω) becomes

Zj (t ) = lim
ε→0+

1

2π

∫ ∞

−∞
dωeiωt e−εt Z j (ω + iε). (A2)

Using the expression in Eq. (A1), we get

Zj (t ) = lim
ε→0+

ie−εt

4πCj

[ ∫ ∞

−∞
dω

eiωt

ω + iε + ω j

+
∫ ∞

−∞
dω

eiωt

ω + iε − ω j

]
. (A3)

To the above integrals we can use the Sokhotski-Plemelj the-
orem for the real line

lim
ε→0+

∫ b

a
dx

f (x)

x ± iε
= ∓iπ f (0) + P.V.

∫ b

a
dx

f (x)

x
, (A4)

where a < 0 < b, f is defined and continuous on the inte-
gration interval and P.V. denotes the Cauchy principal value.
Applying the theorem yields

Zj (t ) = 1

4Cj
(eiω j t + e−iω j t )

+ i

4πCj
P.V.
∫ ∞

−∞
dωeiωt

(
1

ω + ω j
+ 1

ω − ω j

)
.

(A5)

We can see that the impedance has now a real term, which
becomes a pair of delta functions when we move back to the
frequency space via a Fourier transform:

Z̃ j (ω) = π

2
ω j z j[δ(ω − ω j ) + δ(ω + ω j )]

+ i

2
ω j z j

(
1

ω + ω j
+ 1

ω − ω j

)
, (A6)

where we used the frequency of an oscillator ω j = 1/
√

CjL j

and the characteristic impedance z j = √Lj/Cj to write
1/Cj = ω j z j .

What Eq. (A6) tells us is that the single LC oscillator has
a point support on the real line, given by the δ functions. This
is indication of nondissipative nature of the parallel LC oscil-
lator. When we sum over all of the different LC oscillators in
the Foster’s first form, mathematically we build a dense comb
of δ functions, which gives an extended support on the real
line and thus is a signature of dissipation.

Setting now ω j = j	ω, for j ∈ N and 	ω being small
frequency step, the impedance of the individual oscillator can
be written as

z j = 2	ω

πω j
Re[Z (ω j )], (A7)
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and the individual capacitance Cj and inductance Lj are then
given by

Cj = 1

ω j z j
= π

2	ωRe[Z (ω j )]
, (A8)

Lj = 1

ω2
jCj

= 2	ω

πω2
j

Re[Z (ω j )], (A9)

where Z (ω) is the impedance of the resistor, that we want to
mimic.

We can now write the impedance of the infinite collection
of the parallel LC oscillators as

Z∞(ω) =
∞∑
j=0

Z̃ j (ω). (A10)

Taking the limit of 	ω → 0, we can transform the sum into
an integral and finally get

Z∞(ω) = Re[Z (ω)] + i

π

[
P.V.
∫ ∞

0
dω j

Re[Z (ω j )]

ω + ω j

+ P.V.
∫ ∞

0
dω j

Re[Z (ω j )]

ω − ω j

]
. (A11)

From the above we can notice that

Re[Z∞(ω)] = Re[Z (ω)], (A12)

Im[Z∞(ω)] = 1

π

[
P.V.
∫ ∞

0
dω j

Re[Z (ω j )]

ω + ω j

+ P.V.
∫ ∞

0
dω j

Re[Z (ω j )]

ω − ω j

]
. (A13)

We can now choose the impedance of interest Z (ω) in
Eqs. (A12) and (A13) such that it stays approximately con-
stants with respect to frequency, mimicking the behavior of
a real resistor. This behavior is obtained, for example, by
choosing the Ohmic spectrum of the resistor [30]

ZR(ω) = R
ω2

c

ω2
c + ω2

+ iR
ωωc

ω2
c + ω2

, (A14)

where R is the resistance of the resistor and ωc is some large
cutoff frequency such that the above equation is valid in the
range ω � ωc.

Now, knowing that the resistor can be modelled as a col-
lection of LC oscillators, we can quantize it by considering
the quantization of the separate LC oscillators that constitute
the network. We choose to parametrize the problem as shown
in Fig. 6, where each of the fluxes φ j is associated with the
voltage difference over the jth LC circuit [30]. In this way the
LC circuits are not coupled and can be treated as independent
harmonic oscillators with angular frequency ω j . Applying the
quantization procedure of the harmonic oscillator to each LC
oscillator, we get the Hamiltonian of the resistor as

HR =
∞∑
j=1

h̄ω j â
†
j â j . (A15)

This highlights the fact that the resistor can be treated as a
bosonic bath.

APPENDIX B: CIRCUIT HAMILTONIAN
DERIVATION DETAILS

We begin by considering the capacitive and inductive en-
ergies of the circuit in Fig. 1 by writing them in terms of
the generalized flux variables as usually done in circuit quan-
tum electrodynamics (cQED) [24,25]. The generalized flux
is voltage through some element b of the circuit integrated
with respect to time [24,60], φb(t ) = ∫ t

−∞ Vb(t ′)dt ′, where
the lower limit of integration denotes a time sufficiently far
in the past, such that the circuit was at rest. Usually we
can treat the circuit elements in a simple fashion by writ-
ing down the energy stored in the element and using that
to construct the Lagrangian. However, treating the resistor
in this way is not trivial because it is a dissipative circuit
element, thus leading to irreversible behavior which is not
well treated through unitary quantum mechanics. Fortunately
this problem can be overcome by extending the formalism via
the usage of the Caldeira-Leggett model [28] in the context
of cQED alongside with a network synthesis method called
Foster’s first form [59].

The full derivation of the Caldeira-Leggett model for the
resistor was outlined in Appendix A and can be found in full
detail in Ref. [30]. In short summary, we can view the resistor
as a bosonic bath consisting of an infinite amount of harmonic
oscillators. These harmonic oscillators are essentially parallel
LC oscillators attached in an infinite series, which gives rise
to a real impedance that corresponds to the resistance of the
resistor. Physically, the signal traveling through the infinite se-
ries of parallel LC oscillators can never reach the end of the
chain but is lost traveling down the chain forever [30]. This
is seen as dissipation at the input and allows for the quantum
mechanical treatment of the resistor.

The circuit we are interested in contains both capacitive
and inductive elements. Most of these elements are linear in
nature but the qubit inductive potential V (φA) is left to be
an undetermined nonlinear potential, which later gives rise to
anharmonicity in the qubit energy levels [20]. Looking at the
circuit diagram in Fig. 1, we can identify the capacitive and
inductive energies of the circuit. The capacitive part can be
written as

EC = 1

2
CAφ̇2

A + 1

2
Cfφ̇

2
f + 1

2
Cg(φ̇A − φ̇f )

2 +
∞∑

k=1

1

2
Ckφ̇

2
k ,

(B1)

while the inductive part can be written as

EL =V (φA) + 1

2Lf
φ2

f + M

LLLf
φf

( ∞∑
k

φk

)

+ 1

2LL

( ∞∑
k

φk

)2

+
∞∑

k=1

1

2Lk
φ2

k . (B2)

In both Eqs. (B1) and (B2), the sum over k comes from
the resistor contribution. It describes the summation over the
different frequency modes of the resistor. See Appendix A for
more details on the resistor quantization.

To better see the structure of Eqs. (B1) and (B2), we
represent the equations in a matrix form. We define a flux vec-
tor φ = [φA, φf,φ

�
k ]�, where the vector φ�

k = [φ1, φ2, . . . ]
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collects together the resistor fluxes. We can then rewrite the
energy Eqs. (B1) and (B2) as

EC = 1
2 φ̇

�
Cφ̇, EL = 1

2φL−1φ + V (φA), (B3)

where the matrices C and L−1 are given by

C =

⎡
⎢⎢⎢⎢⎢⎣

CA + Cg −Cg 0 0 . . .

−Cg Cf + Cg 0 0
0 0 C1 0

0 0 0 C2
...

. . .

⎤
⎥⎥⎥⎥⎥⎦, (B4)

L−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . .

0 L−1
f

M
LLLf

M
LLLf

0 M
LLLf

L−1
1 + L−1

L L−1
L

0 M
LLLf

L−1
L L−1

2 + L−1
L

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦. (B5)

In Eqs. (B4) and (B5), we can see a structure that describes the
interaction between the circuit parts. The upper left corner of
the matrices describes the system comprised of the qubit and
the readout resonator while the lower right part is reserved
for the resistor. The other two blocks describe the interaction
between the system and the resistor.

Next we define a vector a = [0, 1]� and e as a vector full
of ones. This allows us to write the above matrices in a more
concise manner as

C =
[

SC 0
0 Ck

]
, L−1 =

[
SL

M
LLLf

ae�
M

LLLf
ea� L−1

k + L−1
L ee�

]
.

(B6)

The matrices SC and SL are the qubit-resonator system ma-
trices given by the top left blocks in Eqs. (B4) and (B5),
respectively. Ck and L−1

k are diagonal matrices with the values
Ck and L−1

k on their diagonals.
Before doing the Legendre transformation and obtaining

the Hamiltonian describing the circuit, we perform a point
transformation of the flux vector φ [30–32,61]:

Z =
[
12 0
0 M−1/2

0 M1/2
k

]
, Mk = L−1

k + ξee�. (B7)

Here M0 is a free constant with units of inverse inductance
and ξ is a parameter we can choose freely. In the end this
transformation gives us a form for the Hamiltonian with no
internal interaction for the resistor, which simplifies the cal-
culations later. As we apply this transformation to the flux
vector we get a new variable z = Zφ and the capacitance and
inductance matrices transform as Cz = Z−1CZ−1 and L−1

z =
Z−1L−1Z−1. Doing the transformation and setting ξ = L−1

L
we diagonalize the bottom right part of the inductance matrix,
getting rid of internal interactions between the resistor modes.
Then we assume that the mode inductances of the resistor
Lk [see Eq. (A9)] are much smaller than the inductance of
the coupling LL, or Lk � LL. This holds in the mathematical
limit 	ω → 0, where Lk → 0. Otherwise we can just pick
	ω to be small enough such that the assumption holds. The
similar procedure is done in the case of capacitive coupling
in Ref. [30]. We then invert the Mk matrix from Eq. (B7) by

using the Sherman-Morrison formula. Then, assuming the ap-
proximation mentioned above, we get M−1

k = Lk at the zeroth
order of the weak coupling limit, which is the order we need
to get a first-order resistor-resonator coupling in the circuit
Hamiltonian (see the discussion in Appendix D1 of Ref. [30]
for further details). This in turn yields us the final form for the
transformed capacitance and inductance matrices:

Cz =
[

SC 0
0 M0LkCk

]
, (B8)

L−1
z =

[
SL

M
LLLf

a f �
k

M
LLLf

f ka� M01

]
, (B9)

where we have defined a coupling vector f k =
√

M0M−1
k e 2,

which describes the coupling of resistor modes to the system.
Under the transformation the Lagrangian becomes

L = 1
2 ż�Cz ż − 1

2 z�L−1
z z − V (zA). (B10)

To this Lagrangian we can now perform the Legendre trans-
formation and get the Hamiltonian as

H = 1
2 ṗ�C−1

z ṗ + 1
2 z�L−1

z z + V (zA). (B11)

Inverting Cz from Eq. (B8) and opening up the terms explicitly
gives us the classical Hamiltonian of the circuit in Eq. (1).

Quantization procedure

The free terms of the Hamiltonian in Eq. (1) correspond
to harmonic oscillators as they are of the form p2 + z2 for
coordinate z and conjugate momentum p. In the quantization
procedure we can therefore promote the variables to corre-
sponding operators, apply the canonical quantization relation
[z, p] = ih̄ and identify the creation and annihilation oper-
ators. For the readout resonator part, this gives the newly
promoted operators in terms of the ladder operators as

zf =
√

h̄(CA + Cg)

2Dωf
(a†

f + af ), (B12)

pf = i

√
h̄Dωf

2(CA + Cg)
(a†

f − af ). (B13)

The resistor can be treated in an equivalent manner. The oper-
ators for the resistor become

zk =
√

h̄ωk

2M0
(a†

k + ak ), (B14)

pk = i

√
h̄M0

2ωk
(a†

k − ak ). (B15)

2The reader must be aware that divergence issues may arise in the
inversion of Mk , and in the definition of f k and | f k |2, which will
play a key role in the expression for the spectral density of the bath.
However, Refs. [30–32] show that these quantities are always well-
defined (the discussion in these papers is focused on the capacitive
coupling, but all their conclusions apply for the inductive coupling
of the circuit we are interested in). Moreover, Ref. [30] shows how
the weak coupling limit simplifies the expression for M−1

k . We refer
the reader to the above-mentioned references for further details and
for a more rigorous derivation of these results.
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For the qubit we expand the cosine transmon potential [20] as
a Taylor series and truncate it in the second order of zA. This
gives the qubit Hamiltonian as

HQubit = p2
A

2

Cf + Cg

D
+ EJ

2

(
2π

φ0

)2

z2
A. (B16)

When this is quantized, the ladder operators for the qubit
become

zA =
√

h̄(Cf + Cg)

2DωA
(a†

A + aA), (B17)

pA = i

√
h̄DωA

2(Cf + Cg)
(a†

A − aA). (B18)

Using the results from Eqs. (B12) to (B18), we can write the
quantized form of the circuit Hamiltonian (1) in terms of the
ladder operators as

H = 1

2
h̄ωAσz︸ ︷︷ ︸
Qubit

+ h̄ωfa
†
f af︸ ︷︷ ︸

Resonator

+
∞∑

k=1

h̄ωka†
kak︸ ︷︷ ︸

Resistor

− i

2
h̄Cg

√
ωAωf

(Cf + Cg)(CA + Cg)
σy(a†

f − af )︸ ︷︷ ︸
Qubit-resonator interaction

+ M

LL

∞∑
k=1

√
h̄ωk

2

√
h̄(CA + Cg)

2Dωf

√
Lk

Lf
(a†

k + ak )(a†
f + af )︸ ︷︷ ︸

Resistor-resonator interaction

.

(B19)

Here we used the definition of the coupling vector

f k =
√

M0M−1
k e to write the element of this vector as fk =√

M0Lk . The ladder operators of the qubit Hilbert space were
also truncated to two dimensions, giving the Pauli matrices.

Next we need to use expressions for the relevant quanti-
ties of the Caldeira-Leggett model for the resistor, which are
introduced in Appendix A. The inductances Lk are given by
Eq. (A9). The resistor spectrum is given by (A14). Using these
equation we can write the resistor-resonator interaction term
of the quantized Hamiltonian as

Hint = M

LL
μ

∞∑
k=1

√
h̄	ωRω2

c

πωk
(
ω2

c + ω2
k

)
L2

f

(a†
k + ak )(a†

f + af ),

(B20)

where introduced a factor μ as

μ ≡
√

h̄(CA + Cg)

2Dωf
. (B21)

The square root term in the sum in Eq. (B20) describes the
current fluctuations in the circuit for different frequencies
ωk . This allows us to define a coupling coefficient hk that
describes the interaction strength between the mode k of the

resistor and the readout resonator as

hk =
√

h̄	ωRω2
c

πωk
(
ω2

c + ω2
k

) μ

Lf
. (B22)

The factor 	ω is the (physically fictitious) difference between
the frequencies of the Caldeira-Leggett model, and in the limit
of 	ω → 0+ it becomes a differential that can be used to com-
pute the spectral density in Eq. (4), which is a well-defined
physical quantity. Using these definitions allows us to write
the quantized Hamiltonian (B19) in its final form in Eq. (2).

APPENDIX C: DIAGONALIZATION OF THE
SYSTEM HAMILTONIAN

We start the diagonalization by introducing the qubit jump
operators σ+ = |e〉 〈g| and σ− = |g〉 〈e|. We can express the
Pauli operators in terms of these two operators as

σz = |e〉 〈e| − |g〉 〈g| = [σ+, σ−], (C1)

σx = |e〉 〈g| + |g〉 〈e| = σ+ + σ−, (C2)

σy = i(|g〉 〈e| − |e〉 〈g|) = i(σ− − σ+). (C3)

Using (C3) in the system Hamiltonian HSys = 1/2h̄ωAσz +
h̄ωfa

†
f af − ih̄gfσy(a†

f − af ) gives us the following Hamiltonian

HSystem = 1
2 h̄ωAσz + h̄ωfa

†
f af + h̄gf(σ− − σ+)(a†

f − af ).
(C4)

If we now open up the interaction part we get terms propor-
tional to σ−a†

f , σ−af, σ+a†
f and σ+af. In the interaction picture,

these terms would oscillate at different frequencies with the
following time dependency [62]

σ−a†
f ∼ e−i(ωA−ωf )t ,

σ−af ∼ e−i(ωA+ωf )t ,

σ+a†
f ∼ ei(ωA+ωf )t ,

σ+af ∼ ei(ωA−ωf )t . (C5)

In the above equation two terms, second and third, oscillate
faster compared to the other two, first and last. The standard
way of justifying of dropping the fast rotating terms is to
assume that ωA + ωf � |ωA − ωf|, which requires that the
qubit and resonator frequencies are sufficiently close to each
other [63]. This is called the rotating wave approximation.
In our case we cannot apply the approximation ωA + ωf �
|ωA − ωf| as we are going to be working in the dispersive
regime. However, it can be shown that the Hamiltonian (C4)
can be represented as a continued fraction with respect to the
coupling parameter gf [64]. The equations equal to the rotating
wave approximation are obtained as a correction of first order
in g2

f and valid for gf/ωA � 1 [64,65], yielding

HSystem = 1
2 h̄ωAσz + h̄ωfa

†
f af + h̄gf(σ−a†

f + σ+af ). (C6)

This allows us to consider regimes where ωA + ωf � |ωA −
ωf| does not necessarily hold, such as the dispersive regime,
which is needed in order to get this Hamiltonian into a di-
agonal form. There we assume that the coupling gf between
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the qubit and the resonator is weak compared to the de-
tuning 	 = |ωA − ωf| of the resonance frequencies between
the same elements. To move to the dispersive regime, we
introduce a dispersive parameter λ = gf/	 and require that
λ � 1. Following Ref. [63], we apply a unitary transformation
U to the system Hamiltonian (C6), where the transformation
is parametrized by λ:

U = eλ(σ+af−σ−a†
f ). (C7)

After applying the unitary transformation we arrive at the
dispersive Hamiltonian for the system

HD
Sys = 1

2 h̄(ωA + 2gfλ)σz + h̄(ωf + gfλσz )a†
f af

+ h̄gfλσ−σ+ + O(λ2), (C8)

where the superscript D denotes dispersive frame.
We can now neglect terms of the order O(λ2) and recover

a Hamiltonian whose eigenstates are qubit-resonator product
states. Therefore the Hamiltonian is diagonal in the basis
{|e, n − 1〉 , |g, n〉} with n = 0, 1, . . ., which was chosen to
get a more readable form for the eigenenergies in Eq. (9). Next
we apply the dispersive transformation (C7) to the other terms
of the Hamiltonian (2) and get the full dispersive description
of the dynamics given by Eqs. (5) to (8).

APPENDIX D: DERIVATION OF THE MASTER EQUATION

In the standard microscopic derivation of the Lindblad
master equation (see, for example, Ref. [33]), we decompose
the interaction Hamiltonian between the system and environ-
ment into a product form

HInt = α
∑

β

Aβ ⊗ Bβ, (D1)

where the operators Aβ act on the Hilbert space of the system
of interest and the operators Bβ act on the Hilbert space of the
environment. In our case, we have Aβ = a†

f + af + λσx and
Bβ =∑∞

k=1 hk (a†
k + ak ) [see Eq. (8)]. The coefficient α de-

scribes the interaction strength and is in our case α = M/LL.
Now, due to the diagonalization of the system Hamiltonian as
done in Eq. (6), we can present it in a form

HD
Sys =

∑
i

εi |εi〉 〈εi| , (D2)

where the energy eigenstates |εi〉 are the product states from
the set {|e, n − 1〉 , |g, n〉} and the corresponding eigenener-
gies εi are given by Eq. (9). The diagonalization of the system
Hamiltonian is needed in order to construct the jump operators
from the system operators Aβ [33]. In general, we can write
the system operators as

Aβ =
∑
i, j

|εi〉 〈εi|Aβ |ε j〉 〈ε j | =
∑
i, j

〈εi|Aβ |ε j〉 |εi〉 〈ε j | . (D3)

Fixing the energy difference between the two basis states to
be ε j − εi = h̄ω, with ω being the Bohr frequency, gives

Aβ (ω) =
∑

ε j−εi=h̄ω

〈εi|Aβ |ε j〉 |εi〉 〈ε j | , Aβ =
∑

ω

Aβ (ω),

(D4)

where Aβ (ω) are called the jump operators, which change the
energy of the state they operate to by h̄ω.

Let’s now compute the jump operators in our case. We have
to consider three distinct cases to get a general description
for the different jump operators. These three cases come from
the three distinct frequency jumps that can appear in our
qubit-resonator system. One jump operator will correspond
to the qubit staying in the ground state while the amount of
quanta in the resonator varies. In the second case the qubit
stays excited while the resonator loses or gains quanta. The
third case considers the number of quanta in the resonator
staying constant while the qubit switches between the excited
and ground states. The jump operators arising from the con-
sideration of these three cases can be written as

A(Eg,n − Eg,n+1) =
∞∑

n=0

√
n + 1 |g, n + 1〉 〈g, n| , (D5)

A(Eg,n+1 − Eg,n) =
∞∑

n=0

√
n + 1 |g, n〉 〈g, n + 1| , (D6)

A(Ee,n − Ee,n+1) =
∞∑

n=0

√
n + 1 |e, n + 1〉 〈e, n| , (D7)

A(Ee,n+1 − Ee,n) =
∞∑

n=0

√
n + 1 |e, n〉 〈e, n + 1| , (D8)

A(Eg,n − Ee,n) = λ

∞∑
n=0

|e, n〉 〈g, n| , (D9)

A(Ee,n − Eg,n) = λ

∞∑
n=0

|g, n〉 〈e, n| . (D10)

Above we have six jump operators because each of the three
cases has a positive and negative frequency associated with
them. It can be seen from the above equations that the negative
frequency operators correspond to the adjoint of the positive
frequency jump operators, A(−ω) = A†(ω). For simplicity we
denote the energy differences in Eqs. (D5) to (D10) as Eg,n −
Eg,n+1 ≡ h̄ωgg, Ee,n − Ee,n+1 ≡ h̄ωee, Eg,n − Ee,n ≡ h̄ωge and
Ee,n − Eg,n ≡ h̄ωeg = −h̄ωge.

Now we need to consider the validity of the secular ap-
proximation in the derivation of the master equation. In the
standard microscopical derivation of the Lindblad master
equation, the secular approximation deals with the rotating
ei(ω−ω′ )t factors of the master equation, which arise from the
different frequencies of the jump operators ω and ω′. In gen-
eral, we can neglect the contribution of these rotating terms if
the frequency difference between them is large enough such
that [35]

∃ t∗ such that |ω − ω′|−1 � t∗ � τS = O(h̄2/α2), (D11)

where t∗ is some timescale and α describes the interaction
strength. The timescales we are working with can be com-
puted by using the eigenenergy Eq. (9) and they turn out to
be

|ωgg − ωee| = 2gfλ, (D12)

|ωgg − ωeg| = 	 + 2(n + 1)gfλ, (D13)

|ωee − ωeg| = 	 + 2ngfλ. (D14)
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Here 	 = |ωA − ωf| is the detuning between the qubit and the
readout resonator resonance frequencies. Since we are work-
ing in the dispersive limit where 	 is taken to be sufficiently
large, we can safely say that crossterms of the master equa-
tion dissipator with A(ωgg/ee)ρA(ωeg) are negligible and can
be disregarded. However, we need to be more careful with the
other crossterms of the forms A(ωgg)ρA(ωee). These cannot
be disregarded as the timescale determined by Eq. (D12) is
quite large since λ is small, which could violate the condition
in Eq. (D11).

To circumvent this problem, we set λ = 0 (i.e., no direct
coupling between qubit and resonator) during the derivation
of the master equation, while keeping the direct interaction
with λ �= 0 in the unitary part of the dynamics driven by the
system Hamiltonian. This is a well-known procedure to get
a so-called local master equation, which will provide us a
valid approximation of the system dynamics if the coupling
between the qubit and resonator is sufficiently small [35,38–
40]. Under this framework, the frequencies associated with
the jump operators are ωgg = ωee = ωf, so we get rid of all the
rotating terms in the master equation derivation according to
Eq. (D12). Thus we are able to obtain a master equation which
complies with the secular approximation. Now the master
equation can be written as a sum of the dissipators, each
arising from a different combination of the jump operators,
which after some straightforward algebra gives us

ρ̇Sys = − i

h̄
[HSys + HLS, ρSys]

+ α2

h̄2 γ (ωf )

[
afρSysa

†
f − 1

2
{a†

f af, ρSys}
]

+ α2

h̄2 γ (−ωf )

[
a†

f ρSysaf − 1

2
{afa

†
f , ρSys}

]
. (D15)

Last step left to do is to compute the coefficients γ (±ωf ),
which are defined as the Fourier transform of the bath cor-
relation function [33]

γ (ω) =
∫ ∞

−∞
dτ 〈B̃†(τ )B̃(0)〉eiωτ . (D16)

This computation yields the final form of the master equa-
tion (10). The coefficient γ describes the coupling strength
between the qubit-resonator system and the resistor as an
environment. It is dependent on the spectral density of the
bath as γ = 2πα2J (ωf ). The expected number of quanta in
the resonator n̄ follows the Bose-Einstein distribution. The
Lamb shift Hamiltonian HLS renormalizes only the resonator
frequency so it does not affect the dynamics of the qubit in a
significant way.

APPENDIX E: BLOCK STRUCTURE
OF THE LIOUVILLIAN

In the Liouville space, the Liouvillian superoperator is
written in the form of Eq. (17). Motivated by the work done in
Ref. [41], we will examine the observable associated with the
total number of particles in a system. In our case, we need to
compute separately the qubit quanta and the resonator quanta.

FIG. 7. Block structure of the Liouvillian superoperator in the
Liouville space. The exact order of the blocks can vary, what is
important is that each block is labeled by d and contains only basis
elements where the difference in quanta between the basis element
kets is d . In the given example the resonator is truncated to 2D giving
access only to states |0〉 and |1〉. The qubit ground |g〉 corresponds to
0 and excited state |e〉 to 1. In block L1 all the left side kets have one
excitation more than the right side kets.

Then the total number of particles operator N is

N = σz + a†
f af. (E1)

From the above we can define the superoperator N = [N,×],
which can be written as a supercommutator

N = N ⊗ 1 − 1 ⊗ N�. (E2)

Reference [41] shows that [N ,L] = 0 for a broad family
of master equations if the secular approximation is properly
applied. It is easy to see that these two superoperators do
commute also for the master equation (10), therefore we can
block diagonalize the Liouvillian matrix using the eigenbasis
of N .

In this block form, the different blocks are labeled by the
eigenvalues d of the number superoperator N as expressed
in Fig. 7. These eigenvalues are given by the difference in
the number of quanta between the vectors respectively on
the left and on the right of the tensor product in the basis
elements of the Liouville space [41], namely |i, n〉 ⊗ | j, m〉,
where i, j ∈ {e, g}. To find the block-diagonal structure of the
Liouvillian, we write it as a matrix in the basis given by the
above vectors. Mathematically we can express the complete
Liouvillian matrix as a direct sum of the individual blocks as

L =
⊕

d

Ld . (E3)

It is noteworthy that the blocks with negative d can be trivially
obtained from the blocks with positive d due to the relation
Ld = L∗

−d [41].
This block diagonal form is useful because it allows us to

study specific physical phenomena by considering only the
blocks where the information about the observables associated
with these phenomena is stored. In the case of decoherence, it
turns out that we can focus on the L±1 block since only those
are needed for the computation of the expectation values 〈σx〉
and 〈σy〉. But in order to be able to compute the expectation
value, we need to be able to consider the representation for
an arbitrary quantum state in the Liouville space, where the
Liouvillian is block diagonal. To represent the density matrix
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in terms of the eigenvectors of the block-diagonal Liouvillian,
we follow references [46,47].

Our Liouvillian matrix is in a block diagonal form as
depicted in Fig. 7. Let us consider the eigenvectors and eigen-
values of some block Ld . This block has in total

√
dim(Ld )

eigenvalues and -vectors. Let us denote the i:th eigenvalue of
the block Ld by λ

(d )
i and the corresponding (right) eigenvector

by |v(d )
i 〉〉. Then the (vectorized) density matrix can now be

written as a linear combination of these eigenvectors:

|ρSys〉〉 =
∑

d

∑
i

c(d )
i

∣∣v(d )
i

〉〉
, (E4)

where d goes over all possible blocks of the Liouvillian and i
runs from 1 to

√
dim(Ld ), denoting the index of the eigenvec-

tor of a specific block. The coefficient c(d )
i is the projection of

|ρSys〉〉 onto the eigenvector |v(d )
i 〉〉:

c(d )
i = 〈〈ṽ(d )

i

∣∣ρSys
〉〉 = Tr

[
ρSys
(
ṽ

(d )
i

)†]
. (E5)

Here 〈〈ṽ(d )
i | denotes the i:th left eigenvector of the block

Ld . The eigenvectors are taken to be normalized such that
〈〈ṽ(d )

i |v(d )
j 〉〉 = δi j .

We know that the quantum state evolves as ρ(t ) = eLtρ(0).
If we now represent the initial state ρ(0) as a linear combina-
tion of the eigenvectors of the Liouvillian, as in Eq. (E4), we
obtain

|ρSys(t )〉〉 = eLt |ρSys(0)〉〉 = eLt
∑

d

∑
i

c(d )
i

∣∣v(d )
i

〉〉
=
∑

d

∑
i

c(d )
i eLt

∣∣v(d )
i

〉〉
=
∑

d

∑
i

c(d )
i eλ

(d )
i t
∣∣v(d )

i

〉〉
, (E6)

where we used the fact L|v(d )
i 〉〉 = λ

(d )
i |v(d )

i 〉〉. The coefficients
c(d )

i give us now the initial conditions. Note that the individual
eigenvectors of the Liouvillian are not proper density matrices
but their linear combination is, as shown in Eq. (E4).

Now that we have solved for the time evolution of the
quantum state in terms of the eigenstates of the Liouvillian, we
can consider the expectation value of σx, which is defined as
〈σx(t )〉 = Tr[σxρ(t )] = 〈〈σx|ρ(t )〉〉. We know what is |ρ(t )〉〉
due to Eq. (E6). The matrix form of σx is given as

σx = (|g〉 〈e| + |e〉 〈g|) ⊗ 1n

= (|e〉 〈g| + |g〉 〈e|) ⊗ (|0〉 〈0| + |1〉 〈1| + · · · + |n〉 〈n|)
= |g0〉 〈e0| + |g1〉 〈e1| + |g2〉 〈e2| + · · ·

+ |e0〉 〈g0| + |e1〉 〈g1| + |e2〉 〈g2| + · · ·
From this, we get the vectorized form as

⇒ |σx〉〉 = |g0〉〉 ⊗ |e0〉〉 + |g1〉〉 ⊗ |e1〉〉 + · · ·︸ ︷︷ ︸
d=−1

+ |e0〉〉 ⊗ |g0〉〉 + |e1〉〉 ⊗ |g1〉〉 + · · ·︸ ︷︷ ︸
d=1

(E7)

We can notice that the vectorized form contains only the
basis elements from the L±1 blocks. Therefore, in studying
the decoherence of the qubit we can focus only on these two

FIG. 8. System evolution when the resonator is initialized in the
thermal state. In this scenario, the qubit experiences decoherence at
a (for all practical purposes) constant rate. The almost exponential
decay is well-captured by the decay rate in Eq. (21).

blocks and forget about the rest. Moreover, we do not need to
consider all of the values in the L±1 blocks as, for example,
the basis elements of the form |g, n + 1〉〉 ⊗ |g, n〉〉 do not
contribute to the decoherence effect. Therefore the number
of actual matrix elements that we need to consider is s2S2,
where s = 2 is the dimension of the qubit Hilbert space and S
is the resonator’s Hilbert space truncation. This is a significant
reduction in the number of values if we compare it to the size
of the full Liouvillian matrix, which has s4S4 elements.

Let’s take now the inner product of σx with the quantum
state in order to compute the expectation value:

〈σx(t )〉 = 〈〈σx|ρ(t )〉〉
=
∑

d

∑
i

c(d )
i eλ

(d )
i t
〈〈
σx

∣∣v(d )
i

〉〉
=
∑

i

[
c(1)

i eλ
(1)
i t
〈〈
σx

∣∣v(1)
i

〉〉
+ c(−1)

i eλ
(−1)
i t
〈〈
σx

∣∣v(−1)
i

〉〉]
. (E8)

From the equivalence between the Liouvillian blocks,
Ld = L∗

−d , it follows that c(d )
i = c(−d )∗

i and 〈〈σx|v(d )
i 〉〉 =

〈〈σx|v(−d )
i 〉〉∗. Also the eigenvalues λd

i follow the same kind
of logic, and thus they can be written as λ

(±d )
i = Re[λ(d )

i ] ±
iIm[λ(d )

i ]. Using these results in Eq. (E8) allows us to write it
in the following way:

〈σx(t )〉 =
∑

i

[
c(1)

i

〈〈
σx

∣∣v(1)
i

〉〉
eRe[λ(1)

i ]t eiIm[λ(1)
i ]t

+ c(1)∗
i

〈〈
σx

∣∣v(1)
i

〉〉∗
eRe[λ(1)

i ]t e−iIm[λ(1)
i ]t ]. (E9)

The factor c(1)
i 〈〈σx|v(1)

i 〉〉 is a complex number that keeps
track of the initial conditions. Denoting 〈〈σx|v(1)

i 〉〉 ≡ pi in
Eq. (E9) leads us to the final form for the expectation value
of σx in Eq. (20). This equation decomposes the time evo-
lution of σx into a sum of different modes. The oscillation
of the different modes is driven by the imaginary part of the
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FIG. 9. System evolution when the resonator is initially in a
coherent state and the resistor temperature is T = 300 mK. While
the resonator decays towards the steady state, the qubit experiences
faster decoherence due to a faster eigenmode of the Liouvillian
being present. After the reduced state of the resonator has reached
the thermal state, the qubit continues decohering at a slower rate
determined by Eq. (21).

corresponding eigenvalue, while the real part is responsible
for the decay of the mode. Thus we can see that if some
eigenvalue is purely real, that induces pure decay for the
corresponding mode without any oscillations. An opposite
case is a purely imaginary eigenvalue, where we see no decay
and only oscillations of the coherence. It can be shown that
any eigenvector with zero eigenvalue is a steady state of the
dynamics [18,66]. However, the blocks L±1 have no zero
eigenvalues, while the latter are usually found in the block
L0 only [41].

APPENDIX F: EFFECT OF THE INITIAL STATE
OF THE RESONATOR TO COHERENCE DECAY

In the following figures, we explain the effect of the initial
state of the resonator on the qubit decoherence. The parame-
ters in these figures have been chosen so that the timescale of
the dynamics is sufficiently fast that we are able to observe and
distinguish the individual oscillations of the qubit coherences
(solid blue (light gray in print) line).

As was argued in Sec. III B and Appendix E, the time
evolution of the quantum state of the qubit can be presented
in terms of the evolution of the different eigenmodes of the
Liouvillian superoperator [see Eqs. (20) and (E6)]. Some
eigenmodes have faster decay than others and, in general, the
faster modes are present when the resonator is not in its steady
state, but on its way there. This can be seen by comparing

FIG. 10. System evolution when the resonator is initialized in a
coherent state and the resistor temperature is T = 10 mK. During
the decay of resonator state towards the thermal state the qubit
experiences rapid decoherence. Once the resonator has reached its
steady state the rate of qubit decoherence becomes vanishingly small
due to very cold bath temperature.

Figs. 8 and 9. In Fig. 8, the qubit decoheres (coherence mea-
sure plotted as the blue dash-dot line) in an almost exponential
fashion when the resonator starts out in its steady state, the
thermal state. The fact that the resonator is in a thermal state
can be seen by looking at the solid green line in Fig. 8, which
indicates the number of quanta in the resonator and stays at
a constant value, which is given by the Bose-Einstein distri-
bution for that temperature. The decay rate for the coherence
measure of the qubit is well described by Eq. (21).

In Fig. 9, the resonator is initialized in a coherent state and
thus it too experiences decay, which is seen as the change in
the number of quanta in the resonator. We can see that while
the resonator is decaying towards the thermal state, the qubit
experiences a faster coherence decay, up until to the point
where the resonator has finally reached its steady state. After
that, the qubit continues to decohere at an exponential fashion
with the decay rate given once again by Eq. (21).

In Fig. 10, the resonator starts out in the coherent state as
in Fig. 9 but the temperature is lowered to T = 10 mK. In this
case, the qubit decoheres at a quick rate in the beginning as
the resonator is moving towards its steady state. However, in
this case, the temperature is so low that when the resonator
reaches its thermal state, the qubit decoheres so slowly that it
is not visible in the timescale in Fig. 10. It should be noted
that at T = 0 K the qubit will stop decohering altogether once
the resonator reaches its thermal state |0〉 〈0|, as explained at
the end of Sec. III B.
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