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Decoherence of quantum systems is described by quantum channels. However, a complete understanding of
such channels, especially in the multiparticle setting, is still an ongoing difficult task. We propose the family
of quantum maps that preserve or completely erase the components of a multiqubit system in the basis of Pauli
strings, which we call Pauli component erasing maps. For the corresponding channels, it is shown that the
preserved components can be interpreted as a finite vector subspace, from which we derive several properties
and complete the characterization. Moreover, we show that the obtained family of channels forms a semigroup
and derive its generators. We use this simple structure to determine physical implementations and connect the
obtained family of channels with Markovian processes.
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I. INTRODUCTION

Quantum correlations [1–3], including entanglement [4],
are an important resource for a wide variety of tasks that
include teleportation [5], quantum computation [6], and others
[7]. However, this resource is also extremely delicate [6,8],
especially for multiparticle systems [4]; that is why an im-
portant part of the efforts of the community implementing
quantum technologies is devoted to tackle this issue from an
experimental [9,10] and theoretical [11–13] point of view. The
process by which quantum correlations are unintentionally
dissipated is called decoherence [8,14]. One of the main tools
to study the effects of decoherence are quantum channels.
Quantum channels can describe quantum noise [15,16], open
quantum systems dynamics [6,17], and recently even coarse
graining [18,19]. One of the main difficulties in character-
izing quantum channels is that, like for quantum states, the
number of parameters required for their description increases
quite rapidly with Hilbert-space dimension. Moreover, such
parameters are constrained in a complicated way by physical
conditions, such as complete positivity [20]. Describing in
detail families of channels having a given property provides
insight into the jungle of quantum operations. For the qubit
case there are several studies concerning the unital case, for
which nontrivial properties can be described using only three
parameters, which in turn form the well-known tetrahedron
of Pauli channels [15,16,21]. More generally, in Ref. [22] the
authors study families of convex combinations of quantum-
classical channels that relate to unital qubit channels with
positive eigenvalues, and give a generalization of the Bloch
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sphere. Similarly, a generalization of Pauli channels based on
mutually unbiased measurements is introduced and studied in
Ref. [23]. Other studies of channels beyond the qubit can be
found [24–27].

In this paper we present a generalization of idempotent
Pauli channels—i.e., the qubit flip operations (bit, phase, and
bit-phase when the flip probability is 1/2), total depolarizing
qubit channel, and the identity channel—to the case of N
qubits. The generalization is done by extending Pauli ob-
servables to Pauli strings (tensor products of Pauli matrices)
[28,29]. The resulting maps are unital and diagonal in the
Pauli strings’ basis. We shall in the following refer to such
maps as Pauli component erasing (PCE) maps.

The main task which we perform in this paper is the iden-
tification of the conditions which an arbitrary PCE map must
satisfy in order to be completely positive. The answer turns
out to involve a strikingly simple and unexpected mathemat-
ical structure that is exploited to gain deeper understanding
on aforementioned channels, as we show in Sec. III B. This
structure allows us, for example, to describe such channels
with a much reduced set of parameters (as compared to spec-
ifying a list of all erased Pauli components) or to define an
interesting semigroup structure on the set of all PCE chan-
nels. Additionally, these channels are, in a sense, the simplest
possible channels, and as such can be used as building blocks
of more general channels. For instance, one can combine them
(through convex superposition) or compose them with unitary
transformations. To summarize succinctly the final result, we
show that it is possible to assign to every Pauli string a sim-
ple PCE channel, obtained by extending the system with an
ancilla of a single qubit, acting on the combined system by a
unitary involving the Pauli string and tracing over the ancilla.

2469-9926/2022/106(4)/042604(11) 042604-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0045-9017
https://orcid.org/0000-0003-2633-9734
https://orcid.org/0000-0001-9269-1248
https://orcid.org/0000-0001-8091-6120
https://orcid.org/0000-0002-7306-0894
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.042604&domain=pdf&date_stamp=2022-10-05
https://doi.org/10.1103/PhysRevA.106.042604


JOSE ALFREDO DE LEON et al. PHYSICAL REVIEW A 106, 042604 (2022)

It then follows from our results that all PCE channels arise
from such channels by composition.

The paper is organized as follows. In Sec. II we recall the
properties of quantum channels needed to proceed with the
definition of PCE maps. In Sec. III we diagonalize analytically
the Choi matrix for arbitrary PCE maps and characterize their
complete positivity by interpreting PCE quantum channels
as finite vector subspaces. We study the generators of the
semigroup structure associated to the set of PCE channels
in Sec. IV, and we use them to derive meaningful physical
interpretations of PCE channels in Sec. V, as well as Kraus
operators of the generators. To finish, we conclude and discuss
future perspectives and possible generalizations in Sec. VI.

II. PAULI COMPONENT ERASING MAPS

In this section we introduce the family of PCE maps. Let
us start our discussion with a brief review of several basic
concepts of quantum channels that will allow us to introduce
some notation, and finish with the definition of PCE maps
and some generalities. We further introduce a useful graphical
representation for them.

A. Quantum channels

Quantum channels are the most general linear operations
that a quantum system undergoes independently of its past
[20,30]. The physical system under study will be associated
with a Hilbert space denoted by H, and the set of linear
operators over such space will be denoted by B(H). That way,
a density matrix ρ of such system is an element of B(H).

The construction of quantum channels includes basically
three ingredients: linearity, trace preservation, and complete
positivity. Linearity is needed to map every convex combi-
nation of density matrices into a convex combination of the
evolution of such density matrices. The trace preserving prop-
erty is required for the process E to happen with probability
1, and reads trE[ρ] = trρ = 1. The complete positivity condi-
tion is needed to preserve positive semidefiniteness and handle
the nonlocal nature of quantum theory. A linear map E is pos-
itive if it maps density operators to density operators, i.e., if
E[ρ] � 0 for all density matrices ρ. On the other hand, if one
extends a positive map to include an ancilla, the resulting map
is not always positive. If, for an ancillary system of arbitrary
dimension, such extension results in a positive map, we say
that the original map is completely positive [31]. Quantum
channels are required to be completely positive so as to allow
the proper evolution of potentially entangled states with an
ancilla; to test this condition we require some additional steps.

A simple algorithm to test the complete positivity of a
quantum channel was developed by Jamiokowski [32] and
Choi [33]. One first exploits the isomorphism that maps a
channel E to the state D = (id ⊗ E )[|�〉〈�|], where |�〉 =
1/ dim(H)

∑dim(H)
i |i〉|i〉 is a maximally entangled state be-

tween the original system and an ancilla and “id” is the
identity channel. Remarkably, the map E is completely posi-
tive if and only if D (also called the Choi or dynamical matrix
of E) is positive semidefinite [32,33].

FIG. 1. In (a) we introduce the notation in the diagrams that
represent the single-qubit PCE maps, so that each square corre-
sponds to a single τα , α = 0, 1, 2, 3. The diagrams in (b), (c), and
(d) correspond to the identity map, completely dephasing channel,
and complete depolarization, respectively, as the color of each square
indicates the value attained by the corresponding τα , either 0 (white)
or 1 (black). In (e) we show a map that only erases the component r1,
collapsing the Bloch sphere into a disk, and thus does not correspond
to a quantum channel.

B. Structure of PCE maps

We have discussed the main features of quantum channels,
and now we turn our attention to introduce the Pauli com-
ponent erasing maps. We start by exploring the single-qubit
scenario and then we treat the N-qubit case.

The most general single-qubit density matrix can be writ-
ten as

ρ = 1

2

3∑
α=0

rασα, (1)

with σ0 = 1, and σ1,2,3 the usual Pauli matrices. Normaliza-
tion requires that r0 = 1 and the remaining r1,2,3 form the
Bloch vector. Consider the map that projects each component
in the following way:

rα �→ ταrα (2)

where τα is either 0 or 1 (trace preserving requires that τ0 =
1). From now on we refer to any operation like that described
in Eq. (2), as a single-qubit PCE map. Not every such opera-
tion is a quantum channel; for example, collapsing the entire
Bloch ball to a disk on the xy plane (τ1 = τ2 = 1 and τ3 = 0)
leads to a violation of the complete positivity conditions.
Indeed, a direct evaluation of such conditions yields [15,20]

1 + τ1 + τ2 + τ3 � 0,

1 + τα − τβ − τγ � 0 ∀ α �= β �= γ , (3)

where trace preserving is already imposed, and shows that five
out of the eight single-qubit PCE maps are quantum chan-
nels. These operations are the identity map, the completely
depolarizing channel (ρ �→ 1/2), as well as the bit, phase, and
bit-phase flip (with flip probability of 1/2) channels [34], and
can be pictured using one column tables showing the positions
of 0s and 1s (see Fig. 1).

In order to present and develop the N-qubit case, it is useful
to introduce the so-called Pauli strings, defined as

σ	α = σα1 ⊗ σα2 ⊗ · · · ⊗ σαN , (4)

where 	α denotes a multi-index (α1, . . . , αN ) and αi =
0, 1, 2, 3. These Hermitian operators form an orthogonal basis
in the space of operators acting on N qubits. In fact, trσ	ασ	α′ =
2Nδ	α	α′ and trσ	α = 2Nδ	α	0.
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FIG. 2. In (a) we introduce the positions of two qubit diagrams.
The diagram in (b) corresponds to a quantum channel that results
from the tensor product of bit flip channels in each qubit [see
Fig. 1(c)], and in (c) a diagram of a map that is not a quantum channel
is presented.

Similarly to the single-qubit case, the density matrix ρ of
a system of N qubits can be written using Pauli strings in the
following way:

ρ = 1

2N

∑
	α

r	ασ	α, (5)

so r	α = 〈σ	α〉 = tr(ρσ	α ) is the coefficient corresponding to the
expansion of the density matrix in the normalized basis of
Pauli strings. Again, normalization of the state requires that
r	0 = 1. We shall refer to r	α as the Pauli components of the
density matrix of a system of qubits.

In general, a PCE map is a map that either preserves or
completely erases the Pauli components of a density matrix.
That is,

r	α �→ τ	αr	α, τ	α = 0, 1. (6)

In addition, for the operation to be trace preserving, it is
required that τ	0 = 1. It is worth noticing that, as for the
single-qubit case, not all PCE maps are quantum operations.
On the other hand, constructing and evaluating the conditions
for complete positivity is nontrivial and is the main problem
addressed in this paper. We shall refer to the map r	α �→ τ	αr	α ,
with arbitrary values of τ	α (only restricted by complete posi-
tivity), as Pauli diagonal maps.

A graphical representation for PCE maps may be intro-
duced, with the two-qubit case proving to be the most useful.
Consider a N-dimensional Cartesian grid, with 4N places.
Each place has N integer coordinates, ranging from 0 to 3, so
each place corresponds to a given 	α in Eq. (5). For a given
PCE, we shall fill the square if the corresponding τ	α = 1.
Otherwise, we leave it empty. Examples for N = 1 and 2 are
provided in Figs. 1 and 2, respectively.

It is worth noticing that the set of PCE maps overlaps
with the set of “Pauli diagonal channels constant on axes”
defined in Ref. [22], consisting of convex combinations of
quantum-classical channels. In particular, it can be shown
that quantum-classical channels defined with the eigenbasis of
some set of 2N − 1 commuting Pauli observables [29] yield
a PCE map with exactly 2N components equal to 1s in its
diagonal. For details, we refer the reader to Appendix A.

III. MATHEMATICAL CONSIDERATIONS

This section is devoted to deriving the conditions a Pauli
diagonal map needs to satisfy the complete positivity condi-
tion, i.e., that all the eigenvalues of the Choi matrix associated
to the channel are non-negative. To do so, we calculate and

diagonalize the Choi matrix of a general Pauli diagonal map,
first for a single qubit and then for N qubits. Finally, we
restrict from Pauli diagonal maps to PCE maps, and provide
a connection between a vector subspace and the set of coeffi-
cients {τ	α} in Eq. (6) of a PCE quantum channel. This allows
us to derive several important properties of this particular
family of channels.

A. Diagonalization of the Choi matrix

We now construct the Choi matrix of a single-qubit Pauli
diagonal map E . As described above, E is a linear map from
B(H) to itself. We shall denote elements of B(H) by the nota-
tion |·〉〉. Thus, for instance, |σα〉〉 represents the Pauli matrix σα

understood as a vector belonging to B(H), for the present case,
in which H = C2. Since the scalar product in B(H) is given
by 〈〈A1|A2〉〉 = trA†

1A2, elements of the Pauli basis satisfy
the relation 〈〈σα|σα′ 〉〉 = tr(σ †

ασα′ ) = 2δαα′ . In this language,
the state of a single qubit reads |ρ〉〉 = 2−1 ∑3

α=0 rα |σα〉〉 and
the matrix form of the map E is

Ê = 1

2

3∑
α=0

τα |σα〉〉〈〈σα| . (7)

After some steps, detailed from Eq. (B3) to Eq. (B6), it is
possible to show that the Choi matrix of E reads

D = 1

2

3∑
α=0

τασα ⊗ σ ∗
α . (8)

Notice that |σα〉〉〈〈σα| and σα ⊗ σ ∗
α are different operators. In-

deed, the former acts as a linear map upon the vector space
B(H), whereas the latter acts on the tensor product H ⊗ H.
Of course, there is a basis dependent identification between
these two spaces, which is used in the construction of the Choi
matrix. Surprisingly, one can in fact show that D is diagonal in
the Pauli basis (see Appendix B for details). The eigenvalues
are

λα = 1

2

3∑
β=0

aαβτβ, (9)

where

a =

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠. (10)

We wish to add that one can replace a with H ⊗ H , with H the
Hadamard matrix, and still diagonalize the same Choi matrix
D. This is due to the fact that a corresponds to a permutation
of rows of H ⊗ H . However, we chose the aforementioned
definition as some later considerations [see Eq. (32)] cannot
be easily written in terms of H ⊗ H .

The same program can be carried out for N qubits. In this
case, one uses the vectorized Pauli strings:

|σ	α〉〉 = ∣∣σα1 ⊗ · · · ⊗ σαN

〉〉
. (11)

This vectorization must not be confused with the tensor prod-
uct of all |σαi〉〉, since the tensor product and the vectorization
process generally do not commute [35]. The vectors satisfy
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the orthogonality relation 〈〈σ	α|σ	α′ 〉〉 = 2Nδ	α	α′ . The matrix rep-
resentation of the map corresponding to a Pauli diagonal
map is

ÊN = 1

2N

∑
	α

τ	α |σ	α〉〉〈〈σ	α| . (12)

As in the previous case, the Choi matrix DN may be written in
terms of tensor products of Pauli matrices:

DN = 1

2N

∑
	α

τ	α
N⊗

j=1

σα j ⊗ σ ∗
α j

. (13)

This matrix is again diagonal in the (multiqubit) Pauli basis,
with the eigenvalue corresponding to |σ	α〉〉 given by

λ	α = 1

2N

∑
	β

A	α	βτ	β, (14)

where

A = a⊗N . (15)

Again, the proofs are provided in Appendix B. We wish to
add that we could diagonalize DN with H⊗2N instead of a⊗N ,
which might be more convenient for other applications.

B. PCE quantum channels as vector spaces

In this subsection we will provide a one-to-one relation
between PCE quantum channels and the subspaces of a dis-
crete vector subspace associated with the indices 	α labeling
the components of a state [see Eq. (5)]. Some established facts
about vector spaces will allow us to derive the main features
of PCE quantum channels.

Let us start by recalling that the problem of determining
complete positivity of a PCE map can be recast as determining
which coefficients τ	α are mapped via A to positive eigenvalues
λ	α , as in Eq. (14). Using the fact that a−1 = a/4, and so

A−1 = 1

4N
A, (16)

we can directly invert Eq. (14) to obtain∑
	β

A	α	βλ	β = 2Nτ	α, (17)

which will serve as a starting point for our analysis. This is
a remarkable equation, as it provides a method to diagonalize
the Choi matrix of any Pauli diagonal map.

Two other simple but crucial observations are the follow-
ing. For valid quantum channels it holds that∑

	α∈�

λ	α = 0 ⇒ λ	α = 0, ∀	α ∈ � (18)

for an arbitrary subset of multi-indices �, as each member
of the sum is greater than or equal to zero, due to complete
positivity of the underlying channel. Finally, setting 	α = 0 in
Eq. (17), and taking into account the normalization condition

TABLE I. Definition of the ⊕ operation [see Eq. (23)]. Note
that the operation is an Abelian group; in fact it corresponds to the
Klein group, where the neutral element is zero. This is the reason for
choosing an additive notation for the operation defined in (23).

⊕ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

that τ	0 = 1, we obtain ∑
	α

λ	α = 2N , (19)

since A	0,	β = 1 for all 	β.
Now we need a definition: to each multi-index 	α we asso-

ciate a set of multi-indices �(	α) as follows:

�(	α) = {	β : A	α	β = 1}. (20)

If we now assume that τ	α = 1, and calculate the difference
between Eq. (19) and

∑
	β A	α	βλ	β = 2N [which follows from

Eq. (17) and τ	α = 1], one obtains

λ	β = 0, ∀	β /∈ �(	α). (21)

Thus, if τ	α = 1, then τ	γ and τ 	γ ′ are equal if

A	β 	γ = A	β 	γ ′ , ∀	β ∈ �(	α). (22)

This follows from restricting the sum Eq. (17) to the indices
	β such that λ	β �= 0, given in Eq. (21). Condition (22) there-

fore connects three multi-indices, 	α, 	γ , and 	γ ′. When such a
connection exists, τ	α = 1 implies τ	γ = τ 	γ ′ .

Let us now work out the nature of the aforementioned
connection. For arbitrary k we define a vector 	βk such that
	βk ∈ �(	α) as follows: 	βk is zero everywhere except for the kth
coordinate, which takes a value β such that aαkβ = 1. Since
aα0 = 1 for any α, this particular choice of 	β indeed belongs
to �(	α), so that if Eq. (22) holds for all 	β ∈ �(	α) it must hold
for that particular 	βk , which leads to

aβγk = aβγ ′
k

(23)

for all β such that aαkβ = 1. One can verify, by working out
the different cases, that Eq. (23) is equivalently expressed as

γ ′
k = αk ⊕ γk (24)

where ⊕ denotes the operation of the Klein group (see Table I
for a detailed description).

It will be useful to think of the multi-index 	α as an ele-
ment of a vector space. To do so, we notice that any group
with the property that α ⊕ α = 0 is indeed a vector space
under the two-element field {0, 1}. We notice that the Klein
group described in Table I is actually isomorphic to the two-
dimensional vector space over the field of two elements {0, 1}.
Then, we build the complete vector space, with the same field,
and defining 	α ⊕ 	β = (α1 ⊕ β1, · · · , αN ⊕ βN ) [36]. We can
indeed restate Eq. (24) and say that, for quantum channels, if
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τ	α = 1, then τ	γ = τ	α⊕	γ . For example, in Fig. 2(c) the indices
that correspond to preserved components are 	α(0) = (0, 0),
	α(1) = (0, 2), 	α(2) = (1, 0), 	α(3) = (2, 2), and 	α(4) = (3, 2).
However, 	α(1) + 	α(2) = (1, 2), which is not preserved, and
thus this diagram does not correspond to a quantum channel.
From this view we can derive several interesting observations
that will be presented in the rest of the section.

From this readily follows an amusing property: the set of
all multi-indices 	γ for which τ	γ = 1 is closed under binary
vector addition; in other words, it forms a vector subspace
of the set of all multi-indices. A moment’s consideration will
further show that the above reasoning can be inverted; that is,
if we set all τ	γ equal to 1 whenever 	γ belongs to a given vector
subspace of the set of all indices, then τ indeed has an image
which has only positive components. In other words, there is a
one-to-one correspondence between a quantum channel, and
a vector subspace of the aforementioned space.

With this information, we present a procedure to generate
all solutions: we start out from the solution having τ	0 = 1,
with everything else zero. We may then successively switch
τ	α’s to 1 for various values of 	α, taking care immediately
to set equal to 1 the components of τ that correspond to
values of 	β generated by the previously switched values of
	α via the operation ⊕. Doing so, in an ordered way, allows
one to generate all PCE quantum channels with a given set
of preserved components, without the need of exploring the
exponentially large space of all PCE maps.

We can show that all PCE quantum channels preserve 2K

components. First recall that a vector space of dimension d
over a field of q elements has qd elements [37]. Now V is a
vector space on a field of two elements having dimension 2N .
We have seen earlier that

W = {	α : 	α ∈ V, τ	α = 1} (25)

is a subspace of V . As such, W has a given dimension K ,
which means that W has 2K elements. In other words, a set
of indices τ	α with the property discussed above can only have
2K elements equal to 1, for a given integer K .

It is natural to ask how many PCE quantum channels exist
that preserve 2K components. One can calculate such num-
ber, SN,K , by examining the number of different independent
subsets of vectors that spawn a given vector subspace. In
Appendix C we show that

SN,K =
K−1∏
m=0

22N−m − 1

2K−m − 1
. (26)

From the above expression, it is easy to see the symmetry
relation

SN,K = SN,2N−K (27)

which suggests a relation between individual channels that
preserve K and 2N − K Pauli components that for the time
being has escaped our efforts to identify.

Finally, let us point out the following: if we wish to specify
a PCE channel explicitly, the naive way to proceed would be
simply to list all the Pauli components which are not erased.
This requires in general, however, an exponential amount of
information: that is, if the system has N qubits, we generally
require of the order of 2N bits to do this. If, on the other

hand, we take advantage of the vector space structure of a PCE
channel, we only need to specify a basis. Since a basis consists
of N vectors of length N , the information required is only of
N2 bits, so that we have obtained a very substantial improve-
ment by exploiting complete positivity. This is reminiscent
of a rather similar effect in stabilizer states which can also
be specified by N2 bits, as opposed to an exponentially large
number of basis coefficients for arbitrary states. A stabilizer
state is one which is the common eigenvector to the eigenvalue
1 of a set of N commuting Pauli strings. The similarity is
highly intriguing, and potentially of interest, since stabilizer
states are of central importance in quantum error correction
[38].

IV. GENERATORS

We now discuss the existence of a generator set for all PCE
quantum channels and how to label each of them uniquely
as G	α (according to its local action on every qubit in the
system). Finally we will discuss a symmetry of PCE quantum
channel generators and a connection between them and A [see
Eq. (15)].

There exists a subset of PCE quantum channels that gen-
erates the entire set; the nature of these generators may be
studied, as we shall see, with the properties of the aforemen-
tioned vector space. By standard theorems of linear algebra,
any proper subspace W [see Eq. (25)] can be extended to a
maximal nontrivial subspace of dimension 2N − 1 by adjoin-
ing appropriate additional basis elements. This can be done
in different ways. We therefore arrive to the set of maximal
extensions of W , where every maximal subspace corresponds
to a PCE quantum channel that preserves half of the Pauli
components. The intersection of all the elements of this set
reduces to W itself, and since intersection of subspaces trans-
lates to composition of PCE channels this implies that all PCE
quantum channels can be obtained as compositions of PCE
channels corresponding to maximally nontrivial subspaces,
plus the identity map. In other words, the set of PCE quantum
channels that preserve half of the components plus the identity
map is a generator set for all PCE channels. Consider Fig. 3;
Figs. 3(c)–3(e) represent nontrivial PCE generators (PCEGs)
and the composition of any two of them yields the PCE chan-
nel corresponding to Fig. 3(b).

A PCEG may be characterized by its local action on every
qubit in the system. This action can be encoded using a multi-
index 	α, as in (4), hence each of the different 4N multi-indices
may be uniquely related to each of the PCE generators and
thus denoted as G	α (see Figs. 4 and 5). The proof is simplified
if one uses the Kraus representation developed in Sec. V, so
we postpone the demonstration to Appendix D. For single
qubits, the identity corresponds to G0, shown in Fig. 1(b),
whereas G3 is shown in Fig. 1(c). The two-qubit PCE genera-
tor represented in Fig. 3(c) acts on the first qubit (first column)
as a map of its Bloch sphere to the x axis, and on the second
qubit (first row) as an identity, hence it is labeled G(1,0). See
Fig. 5 for the notation of all two-qubit PCE generators.

A reflection symmetry is identified for PCE generators.
Consider the map �(k) that reflects a multi-index 	α with
respect to the kth axis. This map leaves all components of
	α invariant, except the kth component, which is transformed
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FIG. 3. Examples of diagrams for several two-qubit PCE quan-
tum channels: (a) the totally depolarizing channel and (b) a PCE
channel that preserves four components—the normalization compo-
nent, one local component of qubit 2, and two correlations between
the two qubits. (c), (d), and (e) show the three generators G(1,0), G(3,2),
and G(2,2), respectively; the combination (overlap of diagrams) of any
two of them yields the channel in (b). (f) represents the identity map.

according to

0 �→ 3, 3 �→ 0, 1 �→ 2, 2 �→ 1. (28)

The maps have the following properties:
(1) �(k)(	α) ⊕ �(k)(	β ) = 	α ⊕ 	β.
(2) �(k)(	α) �= 	α.
From the first property, we now obtain

	α = �(k)(	α) ⊕ �(k)(	0). (29)

This implies that if �(k)(	0) belongs to a channel then τ	α =
τ�(k) (	α), where we used the fact that for channels the nonzero
elements are closed under ⊕. In other words, the components
of a PCE channel are symmetric under reflection over the kth
axis. Now consider the case in which �(k)(	0) does not belong
to generator. Then τ	α �= τ�(k) (	α), since the case τ	α = τ�(k) (	α) =
1 is forbidden due to Eq. (28) and the case τ	α = τ�(k) (	α) = 0 is
also forbidden because for generators the codimension of the
associated vector space is 1. This means that the components
of a PCE channel are antisymmetric with respect to reflec-
tion over the kth axis. Indeed, the two-qubit PCE generators
G(1,0), G(3,2), and G(2,2) represented in Figs. 2(c), 2(d) and 2(e),
respectively, are either symmetric or antisymmetric under re-

FIG. 4. The connection between rows or columns of a and
single-qubit PCE generators Gα is shown. One can identify the −1s
of a with zeros in the sets {τα} of preserved and erased components
of each Gα . For any number of particles, such a simple relation holds
see Sec. IV and Appendix D.

FIG. 5. PCE generators for two qubits. Notice that all generators
are either symmetric or antisymmetric under horizontal and vertical
reflections.

flection with respect to lines that divide the diagram in half
vertically and horizontally.

Finally, it is worth pointing out that A (and thus a) [see
Eq. (15)] encodes all the information of PCE generators G	α
and, therefore, of all PCE quantum channels. From A, the
tensor power of matrix a, one can infer the components {τ	α}
of a PCE generator G	α by taking row (or column) 	α of A and
replacing −1 with 0. The proof of the connection between
PCEGs and A is given in Appendix D, and in Fig. 4 we
illustrate this connection for the single-qubit case.

V. PCE CHANNELS AND DECOHERENCE

Lindblad processes arise naturally in many theoreti-
cal [15,30,39–42] and experimental [43] settings and are
archetypical in decoherence dynamics. Moreover, these pro-
cesses lead to a monotonic (continuous) loss of information
[44] and describe noninvertible channels in the asymptotic
limit t → ∞ [this can be seen from the monotonic (contin-
uous) decrease of the determinant (see Ref. [30])]. It is known
that not every quantum channel can be seen as a snapshot of a
process arising from a traditional Lindblad equation or even
a time-dependent Lindblad equation [15,30]. Therefore, an
interesting question is whether PCE channels can be seen as
limit points of some Markovian processes. In this section we
prove that in fact they are, and give two examples of Marko-
vian implementations. The first of them consists in identifying
each PCE channel as a fixed point of some pure dissipative
process, and in the second implementation we relate each PCE
channel to fixed points of some memoryless collision model.

A. Kraus representation

To derive the aforementioned implementations, we exploit
the existence of the PCEGs and their Kraus representation (or
operator-sum representation) which, for an arbitrary channel
E , reads

E[ρ] =
∑

i

KiρK†
i , (30)

with
∑

i K†
i Ki = 1 (the trace-preserving condition) [45]. In-

spection of the Kraus operators for two-qubit PCEGs leads to
the ansatz that the Kraus operators for the generator of G	α are

K0 = 1√
2
, K1 = σ	α√

2
, (31)

since the Kraus operators corresponding to a single-qubit
PCE are {1/√2, σα/

√
2}, corresponding to the operation that
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leaves the component σα invariant [6]. Notice that according
to Kraus operators the generators G	α are N-qubit flip channels
with flip probability 1/2, where the joint flip is ρ �→ σ	αρσ	α . In
fact, tracing out all particles except the kth one gives the well-
known qubit flip channels, i.e., tr �kG	α = Gαk [see Eq. (D1)].
More generally, tracing out m particles leaves a N − m parti-
cles flip channel (completely dephasing).

We shall first show that the Kraus operators in Eq. (31)
produce a PCE. Notice that σασβσα = aαβσβ [see Eq. (10)],
which in turn implies that

σ	ασ	βσ	α = A	α	βσ	β. (32)

Next, consider the action of a channel with Kraus representa-
tion (31) on a N-qubit system:

ρ �→ 1

2N

∑
	β

r	β

(
1

2
σ	β + 1

2
σ	ασ	βσ	α

)

= 1

2N

∑
	β

r	β
1 + A	α	β

2
σ	β. (33)

However, since A	α	β = ±1, the channel characterized by the
Kraus operators in Eq. (31) is a PCE channel. Moreover, one
can notice that, except for the first row, half of the matrix
elements of each row are +1 and half are −1, which implies
that the channel is a PCEG.

Observe also that a different choice of 	α in Eq. (31) leads
to different channels. This follows from the fact that if two
channels were the same this would imply that the matrix rep-
resentation of the corresponding superoperator of ρ �→ σ	αρσ	α
would have to be the same, which is clearly false. Since there
are 4n different 	α values, this implies that all PCEGs (plus the
identity map) are in one-to-one correspondence.

B. Pure dissipative implementation

In this section we show that any PCE channel can be
seen as the fixed point of some decoherence process, starting
with PCEGs and then extending to more general channels.
Consider the following dynamical process that implements G	α
when t → ∞:

G	α,t [ρ] = e−γ tρ + (1 − e−γ t )G	α[ρ]

= (1 + e−γ t )

2
ρ + (1 − e−γ t )

2
σ	αρσ	α, (34)

where γ > 0. It is easy to show that the family of channels
G	α,t parametrized with t � 0 forms a one-parametric semi-
group, i.e., G	α,t1G	α,t2 = G	α,t1+t2 . Therefore G	α,t describes a
dissipative time-homogeneous Markovian process, which is
always characterized by some Lindblad generator [39]. The
Lindblad generator of G	α,t , denoted by L	α , can be obtained
using the standard procedure:

L	α[ρ] = dG	α,t [ρ]

dt

∣∣∣∣
t=0

= γ (σ	αρσ	α − ρ)

2
, (35)

where the unique Lindblad operator associated with the re-
laxation ratio γ /2 is simply σ	α . Notice that σ	α is traceless,
therefore the process is purely dissipative [30].

Since PCEGs commute, we can describe easily any other
PCE channel as a fixed point of a decoherence process. For

them, the Lindblad generators are the sum of the Lindbladians
of the corresponding generators. As an example, consider the
channel depicted in Fig. 2(b); it is equal to G(0,3)G(3,3), there-
fore it is the fixed point of the dissipation process described
with the following Lindbladian:

L[ρ] = γ(0,3)(σ(0,3)ρσ(0,3) − ρ)

2
+ γ(3,3)(σ(3,3)ρσ(3,3) − ρ)

2
,

(36)
where γ(0,3) and γ(3,3) are positive and correspond to the
Lindblad operators σ(0,3) and σ(3,3). Notice that such election
of Lindblad operators is not unique, as the PCE channel de-
scribed here is also equal to G(0,3)G(3,0).

C. Collision model implementation

We show now that PCE channels can also be implemented
with simple collision models [46]. To do this, observe that
employing the Stinespring dilation theorem [47] PCEGs can
be implemented using a unitary over the system and an ancilla.
Since PCEGs always have Kraus rank 2, one can always
choose a qubit as the ancillary system. Concretely,

G	α[ρ] = trqubit[U	α (ρ ⊗ |0〉〈0|)U †
	α ], (37)

where trqubit denotes the partial trace over the ancillary qubit,
with the unitary defined as follows:

U	α|ψ〉|0〉 = 1√
2

(|ψ〉|0〉 + σ	α|ψ〉|1〉), (38)

U	α|ψ〉|1〉 = 1√
2

(|ψ〉|0〉 − σ	α|ψ〉|1〉). (39)

Therefore, any concatenation of PCEGs can be described as a
collision model with as many collisions as generators needed.
In fact, generators are described with one collision. For the
general case consider some PCE channel E generated with
{G	α1 ,G	α2 , . . . ,G	αM }. For this we can define an environment
consisting of M qubits initially in the state (|0〉〈0|)⊗M , or
equivalently one qubit with the additional assumption that
its state is reset to |0〉 after each collision (memoryless col-
lisions). The collision with the k-th particle is described by
U	αk , which acts solely over the system and the kth particle.
Therefore E can be written as follows:

E[ρ] = trE
[(

U	α1 . . .U	αM

)
ρ ⊗ (|0〉〈0|)⊗M

(
U	α1 . . .U	αM

)†]
,

(40)

where trE is the partial trace over all ancillary qubits. Notice
that as PCEGs commute the order of the collisions is irrele-
vant.

VI. CONCLUSIONS AND OUTLOOK

In this paper we introduce and characterize a set of quan-
tum maps which either preserve or completely erase the
components of a multiqubit density matrix, in the basis of
Pauli strings; we call those maps Pauli component erasing
maps. For a single qubit these include the completely depo-
larizing and dephasing channels. To start the characterization,
we note that not all PCE maps are quantum channels, as some
are not completely positive. In fact, the most laborious task
of this paper was to evaluate complete positivity conditions
given by the Choi-Jamiokowski isomorphism, after which we
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showed that the components of PCE quantum channels form
a finite vector space. This in turn allows us to unravel several
properties, such as the possible number of PCE channels and
the number of components preserved, while also providing
advantages to study numerically this set, for example, by im-
plying an efficient method to construct all quantum channels
for a given number of qubits.

Similar to other objects in open quantum systems (for
example, Lindblad processes), PCE quantum channels form
a semigroup, but finite in this case. For PCE channels, the
generators are generalized flip operations, i.e., channels that
with probability 1/2 apply a joint flip. This structure allows
us to link this channel with multiqubit decoherence processes
which can be described, say, by simple dissipative processes
or memoryless collision models, which in turn may pave a
way to either implement these channels or connect them with
already existing decoherence families. This, together with the
discovered algebraic structure that translates complete posi-
tivity into an explicit conditioned preservation of many-body
correlations, encompasses an advance in the knowledge of the
mathematical structures underlying general quantum chan-
nels.

In the future we might consider generalizations (such as
going from qubits to qudits) as well as the geometric role
of PCE channels within the set of all quantum channels to
further advance the understanding of open quantum systems.
We have thus described a family of quantum channels with a
very special mathematical structure that allows us to widen the
understanding of quantum channels in the context of many-
body systems.
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APPENDIX A: QUANTUM-CLASSICAL CHANNELS

A quantum-classical (QC) channel is defined by using an
orthonormal basis in the Hilbert space. Let B = {|ψi〉} be such
a basis in H with dim(H) = 2N ; the QC channel associated to
B is

EQC
B [ρ] =

2N∑
i=1

〈ψi|ρ|ψi〉|ψi〉〈ψi|, (A1)

that is, QC channels project density matrices onto the corre-
sponding diagonal matrix in the basis B [22].

Consider now that the basis B is the simultaneous eigen-
basis of a maximal set of commuting Pauli strings denoted
by set(B); such a set contains 2N elements (including the
identity), and there are 2N + 1 of such sets [29]. Now we

proceed to demonstrate that the QCs defined in this way are
PCE channels with 2N 1s on their diagonal.

First we compute the components of EQC
B in the basis

2−N/2{σ	α}:
(
EQC

B

)
	k	l = 1

2N

2N∑
i=1

〈ψi|σ	k|ψi〉〈ψi|σ	l |ψi〉. (A2)

To evaluate the components, observe that 〈ψi|σ	k|ψi〉2 =
1 ∀σ	k ∈ set(B), and from the formula for the purity of |ψi〉,

1 = 1

2N

∑
	k

〈ψi|σ	k|ψi〉2, (A3)

it follows that 〈ψi|σ	k′ |ψi〉 = 0 ∀σ	k′ �∈ set(B) since there are
only positive terms in the sum, and 2N of them are already
equal to 1. Therefore,(

EQC
B

)
	k	k = 1,(

EQC
B

)
	k	l ′ = (

EQC
B

)
	l ′ 	l ′ = 0 ∀σ	k ∈ set(B) ∀σ	l ′ �∈ set(B). (A4)

To compute (EQC
B )	k	l for σ	k, σ	l ∈ set(B) with 	k �= 	l , observe

that (EQC
B )	k	l = (EQC

B )	l	k , i.e., the matrix corresponding to EQC

is an orthogonal projector. Thus, considering the block,[(
EQC

B

)
	k	k

(
EQC

B

)
	k	l(

EQC
B

)
	k	l

(
EQC

B

)
	l	l

]
=

[
1

(
EQC

B

)
	k	l(

EQC
B

)
	k	l 1

]
, (A5)

it is easy to check that the latter is a projector only if (EQC
B )	k	l =

0. Since there are exactly 2N elements of the form (EQC
B )	k	k

with σ	k ∈ set(B), then the channel EQC
B is PCE with 2N 1s on

its diagonal.

APPENDIX B: DIAGONALIZATION OF CHOI MATRIX DN

In order to simplify the derivation of the relations, let us
employ pairs of binary indices instead of a single quater-
nary, i.e., α → j + 2k. For the sake of clarity, we use Latin
symbols for binary indices, and reserve Greek letters for
quaternary ones. We can write the elements of the Pauli ba-
sis (σ0, σ1, iσ2, σ3), compactly as σkl = ∑1

j=0(−1) jk| j〉〈 j +
l (mod2)|. In vectorized form

|σkl〉〉 =
1∑

j=0

(−1) jk| j〉| j + l (mod 2)〉, (B1)

and its inverse relation

|k〉|k + l (mod 2)〉 = 1

2

1∑
j=0

(−1) jk |σ jl〉〉 . (B2)

On the other hand, the matrix form of an arbitrary Pauli map
E may be written as

Ê = 1

2

1∑
lm=0

τlm |σlm〉〉〈〈σlm| (B3)

= 1

2

∑
jklm

τlm(−1)l ( j+k)

× | j〉| j + m(mod 2)〉〈k|〈k + m(mod 2)|. (B4)
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After applying the reshuffling operation on Ê , we obtain the
Choi matrix associated to the map. It reads

D = 1

2

∑
jklm

τlm(−1)l ( j+k)

× | j〉|k〉〈 j + m(mod2)|〈k + m(mod2)|. (B5)

Note furthermore that the expression above may also be writ-
ten as a combination of tensor products of Pauli matrices:

D = 1

2

∑
lm

τlmσlm ⊗ σ ∗
lm. (B6)

Returning to Eq. (B5), let us apply the index relabeling k →
j + k(mod2); then the Choi matrix reads

D = 1

2

∑
jklm

τlm(−1)lk

×| j〉| j+k(mod 2)〉〈 j + m(mod 2)|〈 j + m + k(mod 2)|,
(B7)

since (−1) j+( j+k(mod2)) = (−1)k . To continue, we use the re-
lation between computational and Pauli elements [Eq. (B2)],
and notice that

∑
j (−1) j(m±n) = 2δmn. We arrive to the simple

expression

D = 1

2

∑
jk

(
1

2

∑
lm

(−1) jm+klτlm

)
|σ jk〉〉〈〈σ jk| . (B8)

Notice that D is already written in its diagonal form, and one
can identify by inspection the eigenvalues. The eigenvalues
read

λ jk = 1

2

∑
lm

(−1) jm+klτlm, (B9)

or more compactly λ = (1/2)H ⊗ Hτ , where H is the
Hadamard matrix.

For the sake of convenience in the demonstration of several
useful properties of the PCE channels, we shall reorder the
eigenvalues, to write

λ = 1
2 aτ (B10)

with a the matrix shown in Eq. (10) instead of H ⊗ H . This
can be done due to the fact that both matrices (a and H ⊗ H)
are equivalent up to a permutation of rows. In other words this
operation corresponds to a reordering of the eigenvalues.

N qubits

To work out the N-qubit case, we again rely on binary
indices. In this case, we replace N-dimensional vector 	α with
a pair of N-dimensional vector binary indices 	j and 	k so that
each entry αi of 	α is identified with the pair ji and ki as in
the single-qubit case of the previous subsection. Then, all the
steps leading to Eq. (B9) can be redone.

The tensor product of Pauli matrices, in vector form, will
be denoted by |σ	k	l〉〉. With this in mind, a N-qubit Pauli map
can be written as

ÊN = 1

2N

∑
	l 	m

τ	l 	m |σ	l 	m〉〉〈〈σ	l 	m| . (B11)

The generalizations of Eqs. (B1) and (B2) read

|σ	k	l〉〉 =
∑

	j
(−1)	j·	k| 	j〉| 	j + 	l (mod2)〉, (B12)

|	l〉|	l + 	n(mod2)〉 = 1

2N

∑
	m

(−1) 	m·	l |σ 	m	n〉〉 . (B13)

By employing the previous relations, we can write the
matrix representation of the map, ÊN in the N-qubit compu-
tational basis, as

Ê = 1

2

∑
	j	k	l 	m

τ	l 	m(−1)	l (	j+	k)

× |	j〉| 	j + 	m(mod2)〉〈	k|〈	k + 	m(mod2)|. (B14)

In this way it is straightforward to apply the reshuffling op-
eration on ÊN to obtain the associated Choi matrix, and then
transform back to the Pauli basis and simplify to obtain

DN = 1

2N

∑
	m	n

⎛
⎝ 1

2N

∑
	l 	m

τ	l 	m(−1)	l·	n+ 	m· 	m

⎞
⎠ |σ 	m	n〉〉〈〈σ 	m	n| .

(B15)

All intermediate steps, from Eq. (B3) to Eq. (B8) are similar,
but with a vectorized version of the indices, and appropriate
normalization constants. Again, we are left with an expression
that displays explicitly the eigenvalues of the Choi matrix, so
we can write

λ	j	k = 1

2N

∑
	l 	m

(−1)	j· 	m+	k·	lτ	l 	m (B16)

or more compactly λ = (H ⊗ H/2)⊗Nτ . Again, we prefer to
reorganize the indices to be able to write

λ = 1

2N
Aτ, (B17)

where A = a⊗N .

APPENDIX C: NUMBER OF PCE’S FOR A FIXED
NUMBER OF INVARIANT COMPONENTS

Finally, we may enumerate straightforwardly the subspaces
W of dimension K . We do this in two steps: first, we evaluate
NK,N , the number of all linearly independent subsets V with
K elements. Each of these is the basis of one subspace of
dimension K , but each subspace has a number MK of dif-
ferent bases. The crucial point is that MK is independent of
the subspace under consideration: MK simply describes the
number of linear maps of W onto itself. The total number SN,K

of subspaces of dimension K is therefore NN,K/MK .
To evaluate NN,K we proceed by steps: the first element of

the basis can be any nonzero element, of which the number
is 22N − 1. For the basis element m + 1, we must choose
from those which do not belong to the m-dimensional space
generated by the first m basis elements, so that one chooses
from 22N − 2m. We thus have

NN,K =
K−1∏
m=0

(22N − 2m). (C1)
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On the other hand, any map of a K-dimensional vector space
W onto itself is uniquely defined by a nonsingular binary
K × K matrix over the field {0, 1}. To count these, we pro-
ceed as above: the first line is an arbitrary nonzero vector, of
which there are 2K − 1. For the row m + 1 we must choose an
arbitrary vector not belonging to those generated by the first
m vectors, of which there are 2K − 2m. This eventually yields

MK =
K−1∏
m=0

(2K − 2m). (C2)

From this it follows that

SN,K =
K−1∏
m=0

22N−m − 1

2K−m − 1
. (C3)

APPENDIX D: LOCAL ACTION AND LABELING OF
PCE GENERATORS

The local action of a generator G	α on every qubit in the
system depends only, as its notation suggests, on the multi-
index 	α. This index has a simple meaning that can be read
from the graphical representation of the channel. Recall the
single-qubit PCE generators, shown in Fig. 4, denoted by G0

(corresponding to the identity map) and G1,2,3 (corresponding
to the completely bit, phase, and bit-phase flip channels, re-
spectively). One can easily read the diagrams in the following
manner: α = 0 corresponds to all squares black, whereas for
α > 0 we have only the zeroth and the αth squares black.
Let us generalize this characterization rule for N-qubit PCE
generators. Consider that the reduced density matrix of the
kth qubit after generator G	α acts on the entire system

tr �kG	α[ρ] = 1

2
tr �k (ρ + σ	αρσ	α ) = ρk

2
+ σαk ρkσαk

2

= Gαk [ρk], (D1)

where � k means that all qubits except for the kth one are traced
out. We can read from (D1) that αk not only characterizes
Gαk but actually tells us which single-qubit channel is acting
locally on the kth qubit. The action of Gαk on the local com-
ponents of the reduced density matrix ρk reads r0,..., jk ,...,0 �→
τ0,..., jk ,...,0r0,..., jk ,...,0. The general characterization rule for all
PCE generators G	α is clear now: if all τ0,..., jk ,...,0 = 1, then
αk = 0; otherwise, if τ0,..., jk ,...,0 = 1 (with jk > 0), then αk =
jk . For two-qubit PCE diagrams this means that the multi-
index 	α is encoded in the first column and row of the diagrams.
For example, see G(0,2) in Fig. 5, where all τ j1,0 = 1 and
τ(0,2) = 1, and thus 	α = (0, 2). In Fig. 5 we show all two-qubit
PCE generators and their corresponding notation G	α .

An interesting relation of the generators and the A ma-
trix can be derived with the tools developed. Consider the
generator G	α , and its Pauli components τ

(	α)
	β . We can calcu-

late the former studying the action of the generator on the
non-normalized state � = ∑

	γ σ	γ . Let us proceed with such
calculation, using the Kraus decomposition Eq. (31):

τ
(	α)
	β = trσ	βG	α[�] (D2)

= 1

2

∑
	γ

tr[σ	βσ	γ + σ	βσ	ασ	γ σ	α] (D3)

= 1

2
(1 + A	α	β ) (D4)

where we have used the orthogonality relations of Pauli ma-
trices and Eq. (32). This means that one can read the αth
generators directly from matrix A (see Fig. 4 for the n = 1
case). Alternatively one could construct the A matrix for
n = 2, from Fig. 5, where the first row of this matrix is read
from G(0,0), replacing black (white) squares with 1s (−1s), the
second row from G(0,1), etc.
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