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Coherent control of a local phonon in trapped ions using dynamical decoupling
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In this article, we present a dynamical decoupling (DD) technique to coherently control the dynamics of a
single local phonon in trapped ions. A 2π rotation at a motional sideband transition flips the sign of the relevant
local-phonon state, resulting in cancellation of the phonon dynamics. In this work, we implement DD using
resonant blue-sideband pulses to control the hopping of a single local phonon between two 40Ca

+
ions in a linear

Paul trap. Our proposed DD technique can be used to engineer coupling between local-phonon modes.
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I. INTRODUCTION

Local phonons in trapped ions are considered bosonic sys-
tems consisting of individual harmonic oscillators coupled
with each other. To date, phonon propagation has been exper-
imentally observed in ions trapped in a double-well potential
[1–3], in a harmonic potential of a linear Paul trap [4–11], and
in a lattice potential of a two-dimensional trap [12–14].

A system of local phonons possesses certain advan-
tages for implementing quantum computation and quantum
simulation. For instance, local phonons are particularly
applicable to Hubbard-type quantum simulations, such as
the Bose-Hubbard model [15,16], the Jaynes-Cummings-
Hubbard (JCH) model [17–22], and the Rabi-Hubbard model
[23].

A local-phonon system is analogous to photons propagat-
ing in a linear optical circuit [24]. A local-phonon system
guarantees the deterministic generation of a single or multiple
phonons and highly efficient detection of the motional state.
In this context, scalable boson sampling with local phonons in
trapped ions [25,26] and continuous-variable quantum com-
putation [27] have been proposed.

An essential concept in these applications is a phonon
circuit or a local-phonon-based quantum simulator (Fig. 1),
analogous to a photonic circuit. A local-phonon-based quan-
tum simulator consists of the following three components:
(1) state preparation, (2) interaction between different phonon
modes, and (3) detection of the output state. The first step is
state preparation, where the motional state can be initialized
using ground-state cooling [28] and engineered in many ways
[29–31]. After preparation, each local-phonon mode expe-
riences unitary evolution, and the output state can then be
detected. To date, projective measurement for a single ion
[31–35] or multiple ions [9] has been developed.

An advantage of using local-phonon modes in an ion string,
instead of collective motional modes, is the straightforward
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scalability. The local-phonon modes are a collection of radial
motional modes associated with each ion [15]. Increasing the
number of ions in a string results in spectral crowding of the
collective motional modes. While it is necessary to combine
the addressing of particular ions with precise tuning in the
frequency domain for the efficient addressing of a particular
collective motional mode, local-phonon modes can be ad-
dressed separately by illuminating the corresponding ion with
a laser beam.

Preparing and measuring states in local-phonon modes
have been demonstrated as relatively direct extensions of the
case for a single motional mode. What is important and still
needs to be explored is tuning the couplings between local-
phonon modes in a versatile manner.

A few attempts have been made to control the quantum
dynamics of local phonons using optical pulses. A phonon
blockade [8,11] is an example. The violation of energy conser-
vation due to off-resonantly-coupled oscillators prevents the
individual bosons from hopping to other ion sites.

In this work, we present the dynamical decoupling (DD)
[36–38] of local-phonon modes coupled to an internal degree
of freedom. Our work is inspired by a method proposed in
Ref. [25]. In the method in Ref. [25], local phonons evolve
under the Hamiltonian Ĥ for a period of t . An instantaneous
off-resonant motional sideband pulse is then applied, inducing
a π phase shift to a particular local-phonon mode. Accord-
ingly, the local phonons evolve under the Hamiltonian −Ĥ
for the next period of t , being subject to a cancellation of the
dynamics for the first and second half periods. However, if
practical experimental parameters are considered, the possible
interaction rate of the phase-shift operation is comparable to
or slower than the typical hopping rate.

Note that the DD sequence is effective for canceling
first-order dynamics induced by time-independent interaction
terms, and this is the case for the hopping interaction terms
treated in this paper. We should note that not only adjacent
couplings but also those for longer ranges should be taken into
account. Shen et al. argue in Ref. [25] that the order of such
long-range interaction terms can be reduced step by step by
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FIG. 1. Local-phonon-based quantum simulator (phonon cir-
cuit). The three steps of the process are shown: (1) motional state
preparation, (2) unitary evolution, and (3) detection of the phonon
number distribution of the output state.

concatenating DD sequences. Although it should be assumed
that DD pulses are applied sufficiently fast with sufficiently
high fidelity, such a concatenated method enables at least in
principle the decoupling of a finite number of those hopping
interaction terms including long-range ones.

Here, as a step toward the full implementation of DD as
proposed in Ref. [25], we demonstrate the coherent control of
a local phonon using optical pulses and thereby realize DD
of two local-phonon modes in the presence of a single local
phonon. The ions are driven with resonant motional sideband
pulses instead of off-resonant pulses. The resonant excitation
allows for the realization of fast local-phonon manipulation.
In the experiments, we manipulate a single local phonon.
Since the number of ions does not limit our DD technique, the
scheme can be applied to a long ion chain provided individual
addressing is realized in that system. Dynamical decoupling
techniques have previously been applied to spin or qubit sys-
tems [39,40]. The DD technique demonstrated here can be
applied to manipulating local phonons in trapped ions.

II. DYNAMICAL DECOUPLING OF LOCAL PHONONS IN
TRAPPED IONS

A. General idea

Here we describe the general idea of DD of local-phonon
modes in trapped ions. We consider local-phonon dynamics in
a two-ion chain to explain the scheme, but the scheme can be
applied to an N-ion chain.

In the interaction picture, the Hamiltonian for the local-
phonon mode along the radial direction is written as

Ĥhop = κ12

2
(â1â†

2 + â†
1â2), (1)

where κ12 is the hopping rate between ion 1 and ion 2 and
â†

1 (â†
2) and â1 (â2) are the creation and annihilation operators

of the local-phonon mode along the radial direction of ion 1
(2). The basic idea of the DD method is as follows. First, we
prepare two ions in a quantum state

|ψ (0)〉 = |ψ1〉 ⊗ |ψ2〉 , (2)

where

|ψ1(2)〉 =
N∑

n=0

cn,1(2) |n〉 . (3)

Here cn,1 and cn,2 are the probability amplitudes of |n〉 of ions
1 and 2, respectively, satisfying

∑N
n=0 |cn,1(2)|2 = 1. .Next

we let the system evolve under the Hamiltonian Ĥhop for a
period t :

|ψ (t )〉 = e−iĤhopt |ψ (0)〉 . (4)

Then a phase-shift operation is applied to a particular local-
phonon mode (here it is assumed to be the kth mode, where
k = 1, 2)

Û = eiθk â†
k âk , (5)

where θk is the phase shift. This operator transforms â†
k and âk

as

Û †â†
kÛ = â†

ke−iθk , (6)

Û †âkÛ = âkeiθk , (7)

respectively [41].
When θk = π , the transformed operators are −â†

k and −âk .
Accordingly, the sign of the Hamiltonian is flipped. Therefore,
the hopping dynamics is time reversed during the next period
of t :

|ψ (2t )〉 = eiĤhopt e−iĤhopt |ψ (0)〉 . (8)

We should note that the phase-shift operation introduced
here is applied to only one of the phonon modes and not to
both of them. Therefore, we need to choose to which ion we
apply the operation. The choice of applying it to either ion 1 or
ion 2 gives essentially the same result (up to a global phase).
The index k (k = 1, 2) introduced above represents such a
unique choice of the ion, to which the phase-shift operation
is applied.

B. Physical implementation of dynamical decoupling

Here we describe how we can implement the DD of local-
phonon modes in trapped ions.

1. Dynamical decoupling based on a dispersive Jaynes-Cummings
interaction

First, we briefly describe the scheme proposed by Shen
et al. [25] as a reference for comparison against our scheme.
The phase shift of the local-phonon mode is induced by
the dispersive Jaynes-Cummings interaction between the ions
with an off-resonant sideband pulse. It is assumed that the two
internal states |↓〉 and |↑〉 are used. When the kth ion is excited
by a resonant red-sideband pulse, the resulting Hamiltonian
for the ion is [42]

ĤRSB = gr (â†
k σ̂

− + âk σ̂
+), (9)

where the raising and lowering operators for the kth ion are
defined as σ̂+ = |↑〉 〈↓| and σ̂− = |↓〉 〈↑|, respectively, and
2gr is the Rabi frequency at the red-sideband transition.

Now an ion in a two-ion chain is driven with an
off-resonant red-sideband pulse whose detuning from the
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FIG. 2. Single-local-phonon dynamics with and without a π

phase shift. (a) Free hopping of a single local phonon. (b) Single-
phonon dynamics with a phase-shift operation with the parameters
of χ/κ12 = 50. In the simulation, the phase-shift operator is applied
to the second ion at t = π/4κ12 = 62.5 μs (vertical dashed line).

sideband transition is �. For � � 2gr
√

n, where n is the
phonon number, this off-resonant excitation results in a dis-
persive interaction between the phonon mode and the internal
states [43]

Ĥ = χσ̂zâ
†
k âk, (10)

where χ = g2
r/� and σz = |↑〉 〈↑| − |↓〉 〈↓|. Using this inter-

action, a phase-shift operation on the local-phonon mode is
realized:

Û = eiθk â†
k âk . (11)

Here θk = χT is the phonon-number-dependent phase shift,
with T the pulse duration.

The effect of a phase-shift operation on single-local-
phonon propagation is shown in Fig. 2. Here we employ the
Liouville equation for the density matrix with the parameter
κ12/2π = 2 kHz. As an initial state, the quantum states of
the ions are prepared in |ψinit〉 = |↓1, 1〉 ⊗ |↓2, 0〉 ≡ |1, 0〉.
For simplicity, no decoherence process is incorporated in
the results of Fig. 2. The blue dot-dashed and black solid
curves represent the probabilities of finding |1, 0〉 (P10) and
|0, 1〉 (P01), respectively. A numerically calculated result of
free hopping is shown in Fig. 2(a). The phase-shift effect on

FIG. 3. Two-local-phonon dynamics with and without a π phase
shift. (a) Free hopping of two local phonons. (b) Two-phonon dynam-
ics with a phase-shift operation with the parameters of χ/κ12 = 50.
In the simulation, the phase-shift operator is applied to the second
ion at t = π/4κ12 = 62.5 μs (vertical dashed line).

single-local-phonon propagation is shown in Fig. 2(b). The
parameter χ/κ12 = 50 is used in Fig. 2(b). In the simulation,
the phase-shift operation is applied to the second ion at t =
π/4κ12 = 62.5 μs.

The dynamics of multiple local phonons can also be con-
trolled with the phase-shift operation. Here we again employ
the Liouville equation for the density matrix with the param-
eter κ12/2π = 2 kHz. As an initial state, the quantum states
of the ions are prepared in |ψinit〉 = |2, 0〉. In Fig. 3 the blue
dot-dashed, black solid, and red dashed curves represent the
probabilities of finding |2, 0〉 (P20), |1, 1〉 (P11), and |0, 2〉
(P02), respectively. A numerically calculated result of free
hopping is shown in Fig. 3(a). The phase-shift effect on
two-local-phonon propagation is shown in Fig. 3(b) using the
parameter χ/κ12 = 50. In the simulation, the phase-shift op-
eration is applied to the second ion at t = π/4κ12 = 62.5 μs.

In this way, DD of local phonons can be realized. However,
in reality, phase-shift operations may not be applied almost
instantly, as assumed above, but may take a non-negligible
time. This time is sufficiently short if χ � κ12. The typical
values for the parameters obtained with the present conditions
of our experiments (χ/2π ∼ 0.50−1.25 kHz and κ12/2π ∼
1.0−10 kHz, where 2gr/2π ∼ 20−50 kHz and � = 10 × 2gr

are used) do not satisfy this condition. Therefore, it is not
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realistic in the current conditions to implement the phase-shift
operation based on the dispersive interaction.

2. Dynamical decoupling based on resonant sideband pulses

In our scheme, we employ a resonant sideband pulse
instead of an off-resonant pulse. We assume that only the
motional Fock states up to the first excited state (|n = 1〉) are
populated, and the internal state is in |↓〉. If a red-sideband
pulse is applied to an ion, the probability amplitude of |↓, 1〉
undergoes a Rabi cycle, while that of |↓, 0〉 remains un-
changed. If the length of the red-sideband pulse is adjusted
so that the probability amplitude of |↓, 1〉 completes a Rabi
cycle via |↑, 0〉 (2π rotation in that specific red-sideband
transition), its phase is changed by π . This phase change can
be interpreted as a geometric phase acquired in the resonant
Rabi cycle within the two-level system {|↓, 1〉 , |↑, 0〉}. In
contrast, the probability amplitude of |↓, 0〉 undergoes no
phase change. The overall effect of the red-sideband pulse
is equivalent to applying Û in Eq. (5) with θk = π provided
the initial state is limited to within the manifold spanned
by {|↓, 0〉 , |↓, 1〉}, thus enabling DD involving similar time-
reversed dynamics.

The clear advantage of this scheme is that the use of a
resonant sideband pulse leads to a faster implementation of
DD compared with the case when dispersive phase shifts are
used. The disadvantage is that it is not applicable to motional
Fock states with a quantum number higher than 1. We could
avoid this disadvantage by limiting the application of this
scheme to initially unoccupied motional modes.

The rotation operation for the red-sideband transition for
the kth ion is expressed as

R̂(θ, φ) = exp

(
i
θ

2
(eiφ â†

k σ̂
− + e−iφ âk σ̂

+)

)
, (12)

where θ and φ denote the angle of the qubit rotation and the
azimuth angle of the rotation axis, respectively. Assuming that
the state of the ion is |↓, 1〉, the state evolves into − |↓, 1〉
[=R̂(2π, φ) |↓, 1〉] after a 2π rotation at the red-sideband
transition. (In fact, the pulse area depends on the initial mo-
tional Fock state; here and hereafter, the first red-sideband
transition {|↓, 1〉 , |↑, 0〉} or the first blue-sideband transition
{|↓, 0〉 , |↑, 1〉} is taken as the reference transition for deter-
mining the pulse area of a sideband pulse.) Note that the
discussion here also applies to the blue-sideband interaction
provided the two internal states |↓〉 and |↑〉 are swapped. In
the present study, we use the blue-sideband interaction for
the local-phonon manipulation instead of the red-sideband
interaction because it provides better phonon manipulation
fidelity for a technical reason.

Single-local-phonon propagation with and without a 2π

red-sideband pulse is shown in Fig. 4. As an initial state, the
quantum states of the ions are prepared in |ψinit〉 ≡ |1, 0〉. The
blue dot-dashed and black solid curves represent the proba-
bilities of finding |1, 0〉 (P10) and |0, 1〉 (P01), respectively.
A numerically calculated result of free hopping (κ12/2π =
2 kHz) is shown in Fig. 4(a). The parameter 2gr/κ12 = 25 is
used in Fig. 4(b). In the simulation, a 2π red-sideband pulse
is applied to the second ion at t = π/4κ12 = 62.5 μs.

In principle, our scheme is not limited by the number of
ions. However, due to the phonon-number dependence on the

FIG. 4. Single-local-phonon dynamics with and without a 2π

red-sideband pulse. (a) Free hopping of a single local phonon.
(b) Single-phonon dynamics with a 2π red-sideband pulse with the
parameter 2gr/κ12 = 25. In the simulation, a 2π red-sideband pulse
is applied to the second ion at t = π/4κ12 = 62.5 μs (vertical dashed
line).

sideband Rabi frequency, our scheme does not work in the
presence of multiple local phonons in a trapped-ion chain. We
discuss the scalability of phase-shift operations in terms of the
number of ions and that of phonons in Sec. IV.

III. EXPERIMENTAL RESULTS

A. Experimental setup

We perform experiments with two 40Ca
+

ions trapped in
a linear Paul trap. The frequencies for harmonic confine-
ment along the radial (x and y) and axial (z) directions for
two ions are (ωx, ωy, ωz )/2π = (3.0, 2.8, 0.11) MHz, where
an rf voltage is stabilized using a method similar to that
given in [44]. The internal states |S1/2, mj = −1/2〉 ≡ |↓〉 and
|D5/2, mj = −1/2〉 ≡ |↑〉 are used to encode the two-level
system.

Each experiment starts with Doppler cooling using 397-nm
(S1/2-P1/2) and 866-nm (D3/2-P1/2) lasers. Then ground-state
cooling of the radial motional modes (x and y) is carried out
using resolved sideband cooling with a 729-nm laser (S1/2-
D5/2). In the present experiment, we employ the local-phonon
mode in the y direction, and the average motional number for
the y direction is 0.04.
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FIG. 5. (a) Experimental sequence. After sideband cooling
(SBC), the phonon state |1, 0〉 is prepared by applying a carrier π

pulse πC to ion 2 and a blue-sideband (BSB) π pulse to ion 1. The
hopping time τ is varied to observe the phonon dynamics. We wait
for a duration twait = 100 μs and then a 2π BSB pulse is applied
to ion 1. To perform fluorescence detection (Detect), BSB π pulses
are applied to both ions to map the probability amplitude onto the
internal state. (b) Results of the DD with a single sideband pulse.
The solid curves are numerically calculated results.

B. Dynamical decoupling of a single local phonon

We implement single-local-phonon control with a single
blue-sideband 2π pulse for two ions. The experimental se-
quence is given in Fig. 5(a). After the sideband cooling, we
prepare the ions in the state |ψinit〉 = |ψ1〉 ⊗ |ψ2〉 = |↑1, 1〉 ⊗
|↑2, 0〉 ≡ |1, 0〉. This state is generated by applying a carrier
π pulse to ion 2, which is followed by a blue-sideband π pulse
to ion 1. The hopping time τ is varied to observe the phonon
dynamics. After preparing the ions in |1, 0〉, a fixed wait time
twait = 100 μs is applied and then a blue-sideband 2π pulse
is applied to ion 1. The time evolution of the phonon state
after this pulse in the transformed basis is governed by the
transformed Hamiltonian −Ĥhop. Note that this scheme also
works in the case of applying a 2π sideband pulse to ion 2, as
seen earlier.

After waiting for τ , a blue-sideband π pulse is applied to
both ions to map the probability amplitude of |↑i, 1〉 onto
|↓i, 0〉. The ions are then illuminated with lasers at 397 and
866 nm to collect the state-dependent fluorescence with a
CCD camera. We count the events when one ion fluoresces
while the other does not, to calculate the probability of detect-
ing |1, 0〉 (P10) [|0, 1〉 (P01)].

The results are shown in Fig. 5(b). The blue and or-
ange data are the probabilities of detecting the states |1, 0〉
and |0, 1〉, respectively. Each data point is an average of
50 measurements. The time step for each data is 5 μs.
The solid curves in Fig. 5(b) are numerically calculated re-
sults using the Lindblad master equation with the parameter
κ12/2π = 1.9 kHz. The parameter κ12 is obtained by fitting

the free-hopping result with a sinusoidal function. The im-
perfection of state preparation and the dephasing of carrier
and blue-sideband transitions are also included in the nu-
merical calculation. The imperfection of state preparation
includes the imperfect motional ground-state cooling and the
infidelity of carrier and blue-sideband π pulses due to the
dephasing. The imperfection of motional ground-state cool-
ing is inferred from the average phonon number after the
sideband cooling. To include the second factor, we fit the
carrier and blue-sideband Rabi oscillations with the Lindblad
master equation for the density matrix so that we extract the
decay rates for both excitations. The experimental data show
agreement with the numerically calculated results.

We also demonstrate DD using multiple sideband pulses.
The experimental sequence is shown in Fig. 6(a). In this
experiment, we apply multiple blue-sideband 2π pulses to ion
2 so that the phonon localizes to a particular ion site. After
preparing the ions in |ψinit〉 = |1, 0〉, we wait for a duration of
twait2 = 50 μs and then apply a blue-sideband 2π pulse to ion
1. In the experiment, we sequentially apply a blue-sideband
2π pulse so that the phonon is localized to ion 1.

The result is shown in Fig. 6(b). The blue and orange data
are the probabilities of detecting |1, 0〉 and |0, 1〉, respectively.
Each data point is an average of 50 measurements. Here a
hopping rate of κ12/2π ≈ 1.76 kHz is used, which is obtained
by fitting the free-hopping result with a sinusoidal function.
The data points shown between τ = 0 and τ = twait2 = 50 μs
and the free-hopping part at the last (440–1000 μs) are col-
lected with a time step of 10 μs, while other data points
shown in Fig. 6(b) are collected with a time step of 5 μs.
The dashed curves are numerically calculated results using
the Lindblad master equation as in the former experiment.
As seen in Fig. 6(b), a single phonon stays in ion 1 and
the experimental data show a similarity to the numerically
calculated results. The deviation of the measured P10 may be
explained by miscalibration of the BSB pulse applied to ion
1. Due to the misalignment of the optical beam or drift of the
ion’s position during the experiment, the pulse area can be
changed. The deviation along the x axis from the simulation
is also observed. We speculate that the inaccurate evaluation
of phonon-hopping rate contributes to this deviation. We often
observe the change of the phonon-hopping rate during the
experiment due to the fluctuation of the rf voltage and the drift
of the ion’s position.

IV. DISCUSSION

The blue-sideband π pulse infidelity (∼0.08) limits the
contrast of the experimental data. Several factors are expected
to contribute to this, and one of the largest contributions may
be that caused by ac Stark shifts. We assume that the ac
Stark shifts may cause this infidelity due to the off-resonant
coupling to the carrier transition of the sideband transition
[45]. We find that the 729-nm beam illuminating one of the
ions interferes with the tail of another beam directed at the
other ion around the plane in which the axis for the ion
string resides. We speculate that this beam interference causes
fluctuations in the beam intensity experienced by the ions,
resulting in a variation of ac Stark shifts for the relevant
transitions. Therefore, an ac Stark compensator may improve
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FIG. 6. (a) Experimental sequence for controlling a local phonon with multiple sideband pulses. After preparing the ions in |1, 0〉, the
sequence of 2π pulses at the blue sideband is applied to ion 2. The duration between each BSB 2π pulse is set to be 2twait2. During
the hopping period, four 2π BSB pulses are applied. Finally, a mapping pulse is applied, followed by the detection. (b) Results of the
DD technique with multiple sideband pulses. The dashed curves are numerically calculated results. Each data point is an average of 50
measurements.

the overall contrast of the data. See also the Appendix for the
guidelines for estimating sideband pulse infidelity.

Then we discuss the scalability of the presented method
in terms of (1) the number of ions and (2) the number of
phonons, provided a single trap as in our current experiment
is used. The former can be judged with respect to the minimal
distance between the ions. Whether the method presented
here is applicable depends on the ratio between the speed
of manipulating local phonons and each hopping rate, where
the hopping rate scales in proportion to the inverse of the
cube of the interion distance [15]. Even if the number of ions
in the trap is increased, as long as the minimum distance
between the ions is longer than a certain value, the method
is applicable. It should be noted that this requires increasingly
shallow axial potentials for large numbers of ions in a single
linear trap, as well as single-ion addressability. By using an
array of independent single-ion traps and local phonons in a
system [12,13], we can avoid the use of shallow potentials and
increase the number of ions. We should note that the control of
local phonons in such a system at the level of a single quantum
is yet to be demonstrated.

As for the scalability in terms of the number of phonons, as
noted earlier, operations on multiple local phonons cannot be
performed with resonant sideband pulses and may require dis-
persive shifts, as assumed in the scheme proposed in Ref. [25].
The discussion of the experimental implementation of the
phase-shift operator using practical parameters is left for fu-
ture work. As described above, the condition χ � κi j must be
satisfied for the phase-shift operation. This condition can be
realized by (1) increasing the sideband Rabi frequency 2gr ,
(2) decreasing the detuning �, or (3) decreasing the hopping
rate κi j .

Increasing the sideband Rabi frequency is a straightfor-
ward way to enhance the dispersive interaction strength. The
sideband Rabi frequency is practically limited by the off-
resonant excitation of the carrier transition [46], and the
typical value is less than 100 kHz. Likewise, the detuning � is
also determined by the off-resonant excitation of the sideband

transition. When an ion is irradiated with an off-resonant
red-sideband pulse with � detuning from the sideband transi-
tion, the off-resonant excitation probability is P� ∼ 4gr

2/�2,
where 2gr is the Rabi frequency at the red-sideband transition.
This relation indicates that to suppress the excitation error
below 1%, the detuning � needs to be larger than 10 × 2gr .
Then we get χ = g2

r/� = g2
r/(10 × 2gr ) = 2gr/40 = 2π ×

2.5 kHz, where 2gr is assumed to be 2π × 100 kHz. There-
fore, in practice, we need to decrease the hopping rate to
realize χ � κi j . However, decreasing the hopping rate sac-
rifices the speed of operations that arise from the couplings
of local-phonon modes. One possible idea to overcome this
problem is to temporarily suppress the phonon hopping while
applying a phase-shift operation. This can be realized by com-
bining the existing technical components that are established
in the trapped-ion experiments. For instance, separating and
combing ion crystals using time-dependent voltage controls
for trapping potential allows the decrease of the hopping rate,
which is inversely proportional to the cubed ion distance.
An array of independent single-ion traps enables controls of
individual motional modes, resulting in the suppression of the
phonon hopping [12,13]. An optical control technique, such
as phonon blockade, significantly suppresses the propagation
of local phonons [8,11].

As the last topic in this section, we discuss the possibil-
ity of extending the DD scheme introduced in this work to
a more general category of coherently controlling phonons
using optical pulses. In the DD scheme, via a 2π sideband
rotation, a minus sign is imparted to a local-phonon wave
packet. This phase shift can be chosen flexibly, by changing
the optical phase between the first and second halves of the
sideband pulse. This could lead to implementing schemes
capable of controlling the phases and flows of local phonons.
Pulsed techniques developed for the manipulation of qubitlike
systems, such as composite pulses [47] and adiabatic pas-
sages [48,49], can also be applied to the combined system
of internal states and phonons so that the system may ac-
quire such properties as robustness to parameter variations and
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inhomogeneities. The coherent control of phonons as men-
tioned above has not been applied to the system of multiple
local motional modes in trapped ions.

V. CONCLUSION

We have demonstrated dynamical decoupling of local-
phonon modes in a two-ion chain. A 2π pulse at the
blue-sideband transition induces a sign flip of a single-local-
phonon state, reversing the dynamics of the local phonon.
Our technique can be useful for maintaining the motional
coherence of the local phonons and may also provide a tool
for engineering local-phonon couplings.
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APPENDIX: GUIDELINES FOR ESTIMATING SIDEBAND
PULSE INFIDELITY

In Sec. IV we explained that intensity fluctuations can
be converted to those of the resonance frequency when sub-
stantial ac Stark shifts exist. Here we evaluate the effect of
such frequency fluctuations, as well as other factors, to the
infidelity of sideband pulses.

The effect of ac Stark shifts on the S1/2-D5/2 qubit transi-
tion of 40Ca

+
caused by a nearly resonant laser is thoroughly

investigated in Ref. [45]. The sum of ac Stark shifts �ac can
be described as

�ac = −2
a−1/2,−1/2

δ − δ−1/2,−1/2

2
0

4
+ 2b

2
0

4

− 2
0

4

∑
mj′ =−5/2,−3/2,+1/2,+3/2

a−1/2,mj′

δ − δ−1/2,mj′

− a+1/2,−1/2

δ − δ+1/2,−1/2

2
0

4
+ �SB. (A1)

Here am,m′ is the proportionality factor related to the con-
tribution from the S1/2(mj = m)-D5/2(mj′ = m′) Zeeman
component; δ is the laser detuning from the S1/2-D5/2 cen-
ter; δm,m′ is the frequency of the S1/2(mj = m)-D5/2(mj′ =
m′) component with reference to the S1/2-D5/2 center; 0 is
the laser carrier Rabi frequency for the S1/2(mj = −1/2)-
D5/2(mj′ = −1/2) component which is used as the qubit
transition; b is the proportionality factor related to the con-
tributions from relevant dipole-allowed transitions, including
those at 397, 393, and 854 nm; and �sb represents the contri-
butions from sideband transitions.

For our current excitation scheme including the
magnetic-field direction, a−1/2,−5/2 = 0.278, a−1/2,−1/2 = 1,
and a−1/2,+3/2 = 0.0556, whereas a−1/2,−3/2 = a−1/2,+1/2 =
a+1/2,−1/2 = 0. We assume that the laser is resonant to
the blue-sideband transition of the qubit transition, the
Rabi frequency 0 is equal to 2π × 675 kHz, and the
magnetic-field strength is 3.85 × 10−4 T. Under these
conditions, the frequency shift �ac is calculated to be
−2π × 60 kHz. This includes the contributions from the five
terms on the right-hand side of Eq. (A1), which amount to
2π × (−81, 21,−1.4, 0, 1.7) kHz, respectively.

We then explain the guidelines for evaluating the infidelity
of a blue-sideband π pulse in the presence of such a frequency
shift, as well as other factors. We perform the simulation of the
JCH dynamics for two ions to obtain the infidelity of a blue-
sideband π pulse, assuming that one ion is illuminated with a
blue-sideband pulse, whose Rabi frequency is 2π × 29 kHz.
As an example for the evaluation of infidelity, if we assume
relative intensity fluctuations with a standard deviation of
0.11, then the infidelity due to intensity fluctuations is esti-
mated to be ∼0.01. In the presence of ac Stark shifts, which
are assumed to be of the same magnitudes as evaluated in the
preceding paragraph, the intensity fluctuations are converted
to frequency fluctuations, resulting in an additional infidelity
of ∼0.04. This infidelity may be removed if an ac Stark com-
pensator is introduced in the experiment. The infidelity due to
the residual thermal distribution (the average motional quan-
tum number of ∼0.04) is estimated to be ∼0.01. Other factors
of imperfections include the fluctuations of the radial secular
frequencies (actively stabilized to the order of a few hundred
hertz), heating (below ten quanta per second), magnetic-field
fluctuations, and 729-nm laser frequency fluctuations.
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