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Approximating the quantum approximate optimization algorithm with digital-analog interactions
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The quantum approximate optimization algorithm was proposed as a heuristic method for solving combi-
natorial optimization problems on near-term quantum computers and may be among the first algorithms to
perform useful computations in the postsupremacy, noisy, intermediate-scale era of quantum computing. In this
work we exploit the recently proposed digital-analog quantum computation paradigm, in which the versatility
of programmable universal quantum computers and the error resilience of quantum simulators are combined
to improve platforms for quantum computation. We show that the digital-analog paradigm is suited to the
quantum approximate optimization algorithm due to the algorithm’s variational resilience against the coherent
errors introduced by the scheme. By performing large-scale simulations and providing analytical bounds for
its performance in devices with finite single-qubit operation time we observe regimes of single-qubit operation
speed in which the considered variational algorithm provides a significant improvement over nonvariational
counterparts in the digital-analog scheme.
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I. INTRODUCTION

Quantum computing is entering an era in which classical
computers cannot simulate the behavior of programmable
quantum computers [1]. In this new era of quantum informa-
tion processing, it is likely that the first algorithms that will be
useful for solving computational problems will be heuristic in
nature. These algorithms come without provable performance
guarantees provided by the likes of Shor’s factoring algorithm
[2] or the Grover search algorithm [3] but are encouraged by
strong motivation from classical algorithm research, in that
the most effective algorithms for solving certain problems
classically are often not provably so. At present, there are two
such algorithms that are most likely to prove useful in the near
term [4]—the variational quantum eigensolver (VQE) [5] and
the quantum approximate optimization algorithm (QAOA)
[6], otherwise known as the quantum alternating operator
Ansatz [7]. These are variational algorithms, using classical
optimizer and parameterized quantum circuits to mitigate the
effects that errors may introduce on quantum devices making
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no use of quantum error correction. This work concerns the
latter of the two.

QAOA is a discrete-time hybrid quantum-classical algo-
rithm for computing solutions to problems in combinatorial
optimization. The algorithm was initially discovered to
provide greater approximation ratios than the best-known
classical algorithm for the problem type MAX-E3LIN2 [8],
a result later ceded to a quantum-inspired classical algorithm
[9]. It was demonstrated by Jiang et al. [10] that QAOA can re-
cover the square root scaling of the Grover’s search algorithm,
replicating Grover’s speed-up without the need for Grover’s
mixing operator. Hadfield et al. discovered that QAOA driving
operators can be modified such that a wide variety of prob-
lems can be solved without resorting to high-order penalty
terms usually considered in an annealing- or adiabatic-based
approach [7].

The development of QAOA was motivated by a need for
algorithms that can run on noisy, pre-error-correction devices.
Algorithms used on devices of this era will necessarily have a
degree of codesign between architecture and algorithm. Work
by Rigetti, for example, used a noisy, programmable quan-
tum device to solve a combinatorial optimization problem
inspired by the on-device layout of qubits [11]. Follow-
ing this approach, we extend the work of Parra-Rodriguez
et al. on the digital-analog (DA) paradigm of quantum
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computation [12–14], in which a device is designed and op-
erated in the style of a quantum simulator with always-on,
multiqubit interactions. We show that QAOA is a natural al-
gorithm for this setting. This paradigm, leveraged to minimize
errors associated with turning on and off gates on a quantum
device, could allow for a simpler design in which only the
timing of single-qubit gates must be considered, reducing the
control complexity and, therefore, the mechanisms through
which environmental noise can corrupt the computing system.
The problem of negative interaction times, introduced by the
aforementioned scheme, is resolved in this work by exploit-
ing periodicity in time applied of the resource interaction, or
problem solved, allowing any two-local problem to be solved
with a homogeneous resource interaction and problems ex-
hibiting periodicity (MAX-CUT, MAX-2-SAT) to be solved
with heterogeneous resource interactions.

The paper begins with a mathematical description of
digital-analog computational paradigm, QAOA, and the com-
bination thereof. The costs of compilation for embedding
QAOA within the digital-analog paradigm are examined, and
the potential hardware platforms on which digital-analog
quantum computing for this purpose could be performed are
discussed. The performance of DA-QAOA is examined using
computational simulations and the errors of the method are
analytically bounded. It is finally concluded that while using
the digital-analog scheme for QAOA results in additional er-
rors, these errors are not as damaging as in other potential
uses of the digital-analog paradigm due to the variational
nature of QAOA. The important result of this paper is that the
combination of DA computation with QAOA is synergistic.
For realistic device parameters, errors introduced by DA com-
putation do not adversely affect the performance of QAOA.

II. THE DIGITAL-ANALOG QUANTUM
COMPUTATIONAL PARADIGM

Quantum algorithms can, in general, be separated into
two classes: continuous and discrete. At the extreme end of
continuous quantum algorithms lie those of quantum sim-
ulators, devices fabricated to follow dynamics of interest
with, however, no capacity for complicated programmed time
evolution [15]. Likewise, continuous algorithms such as the
quantum adiabatic algorithm [16,17] and quantum random
walk algorithms [18,19] make use of a predefined analog
Hamiltonian with generally limited programmability to solve
computational problems. Discrete algorithms, on the other
hand, are defined in terms of sequences of digital unitary
gates. A gate-based quantum computer can perform any dis-
crete, gate-based algorithm, including Trotterized versions of
continuous algorithms [20]. Whereas, a device designed for
continuous quantum algorithms may be theoretically univer-
sal, it will generally only be able to run the restricted set of
time evolutions for which it was built—it is in theory possible
to express any discrete-time quantum algorithm (e.g., Shor’s)
as a continuous time quantum algorithm but generally not
practical [21]. Devices of analog quantum computation such
as quantum simulators can benefit from superior noise re-
silience characteristics stemming from a reduced requirement
to completely control the full dynamics of every qubit [22], as
is required in a fully gate-based, digital model.

FIG. 1. The two schemes for digital-analog computation. (a) The
stepwise or sDAQC scheme in which a series of programmable digi-
tal single-qubit gates are applied in alternation with analog resource
interactions. (b) The always-on or bDAQC scheme in which the
resource interaction is never turned off and single-qubit operations
are applied in parallel with the resource interactions. Performing the
single-qubit operations simultaneously with the resource interaction
introduces coherent errors but reduces device control requirements.
The first interaction block denoted with the time interval t0 corre-
sponds to the idle block.

The DA paradigm [12,13] is designed to take the best
features of both digital and analog quantum computing and
has been shown to yield an implementation for the quantum
Fourier transform and the Harrow-Hassidim-Lloyd algorithm,
in which significant advantages over regular digital schemes
are demonstrated for reasonable coherent-control error as-
sumptions [14,23]. The basic premise of the DA scheme is that
blocks resembling the time evolution of an analog simulator
are performed, punctuated by digital single-qubit operations.
This premise is depicted in quantum circuit form in Fig. 1.
The DA paradigm yields two options for its implementa-
tion, the stepwise scheme (sDAQC) and the always-on or
banged scheme (bDAQC), in which error is introduced to
computations due to the noncommutativity of single-qubit
operations used simultaneously with an entangling resource
interaction. This work proposes the use of an always-on re-
source (bDAQC-QAOA) on near-term quantum devices for
discrete optimization. To this aim, the stepwise scheme pro-
vides a guarantee that if single-qubit gates can be applied
sufficiently fast, no errors are introduced, and the always-on
scheme produces the same state as a standard gate-based
implementation.
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We consider a context in which we have access to a
resource Hamiltonian consisting of a sum of all possible inter-
action ZZ terms between connected qubits j, k on an n-qubit
device, each with relative strength r jk:

HResource =
n∑

j<k

r jkZ jZk, (1)

where sums in this work over qubit indices start from 1. We
use this resource as an interacting operation to simulate prob-
lem Hamiltonians required for QAOA. In sDAQC we assume
that our device has the capability for this resource Hamilto-
nian to be turned on and off, alongside the ability to perform
arbitrary single-qubit gates. We can, therefore, alternate our
resource interaction with single-qubit gates. In bDAQC we do
not assume a resource Hamiltonian can be turned off and on
but retain the ability to perform arbitrary single-qubit gates
at any time, simultaneously applied alongside the resource
interaction.

Let us assume that the resource Hamiltonian available is
an all-to-all (ATA) Ising Hamiltonian, where in the homo-
geneous case, r jk = 1 ∀ j, k (the units of r are set such that
1 represents a relevant energy scale for the device). In the
simulations and resource estimates performed in this work, we
consider only resource Hamiltonians in which no element of
r is zero. However, the following procedure does not require
an all-to-all connected resource interaction to succeed. Here,
we require only that the interactions present in the arbitrary
Hamiltonian that we intend to simulate are also nonzero in
the resource Hamiltonian. Although this is not necessary in
general [24], we assume it for the sake of simplicity. Experi-
mental settings likely to provide such resource Hamiltonians
are discussed in Sec. VII.

To use a fixed interaction resource Hamiltonian to simulate
the time evolution of an arbitrary spin glass Hamiltonian,
older techniques developed for quantum computing with nu-
clear magnetic resonance spin systems can be used. Named
average Hamiltonian theory [25,26], one can design a se-
quence of interactions and single-qubit operations such that
the time average of such evolutions is identical to that of a
Hamiltonian of interest.

There are n(n − 1)/2 individual degrees of freedom in an
arbitrary Hamiltonian to be simulated by our resource. We
will, therefore, require n(n − 1)/2 time intervals over which
the resource is applied, each with surrounding single-qubit
operations such that each block is linearly independent of
the others. In order to select the single-qubit operations with
which to surround uses of the resource interaction, one can
pick the n(n − 1)/2 ways one can select two of n qubits,
applying X gates to these qubits before and after an ap-
plication of the resource Hamiltonian [13]. This choice of
block-surrounding operations can be seen in Fig. 2 for n = 5
qubits. Between adjacent blocks, single-qubit X operators will
sometimes cancel, reducing the total number of single-qubit
gates required substantially.

The unitary evolution we wish to implement is that of an
Ising Hamiltonian with arbitrary couplings:

UArb(t ) = eiHArbt and HArb =
n∑

j<k

g jkZ jZk, (2)

FIG. 2. A quantum circuit depicting the digital-analog time evo-
lution required to simulate an arbitrary Ising Hamiltonian on five
qubits. Ten uses of a resource Hamiltonian are required, each sur-
rounded by a unique combination of single-qubit X operations.

which we wish to express as a sequence of digital-analog
blocks. One notes that the time evolution implemented by a
digital-analog block with X operators on qubits a, b is equiva-
lent that of a constant effective Hamiltonian XaXbHResXaXb as

(Xa ⊗ Xb)etabHRes (Xa ⊗ Xb) = etab(Xa⊗Xb)HRes(Xa⊗Xb). (3)

This immediately follows from the identity

eitUVU † =
∞∑

k=0

(it )k (UVU †)k

k!
= UeitV U †, (4)

valid for any unitary operator U . Using the above, we may
write an arbitrary Ising Hamiltonian as a sum of digital-analog
effective Hamiltonians, one for each of n(n − 1)/2 blocks,

HArb =
n∑

j<k

n∑
l<m

tlmr jkXl XmZjZkXl Xm, (5)

for some vector of times �t to be computed. An illustration of
this Hamiltonian applied on a five-qubit device can be seen in
Fig. 2. Using the identity XiZi ≡ −ZiXi to commute Pauli-X
operators to cancellation one obtains

n∑
j<k

n∑
l<m

tlmr jk (−1)δl j+δlk+δm j+δmk Z jZk . (6)

Through this expression we replace n(n − 1)/2 possible in-
teraction strengths gjk between qubits j, k with n(n − 1)/2
resource interaction times tlm sandwiched by single-qubit X
operators on qubits l, m. Using the linear independence of
Pauli strings, we can write

g jk

r jk
=

n∑
l<m

tlm(−1)δl j+δlk+δm j+δmk , (7)

in which finding g jk is a matrix inversion problem made
apparent by consolidating the parameter pairs l, m and j, k
each to one parameter:

κ = n(l − 1) − l (l + 1)

2
+ m, (8)

μ = n( j − 1) − j( j + 1)

2
+ k. (9)
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We arrive at a solution time vector in time scaling at most
O(n6) using Gaussian elimination on a classical computer of
a matrix with dimension n(n − 1)/2 × n(n − 1)/2 of

tκ = M−1
κμ (g/r)μ for Mκμ = (−1)δl j+δlk+δm j+δmk . (10)

For the case of n = 4, M is singular as, for example,
X1X2HresourceX1X2 = X3X4HresourceX3X4, and the condition of
linear independence of the effective Hamiltonians from dif-
ferent blocks is not met. This, however, is a special case, and
the obtained Hamiltonians are linearly independent for n > 4.
QAOA problems of interest, however, far exceed this value in
size.

An obstacle for the usage of this scheme is that any of the
times calculated in this procedure may be negative. Following
the computation of a time vector tκ providing a DA circuit
to simulate a desired Ising Hamiltonian, negative times must
be eliminated, as it is experimentally impossible to run an
always-on interaction—the nature of which we can’t tem-
porarily change—for a negative time.

III. NEGATIVE DIGITAL-ANALOG BLOCK TIMES

In this section a procedure is presented that exploits the
case in which the resource Hamiltonian is homogeneous, or
one of �g, �r takes only values with some high least common
multiple, resulting in periodic time evolution. This condi-
tion holds for the MAX-CUT and SAT problems considered
in this work (all ZZ Hamiltonian terms in Sec. V have at
least half-integer prefactors or integer multiples thereof). In
the case that the resource Hamiltonian is homogeneous, any
negative time block can simply be run for a positive time
2π + t , exploiting the periodicity of the unitary effected as
eiHt = eiH (2π+t ), for r jk = 1 ∀ j, k. As such, with homoge-
neous resource Hamiltonians we can always replace tlm with
tlm mod 2π . This technique, involving a homogeneous re-
source, is unfortunately undesirable as a method to rectify all
negative time blocks, as we will take a time interval that is
typically small and replace it with a larger time 2π − |tlm|.
This will result in a DA schedule of single-qubit gates and
analog block times requiring a longer total time to run on
hardware, incurring greater error rates.

For an inhomogeneous resource Hamiltonian we need to
consider one additional time block surrounded by no single-
qubit operations. To determine the size of this idle block
required, consider

M�t = M(�t − tmin�1 + tmin�1). (11)

M admits �1 as an eigenvector with eigenvalue λ. Intuitively,
�1 is an eigenvector of M because when applying all possible
two-X -surrounded DA blocks for an equal time, the time evo-
lutions mostly cancel out, leaving a smaller but homogeneous
effective interaction. This produces

M�t = M(�t − tmin�1) + λtmin�1, (12)

and considering a new, non-negative time vector �t∗ = �t −
tmin�1,

M�t = M�t∗ + λtmin�1. (13)

Applying all possible two-qubit-X DA blocks does not, how-
ever, result in a similar homogeneous contribution to the

simulated Hamiltonian to resource Hamiltonian ratio for all
system sizes. We wish to have an eigenvalue λ that is nega-
tive, such that when multiplied by negative tmin we produce a
positive idle time. Unfortunately, the contributions to the ratio
for NISQ-relevant cases with n > 6 are, themselves, positive.
The relation between n(n + 1)/2 + 1 time intervals and the
Hamiltonian simulated can be written as

gκ = Mκμt∗
μrκ + tidlerκ , (14)

with tidle = λtmin. We solve the negativity problem by letting
the always-on resource Hamiltonian run for time λtmin sur-
rounded by no single-qubit gates if tmin is negative. Since tidle

is negative for relevant cases of n > 6, we must use one of
two methods to change the sign of this time, depending on
whether a homogeneous or inhomogeneous resource Hamil-
tonian is available. If the resource is homogeneous we can
evolve for time tidle mod 2π , as before. This cost of running
for this positive time will only add a small contribution to
the total algorithm run-time since it only occurs once per set
of DA blocks. In realistic experimental cases, however, we
expect only nonhomogeneous resource Hamiltonians to be
available. Even with nonhomogeneous resource Hamiltoni-
ans, non-negative idle time is still possible through exploiting
properties of the simulated problem Hamiltonian. By setting
HArb → −HArb in Eq. (2) and using the fact that all ZZ
coupling constants in HArb will be integer multiples of 1/2
or zero for MAX-CUT and MAX-2-SAT problems, we can
simulate the Hamiltonian of correct sign by exploiting the pe-
riodicity of the unitary effected, as eitHProblem = ei(−t )(−HProblem ) =
ei(−t mod 2π )(−HProblem ). This factor of −1 in front of the prob-
lem Hamiltonian can then be absorbed into the matrix M in
Eq. (14), causing the eigenvalue λ to become negative. This
allows a positive idle-time correction, resolving the negative
sign issue for inhomogeneous cases.

The method presented here provides a convenient decom-
position of an arbitrary Ising Hamiltonian into time blocks of
our resource interaction surrounded by two pairs of single-
qubit rotations. The problem of negative times is resolved for
the case of resource or target Hamiltonians satisfying certain
constraints. For Hamiltonians not satisfying the aforemen-
tioned constraints, approaches including the decomposition
into multiple DA sequences satisfying these constraints, or a
strategy involving a higher number of analog blocks, could
still be pursued. To incorporate a greater number of time
blocks one could solve the under-determined linear system
�g = M�t with �t � 0, where the time vector �t is of higher di-
mension than �g and, therefore, M is no longer square (and
invertible). Approaches to solve such a problem are com-
plicated by the time non-negativity constraints and require
a quadratic programming approach. Recent work by Galicia
et al. [24] extends the digital-analog paradigm to the scenario
in which only interactions available on a device with linear,
nearest-neighbor connectivity can be used to systematically
produce an all-to-all connected arbitrary Hamiltonian. Strate-
gies for architectures that are more connected than linear, yet
not fully connected, can therefore also produce arbitrary Ising
Hamiltonians, by restriction to a linear chain or by manually
inserting the SWAP operations of a SWAP network [27], them-
selves compiled to digital-analog sequences.
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FIG. 3. A typical QAOA state preparation circuit. A problem and
driver Hamiltonian are alternated p times, applied to the |+〉n state,
followed by measurement on all qubits.

IV. THE QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

The quantum approximate optimization algorithm is a
hybrid quantum-classical algorithm in which a classical op-
timizer tunes 2p parameters �γ , �β of a quantum circuit to
maximize the objective function of a combinatorial optimiza-
tion problem. In QAOA, an Ansatz state,

|�β, �γ 〉 =
p∏

p′=1

eiβp′ HD eiγp′ HP |+〉⊗n, (15)

is generated on a quantum processor using p repetitions of
two Hamiltonians—a problem Hamiltonian HP and a driver
Hamiltonian HD—for which a quantum circuit can be seen
in Fig. 3. HP is a Hamiltonian defined by a combinatorial
optimization problem instance that we intend to solve with

HP =
2n−1∑
z=0

C(z) |z〉 〈z |, (16)

where C is the value of the optimization problem’s objective
function taking input strings z. The driver Hamiltonian in
QAOA takes the usual form of

HD =
n∑

i=1

Xi (17)

and is chosen for its ease of implementation as a noninter-
acting Hamiltonian, while still facilitating population transfer
between any two given states.

To solve a problem with QAOA, the QAOA circuit is run
a number of times and the output string measured to calculate
an expectation value of HP under the QAOA Ansatz state for
the current parameters,

〈HP〉�β,�γ = 〈�β, �γ |HP|�β, �γ 〉, (18)

as in Fig. 3. With or without some postprocessing [28], this
value is handed to a classical optimizer with the aim of pro-
ducing new parameters via a classical black box optimization
strategy. The expectation value of the problem Hamiltonian
is computed again, and the process is repeated for either a

No Yes

Calculate
expectation

Good string found?

Choose initial
parameters

End process
and output best

string found

Choose new
parameters

FIG. 4. The process followed in QAOA. A loop of calculating
expectation values and changing parameters is run until a satisfactory
string is found.

fixed amount of time or until a satisfactory solution to the
problem is discovered. A flowchart depiction of this process
is demonstrated in Fig. 4. Problem-independent success in
QAOA is measured in terms of the mean approximation ratio
defined by

〈HP〉�β,�γ
maxψ 〈ψ |HP |ψ〉 . (19)

Combinatorial optimization problems with clauses encom-
passing at most two bits can be expressed in terms of
two-qubit ZZ interactions and single-qubit Z rotations. Prob-
lems in which the clauses are local to more bits require
higher-order terms and are therefore generally out of reach
of NISQ quantum computers. Two problems discussed in the
literature that do not concern terms of order higher than 2 are
the problems of MAX-CUT and MAX-2-SAT. MAX-CUT,
defined on a problem graph in which each vertex is a binary
variable, is a problem in which the objective is to find the
graph partition such that the number of edges crossing said
partition is maximized. The clauses of the problem, or edges
of the problem graph, are of the type XOR between prob-
lem variables. XOR admits the truth table 00, 01, 10, 11 →
0, 1, 1, 0, which can be decomposed into a Z-based Hamilto-
nian following theorem 10 of Ref. [29]. A MAX-CUT clause,
therefore, manifests in the problem Hamiltonian as

HC, jk = 1
2 (I − ZjZk ) = diag(0, 1, 1, 0). (20)

The identity in this expression has no effect other than to
keep the Hamiltonian non-negative such that the diagonal
corresponds to the number of edges a given allocation cuts.

In recent literature, the problems of 2- and 3-SAT have
seen significant attention due to the presence of reachabil-
ity deficits [30] in the depth of QAOA required to find an
optimal solution. MAX-2-SAT encompasses a more general
set of problems than MAX-CUT, with MAX-CUT problems
forming a subset of possible MAX-2-SAT problems. Two
2-SAT clauses can be combined to construct a CUT clause,
but a 2-SAT clause cannot be constructed from multiple CUT
clauses, since 2-SAT clauses saliently contain single-qubit
Z terms. A 2-SAT clause between two bits can take four
forms: (b1 ∨ b2), (b1 ∨ ¬b2), (¬b1 ∨ b2), (¬b1 ∨ ¬b2). The
logical OR operation ∨ yields a truth table 00, 01, 10, 11 →
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FIG. 5. Circuit showing the decomposition of a SAT-clause prob-
lem Hamiltonian using only Z-type operators. a describes the type of
the SAT clause, with a = 0 being an OR clause between un-negated
variables.

0, 1, 1, 1 that we can express as a diagonal Hamiltonian
diag(0, 1, 1, 1) = I − |�0〉〈�0|. Using the same procedure as be-
fore, the four 2-SAT clause types have problem Hamiltonians
on the two constituent qubits of

H�a = I − |�a〉 〈�a |, (21)

which yields a Z operator decomposition as

H�a = I − 1
4 [I + (−1)a0 Z0 + (−1)a1 Z1 + (−1)a0+a1 Z0Z1],

(22)

where �a is a binary vector denoting which of the four clause
types is used. Figure 5 shows this decomposition in circuit
form.

Both MAX-CUT and MAX-2-SAT are NP-complete prob-
lems [31], meaning that any other NP-complete problem may
be reduced to these problems. Such reductions, however, are
unlikely to provide useful implementations on NISQ devices
due to large polynomial increases in the number of clauses
and variables required to express a reduced problem.

For the size of a MAX-SAT or CUT problem that is of
small enough dimension to fit on a near-term quantum com-
puter, a classical home computer can easily solve problems
with a brute force approach. With top supercomputers in the
world operating in the hundreds of petaflop per second range
[32], one can roughly estimate that such a computer running
for a day would be capable of solving at most a 70–80-bit
problem via brute force [log2(0.5 × 1018 × 602 × 24) ≈ 75].
This assumes one evaluation of a cost function per floating
point operation and is thus a generous upper bound. Competi-
tive SAT solvers do not use brute force methods but heuristics.
An annual SAT solving competition features problems on the
order of thousands or tens of thousands of bits [33]. It is yet
unknown whether NISQ algorithms will provide competitive
heuristic methods for problems in this range of 100–10 000
bits, with the greatest problem size attempted with QAOA
being 23 qubits. Such is the nature of heuristic methods that
the success or failure of quantum algorithms at this classically
difficult scale is best determined via testing real devices at
such scales.

V. DIGITAL-ANALOG QAOA

In DA-QAOA we use the DA paradigm to perform a
QAOA-approximating algorithm. We take access to the device
Hamiltonian,

HDevice(t ) = f (t )Hresource + α

n∑
i=1

(xi(t )Xi + zi(t )Zi ), (23)

where

HResource =
n∑

j<k

r jkZ jZk . (24)

In the stepwise scheme (sDA-QAOA), we assume control over
the parameters f , xi, zi, each taking values from {0, 1}. In
the banged scheme (bDA-QAOA), f is always set to 1 and
only the single-qubit parameters may be altered. The single-
qubit terms are stronger than the resource Hamiltonian by
the factor α � 1, and in typical applications α is expected to
fall between 10 and 1000, depending on architecture [34,35].
Though current devices tend to exhibit a ratio of single-qubit
rotation speed to interaction strength at the lower end of this
range, they have little to gain from faster single-qubit opera-
tions, since they are typically limited by two-qubit interaction
times and fidelity. We therefore expect that a device optimiz-
ing for DA applications could be engineered for greatly higher
ratios α. During driving in bDAQC, all single-qubit X opera-
tions are set to 1, Z terms to 0, giving a driver Hamiltonian of

HbDA-Driver =
∑
j<k

r jkZ jZk + α

n∑
i=0

Xi, (25)

applied for device time given by the variational parameter β

divided by the driver strength α with β ∈ [0, π ]. During the
DA resource Hamiltonian steering operations, we use a simi-
lar Hamiltonian in which only a specific set of single-qubit X
terms are active. As described in Sec. II, we wish to implement
a full X gate before and after each resource block. The time
to apply this gate will be 
t = π

α
. Applying the DA-QAOA

device Hamiltonian for a single QAOA layer thus effects the
following unitary:

UDA−QAOA = T exp

[
− i

∫ ttotal

t=0
HDevice(t ) dt

]
, (26)

with �x(t ) defined by the aforementioned matrix inversion
procedure, T is the time-ordering meta-operator, and �z(t ) is
used when we are solving a SAT problem. ttotal is the sum
of all times in the non-negative DA time vector multiplied
by the variational parameter γ in addition to the driving time
β/α. A depiction of this device Hamiltonian used to apply a
MAX-CUT problem Hamiltonian is presented in Fig. 6.

VI. COMPILATION COSTS OF DA-QAOA

In this section the cost in on-device time to perform
QAOA using DAQC and different resource Hamiltonians
is evaluated. We include in our comparison the time taken
by a completely digital quantum computer under reason-
able assumptions. We emphasize here that the time taken
to perform an algorithm is only a good indication of the
fidelity of the algorithm’s experimental implementation (or
quality of solution) if the device running the experiment is
coherence limited. In contemporary quantum processors, the
limitation is typically not coherence time but the error in-
curred during the use of two-qubit operations, per operation.
An evaluation of whether a device using a DAQC or DQC
paradigm performs better would require in-depth knowledge
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FIG. 6. Circuit compilations for an eight-qubit MAX-CUT problem on a five-regular graph. (a) A decomposition of the MAX-CUT
problem Hamiltonian into ZZ interactions. The lines connected to two open circles represent ZZ interactions applied for time tint . On the
right-hand side, we see that the circuit can be parallelized into six time steps, each of which sees one qubit interact with only one other
qubit at a time. Six time steps corresponds to the maximum degree of a vertex plus one. (b) The same circuit can be compiled into the
scheme of sDAQC in which a resource all-to-all homogeneous Ising Hamiltonian is turned on and off, punctuated by single-qubit gates.
This decomposition requires 20 uses of the resource Hamiltonian and 50 single-qubit X operations. The time taken to apply the problem
Hamiltonian is 5tint + 21tX . (c) Finally, we compile the problem Hamiltonian in the bDAQC scheme, in which the resource Hamiltonian
remains on throughout the procedure. This circuit only approximates the time evolution invoked by the QAOA problem Hamiltonian but can
be carried out in time 5tint and also with 49 single-qubit X operations. In the limit of infinitely fast X gates, (c) is equivalent to (a) and (b).

of the error mechanisms of a device operating in the respec-
tive paradigm. Such an analysis is expected to favor DAQC
given the reduction of errors from turning couplings on and
off.

When comparing the performance of a device making use
of the DAQC paradigm to a device running completely digital
computations, we must make fair assumptions concerning the
capability of each device. We compare the case in which both
DAQC and DQC can perform interactions between any pair
of qubits. In DQC, the key limitation we apply—besides the
differing error models that are expected to comprise the main

advantage of DAQC—is the inability to perform simultaneous
two-qubit gates on a single qubit. A given QAOA problem
Hamiltonian in DQC must therefore be decomposed into a
number of time steps. This number of time steps for a graph-
based problem can be shown to, at most, equal the maximum
vertex degree of the problem graph plus 1. DAQC, in com-
parison, applies all operations at once but must utilize many
time blocks to time average the device resource interaction to
the problem Hamiltonian of interest. An example of a QAOA
MAX-CUT problem compiled to both the DQC and DAQC is
found in Fig. 6 for a five-regular MAX-CUT problem on an
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FIG. 7. Plots showing the on-device required time for implementation of a QAOA problem Hamiltonian. In this case random Erdős Rényi
MAX-CUT problems are used with a filling factor of 0.75. Units of time are defined relative to the native device resource interaction strength.
In these plots we show the time taken when using various possible resource Hamiltonians. The left-hand side demonstrates that if the resource
Hamiltonian available varies across orders of magnitude in coupling strength, as happens in the case of an inverse power-law coupling between
qubits in an array, the time taken in the digital-analog scheme becomes extremely large (and likely impractical). The right plot shows the series
in the left excluding the inverse power-law couplings. A homogeneous resource Hamiltonian is competitive with an idealized digital compiling
scheme, though higher for qubit numbers higher than 10. The upper blue (square marker) and green (circle marker) lines demonstrate that if
we use a resource Hamiltonian with normally distributed couplings close to 1 (standard deviations 0.05 and 0.1), the time taken is longer. The
significant gap between the homogeneous and nonhomogeneous series occurs as the periodicity of the homogeneous resource Hamiltonian’s
effected time evolution can be exploited to reduce the idle time. The units for time displayed in the plot are dimensionless multiples of a
timescale defined by the resource Hamiltonian.

eight-qubit device. One notes that for this particular problem,
the DA circuit can be performed faster than the digital for
sufficiently fast X gates.

Comparisons of the time taken to implement a problem
Hamiltonian are presented in Fig. 7. In this plot we com-
pare Hamiltonians from Sec. VII with homogeneous and
inhomogeneous resource interactions. For the inhomogeneous
resource interactions, we use couplings r jk ∼ N (1, δ2), where
δ is the fractional standard deviation of the coupling strength.
Values of 5% and 10% are used for this inhomogeneity. For
the |r|−6 and |r|−3 power-law behavior, we assume that qubits
are placed on a linear array. For a fair comparison between
these resource Hamiltonian and the others, we scale the cou-
plings such that the average coupling between two qubits is
the same for all resource Hamiltonians used. Disregarding the
speed advantage from exploiting the periodicity of a homo-
geneous resource, small deviations in the couplings do not
greatly affect the compiled time. If, however, any individ-
ual coupling becomes especially small, the compilation time
grows correspondingly large.

The asymptotic scaling of the algorithm is at worst O(n2),
as n(n − 1)/2 interaction windows are needed to simulate
arbitrary Hamiltonians.

VII. HIGH-CONNECTIVITY NISQ HARDWARE
PLATFORMS FOR DA-QAOA

In this section we consider potential hardware realizations
of DA-QAOA. A NISQ device able to solve a wide variety of
combinatorial optimization problems running QAOA would
require a highly connected quantum device to avoid the need
for swapping operations. One could then utilize platforms in
which nonlocal interactions occur natively while benefiting

from the reduced control overhead provided by the digital-
analog scheme. It has been proposed to use the digital-analog
scheme to compile SWAP gates themselves to sequences of dig-
ital and analog blocks [24]. For realistic near-term hardware,
however, we expect any algorithm utilizing swap operations
to be out of reach, whether compiled to digital gates or to
digital-analog time blocks, due to their excessive contribution
to circuit depth and, therefore, decoherence.

Generally considered to be the most mature platform
for quantum computing, superconducting solid-state qubit
architectures tend to have low connectivity due to their two-
dimensional design and are, in current manifestations, not
an ideal candidate for performing DA-QAOA [36], so the
potential use of this platform was explored for DAQC in
transmon qubits utilizing the cross-resonance effect in work
by Gonzalez-Raya et al. [37]. Other systems, for example, Ry-
dberg neutral atom arrays or cold, trapped-ion architectures,
allow for native interactions between all qubits in a device.

Rydberg neutral atoms are atoms in which one or more
electrons are in a highly excited state. Excited states of these
atoms have high lifetimes owing to their large spatial extent
and, therefore, small spatial overlap with the ground state of
the atom [38]. Optical lattices of Rydberg atoms can feature
nonlocal, all-to-all van der Waals interaction scaling with
|1/r|6 for distances r greater than the optical lattice spacing.
Such an interaction is highly nonhomogeneous but could be
utilized for the digital-analog scheme.

Trapped-ion systems have demonstrated the highest fi-
delity two-qubit operations [34,39] and highest coherence
time of any existing platform [40]. These systems, however,
fail to achieve high fidelity when many qubits are loaded into
a trap. This limitation occurs due to frequency crowding of
the energy levels used to address the coupling of each ion
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FIG. 8. The percentage difference between the mean approximation ratio attained by bDA-QAOA and error-free QAOA, averaged over 50
randomly generated MAX-CUT problems with constant filling factor pclause = 0.7. Blue (dark region on the far left side of the figure) colors
indicate that the bDA-QAOA Ansatz state is worse than that provided by error-free QAOA, whereas shades of brown (the light gray region
immediately left of the white region of zero error) indicate an improvement of the bDAQC over error-free QAOA. On the x axis, the ratio α of
single-qubit to problem Hamiltonian term strength is seen where error-free QAOA exists in the limit as this ratio becomes infinite.

to the collective motional state of the trapped ions. When
the requirement for control over interactions between individ-
ual ions in a trap is relaxed, trapped-ion platforms perform
exceptionally as simulators [41], and qubit numbers compet-
itive with the best superconducting processors can be used
to explore physics outside the reach of classical simulation.
Interactions between trapped ions scale on the order of |1/r|δ
with δ typically varying between 0 and 3 [42], with r as the
distance between two trapped ions. A system utilizing a value
of δ = 0—in which the interaction is mediated by the joint
vibrational modes—would have a homogeneous coupling if
no other nonhomogeneous behavior is present between pairs
of ions. The case of δ = 3 occurs when the interaction is
mediated purely via spin-spin interactions, incurring a dipolar
decay law.

VIII. RESULTS

In this section the main computational results of our work
are presented. In the first section we present the performance
of bDA-QAOA in comparison to a standard QAOA circuit for
a set of chosen randomly generated problems. In the second
section we analyze this further to demonstrate that the algo-
rithm is performing better than one might expect for a banged
DA algorithm and that this boost in performance results from
the variational freedom of DA-QAOA.

A. Performance of bDA-QAOA

In bDA-QAOA we perform QAOA using the Ansatz state
prepared by applying QAOA layers of the form described in
Eq. (26) as

|�β, �γ 〉α,DA = Uα-DA-QAOA|+〉⊗n. (27)

bDA-QAOA introduces errors in the form of the mis-
specification of the problem and driver Hamiltonians. Be-
tween these two, due to differing times taken on device to
perform and that the driver is generic to all problems, the mis-
specification of the problem Hamiltonian is likely to introduce
more detrimental error. This problem of mis-specification is
not new to the field of quantum optimization and is known
in quantum annealing literature as J chaos, in which critical
characteristics of a problem to be solved are not correctly
incorporated into the dynamics of an annealing device. Such
issues can be fatal to the performance of adiabatic quantum
computing if error mitigation strategies are not utilized [43].
bDA-QAOA finds connection to quantum random walk al-
gorithms [44] and adiabatic quantum computing in that the
problem Hamiltonian and single-qubit driving operators are
performed simultaneously. One might therefore expect that
simply running a problem Hamiltonian at the same time as
a driver in QAOA should not be fatal; in fact, scheduled
quantum random walks and diabatic quantum computing are
active fields themselves [45,46]. Simulations performed of
bDA-QAOA in which the resource Hamiltonian is identical
to the problem Hamiltonian to be solved, such that no DA
steering single-qubit operations are required, indeed, showed
no discernible net-negative impacts when compared to error-
free QAOA.

Coherent errors occurring in bDA-QAOA with a non-
problem-specific resource Hamiltonian, however, are ex-
pected to be more damaging than the errors in QAOA with an
always-on problem Hamiltonian. These errors will result in a
less problem-specific QAOA Ansatz state which in turn would
be expected to result in a worse expected approximation ratio
at a given depth. Figure 8 displays the mean approximation
ratio attained by the bDA-QAOA Ansatz state. For high α

we see a regime in which, as expected, bDA-QAOA per-
forms identically to error-free QAOA. Secondly, we see an
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FIG. 9. The percentage difference in mean approximation ratio attained by bDA-QAOA at parameters maximizing error-free QAOA and
bDA-QAOA with optimized parameters, averaged over 50 randomly generated MAX-CUT problems with constant filling factor pclause = 0.7.
On the x axis, the ratio α of single-qubit to problem Hamiltonian term strength is seen where error-free QAOA exists in the limit as this ratio
becomes infinite. Darker colors imply that for the concerned speed ratio and qubit number, the variational nature of QAOA can account for
differences between bDA-QAOA and the ideal algorithm. This plot shows the benefit of using a variational algorithm such as QAOA over a
nonvariational algorithm in the DA context where coherent error is introduced.

intermediate regime where minor increases in the mean ap-
proximation ratio are observed. Finally, in the case of low α

we observe consistently worse results for bDA-QAOA, due to
problem mis-specification induced by coherent DAQC errors.

B. Variational resilience of DA-QAOA to DA errors

QAOA is a variational algorithm. It is expected that vari-
ational algorithms have better error tolerance properties due
to the fact that a classical optimizer can account for system-
atic coherent over- or under-rotations and other systematic
coherent errors [47], making variational quantum algorithms
appealing candidates for NISQ quantum computing. QAOA
works by finding a parameter set �β∗, �γ ∗ maximizing 〈HP〉�β,�γ .
However, when we change the QAOA Ansatz operators to
those of bDAQC, there is no clear reason why the parameters
�β∗, �γ ∗ maximizing 〈HP〉�β,�γ also maximize 〈HP〉α,DA

�β,�γ , where

〈HP〉α,DA
�β,�γ = 〈�β, �γ |α,DAHP|�β, �γ 〉α,DA. (28)

Figure 9 suggests that this is not the case and shows that
significant increase in the success probability of QAOA results
from the variational freedom of the algorithm. Figure 9 should
be understood to demonstrate the parameter regimes for which
it makes more sense to perform a variational algorithm such as
QAOA rather than a fixed gate sequence algorithm such as the
quantum Fourier transform. For high α, the error introduced
by the scheme is negligible, and both variational algorithms
and fixed sequence algorithms will perform similarly. In the
middle of the plot, a dark turquoise band can be seen, im-
plying that while a nonvariational algorithm will have low
fidelity due to the presence of DA-induced coherent errors,
the variational algorithm still functions. For low enough α,
we enter a regime in which even the variational algorithm
fails to recover any performance through altering parameters.

We interpret that this lack of ability of DA-QAOA to absorb
error in the low-α regime is a manifestation of barren plateaus
in the objective function [48]. Barren plateaus are a feature
discovered to occur in the optimization landscapes of quan-
tum neural networks. When parameterized random circuits
are used as Ansätze in variational algorithms, the gradient
of the objective function with respect to the variational pa-
rameters is observed to become exponentially small in the
number of qubits used. When α reduces to a certain value,
we interpret that the DA-QAOA Ansatz loses specificity to the
problem Hamiltonian of interest. The variational form used
for optimization no longer bears similarity to the objective
function used and is, consequently, no better an Ansatz than a
random quantum circuit. At this point of low α, we observe
that the gradient of our objective function with respect to
the variational parameters �γ , �β tends to become prohibitively
small and the approximation ratio attained therefore varies
little with differing parameters.

IX. ANALYTICAL FIDELITY BOUNDS FOR bDA-QAOA

In this section we demonstrate that the error introduced by
performing QAOA in the banged digital-analog paradigm in
comparison to regular QAOA can be analytically bounded.
In particular, we place a lower bound on the fidelity of a
state that arises from a bDA-QAOA circuit in comparison
to a state prepared by error-free QAOA. This error consists
of multiple steps, each of which is of the same nature as
that occurring when Trotterizing a Hamiltonian with noncom-
muting terms for simulation. In the case of bDAQC-induced
error there are, however, two complications. Firstly, there
is only a single Trotterization time step which cannot be
made arbitrarily small with the use of higher numbers of
Trotter blocks. Secondly, we use Trotterization in reverse in
this fidelity bound. In a usual Trotterization procedure, the
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simultaneous case is “correct” and the digitalized version
introduces error. In the digital-analog scheme, however, the
opposite is true. The sequential Hamiltonian is ideal, and
the simultaneous Hamiltonian introduces error. These differ-
ences do not affect the validity of the bound, since the bound
used in this work is valid for arbitrarily large time steps.
The bound used, to our knowledge, represents the current
lowest bound on Trotter error [49] and limits the size of
the greatest eigenvalue of an operator derived via the dif-
ference of two unitaries. The first unitary is that generated
by sequential application of two Hamiltonians A, B, with
the second generated by simultaneous application of such
Hamiltonians:

‖ exp(iA/2) exp(iB) exp(iA/2) − exp (i(A + B))‖
� 1

12‖[[A, B], B]‖ + 1
24‖[[A, B], A]‖. (29)

The system Hamiltonian during time periods in which both
the single-qubit operations and the resource Hamiltonian are
active is

HSteering, μ = α
∑
m∈Sμ

Xm + HResource, (30)

where Sμ is the index set of X operators applied following
DA time block μ. There are n(n + 1)/2 + 2 periods of time
for which we apply this bound, n(n + 1)/2 sets of single-
qubit operations following interaction blocks, one idle block,
and the driving block of the QAOA algorithm. We wish
to compute the error resulting from using this, rather than
its single-step Trotterization. Of these error-effecting blocks,
n − 3 will have four full single-X rotations, n(n − 1)/2 −
(n − 3) + 1 will have two full single-X rotations, and one,
the driver, will have n single-X rotations of duration β � π .
We can allocate A = tHR and B = tα

∑
m∈Sμ

Xm, where every
term in HR consists only of Pauli-Z strings. We can thus writ
e ∥∥e

itHR
2 eitα

∑
m∈Sμ

Xm e
itHR

2 − eit (α
∑

m∈Sμ
Xm+HR )∥∥

� α2t3

12

∣∣∣∣∣∣
∣∣∣∣∣∣
⎡
⎣

⎡
⎣HR,

∑
m∈Sμ

Xm

⎤
⎦,

∑
m∈Sμ

Xm

⎤
⎦

∣∣∣∣∣∣
∣∣∣∣∣∣

+ αt3

24

∣∣∣∣∣∣

∣∣∣∣∣∣
⎡
⎣

⎡
⎣HR,

∑
m∈Sμ

Xm

⎤
⎦, HR

⎤
⎦

∣∣∣∣∣∣

∣∣∣∣∣∣, (31)

because every block in the DA-QAOA setting will be sur-
rounded by resource blocks; it does not matter whether the
Trotterization is symmetric or asymmetric. To calculate the
first commutator, we can expand the sums and compute each
individual term:∑

m∈Sμ

∑
m′∈Sμ

∑
j<k

[[ZjZk, Xm], Xm′ ]

=
∑
m∈Sμ

∑
m′∈Sμ

∑
k>m

2[ZmZkXm, Xm′ ]

+
∑
m∈Sμ

∑
m′∈Sμ

∑
j<m

2[ZjZmXm, Xm′ ]

=
∑
m∈Sμ

∑
m′∈Sμ

∑
j �=m

2[ZjZmXm, Xm′ ]

=
∑
m∈Sμ

⎛
⎝∑

j �=m

4ZmZj +
∑

m′∈Sμ|m′ �=m

4iYmYm′

⎞
⎠. (32)

We have here assumed that the resource is homogeneous. In
a given single-qubit block there will be s possible indices in
the corresponding set Sμ. As such, we will have s(n − 1) Z
strings and s(s − 1) Y strings. The eigenvalues of sets of terms
that can be simultaneously diagonalized will add linearly. We
have two orthogonal bases in which eigenvalues are added as
such, the sums of which will add in quadrature. The greatest
eigenvalue of the entire sum in Eq. (32) can then be writ-
ten s

√
(s − 1)2 + (n − 1)2. The contribution to the bound in

Eq. (31) from this commutator can therefore be written

α2t3s
√

(s − 1)2 + (n − 1)2

3
. (33)

For a homogeneous resource the commutator in the second
term can be written as∑

m∈Sμ

∑
j, j′<k,k′

[[ZjZk, Xm], Zj′Zj′ ]

=
∑
m∈Sμ

∑
j, j′<k,k′

2(δ jm + δkm)[ZjZkXm, Zj′Zk′ ]

=
∑
j′<k′

∑
m∈Sμ

∑
j �=m

2Zj[ZmXm, Zj′Zk′ ]

=
∑
m∈Sμ

∑
j �=m

∑
j′ �=m

4ZjZ j′ZmXmZm

=
∑
m∈Sμ

∑
j �=m

∑
j′ �=m

−4ZjZ j′Xm, (34)

where the negative sign is of no consequence. We have (n −
1)2 terms per single-qubit X operator and s X operators giving
s(n − 1)2 strings. At worst, the greatest eigenvalue of this
operator sum will be equal to the number of Pauli strings. We
therefore obtain a full bound of


μ = αst3

3

(
(n − 1)2

2
+ α

√
(s − 1)2 + (n − 1)2

)
. (35)

We wish to bound the minimum fidelity of a coherent erro-
neous operation caused by using bDA-QAOA:

fα−DA−QAOA = min
ψ

‖〈ψ |U †
QAOAUα−DA−QAOA|ψ〉‖2. (36)

If the magnitude of the greatest eigenvalue of the difference
between two unitary operators is bounded as in the Trotteriza-
tion bound

‖U − Uα‖ � 
, (37)

then

‖U †Uα − I‖ � 
, (38)

which yields a bound of

‖ei|θ |max − 1‖ � 
, (39)
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where ei|θ |max is the greatest eigenvalue of U †Uα , assuming the
eigenvalues are small such that all angles lie on the interval
[−π/2, π/2]. The greatest phase acquired under the erro-
neous evolution can then be related to the greatest eigenvalue
bound as

2 sin

( |θ |max

2

)
= 
, θ = 2 sin−1

(



2

)
, (40)

where 0 < 
 < 1. Consider the fidelity of a state under an
erroneous operator Ô = U †Uimperfect corresponding to the time
step μ, during which a round of single-qubit operations are
performed:

‖〈ψ |Ô |ψ〉‖2
. (41)

We can write this in the basis diagonalizing Ô,

‖〈ψ ′|diag(ei�θ )|ψ ′〉‖2, (42)

and this fidelity is minimized when the state is an equal su-
perposition of the most positive and most negative argument
eigenstates of Ô:

min
ψ ′

‖〈ψ ′|diag(ei�θ )|ψ ′〉‖2

= 1
4‖(〈θmax| + 〈θmin|)Ô(|θmax〉 + |θmin〉)‖2

= 1
4‖〈θmax|eiθmax |θmax〉 + 〈θmin|eiθmin |θmin〉‖2

� 1
4 |ei|θ |max + e−i|θ |max |2

= cos (|θ |max)2. (43)

So the fidelity of a single-qubit block μ is

fμ � cos (|θ |max)2, (44)

or in terms of the bound of the greatest eigenvalue of this set
of single-qubit operations 
μ,

fμ � cos

[
2 sin−1

(

μ

2

)]2

� 1 − 
2
μ, (45)

with equality in the limit of small 
. Using the subadditivity
of infidelity [50] we can finally express

fα−DA−QAOA � 1 −
n(n−1)/2+2∑

μ=1

(1 − fμ) = 1 −
n(n−1)/2+2∑

μ=1


2
μ.

(46)

For one set of single-qubit rotations, the driver, all X terms are
active, giving s = n. The remaining time blocks either have
two or four single-qubit gates active determined by whether
cancellations occur. No cancellations occur for n − 3 blocks
resulting in s = 4, with the remaining n(n − 1)/2 − (n − 2)
blocks taking s = 2. The time taken to perform each block is
t = π/α. For large n we find that the speed of single-qubit
gates must increase approximately as the number of qubits
squared for high fidelity with the ideal QAOA state. While
this discussion has considered only the use of a homogeneous
resource Hamiltonian in the interest of brevity, this is not crit-
ical to the calculation of the bound. A heterogeneous resource
would result in a sum of Pauli strings with nonunit prefactors,
which could be subsequently summed straightforwardly, as in
the homogeneous case.

X. SENSITIVITY TO OTHER ERRORS

Next to the errors discussed in the previous sections that
are imminent to the hardware simplification provided by our
digital-analog approach, the algorithm is exposed to other
sources of errors common to NISQ computing. As detailed
error budgets of concrete hardware are currently hard to deter-
mine, we would like to qualitatively evaluate their impact on
our technique. A detailed evaluation of the effects of differing
noise sources applicable to digital-analog quantum computing
in comparison to a gate-based approach was performed in
[51], with results in favor of the digital-analog paradigm.

On the one hand, single-qubit gate errors induced by de-
coherence measured by T1/2 will have full impact on this
algorithm as these are repeatedly executed. Small errors of
the rotation axis will also have full impact, as they can be
mistaken for a modified problem Hamiltonian. Errors of the
rotation angle can be expected to be less critical, as some
of them can be accommodated in the classical optimization
process. So all in all, single-qubit errors have the same if
somewhat smaller impact than in a compiled gate model
QAOA.

Two-qubit gates do not appear directly in our scheme, thus
avoiding two-qubit gate control errors as well as the additional
entry points for noise through fast two-qubit control ports.
However, the interaction mediated by the problem Hamilto-
nian can still create entangled states, which decay faster than
nonentangled states. Notably, an n-qubit Greenberger-Horne-
Zeilinger (GHZ) state dephases in a time T2/n [52]. The
precise degree of entanglement needed for a specific problem
instance is currently unknown for any quantum optimization
algorithms. Yet we can summarize that the sensitivity of
digital-analog QAOA to two-qubit errors is lower than the
compiled version. Given a single-qubit error rate, alongside
the total execution time of the algorithm relative to T2, the
depth at which this algorithm can be faithfully executed could
be inferred.

In this estimate we need to keep in mind whether coherent
over-rotation errors have an effect different to incoherent er-
rors. This case could occur if they interfered in a structured
way. Given the randomization effect of the problem Hamil-
tonian to any state, this is unlikely and we expect that their
impact is faithfully represented by the measured fidelity.

XI. CONCLUSION

The possibilities of using models of quantum computation
less conventional than the standard-gate-based approach have
not been fully considered. In this work, we show that while
an alternative approach—the digital-analog paradigm—might
introduce errors of its own, the device complexity required
to control the time evolution of the system can be reduced,
and errors introduced are of a nature that can be nonfatal
to variational algorithms such as QAOA in certain regimes.
We demonstrate that the digital-analog paradigm is an ideal
setting in which to do QAOA, as each problem Hamiltonian
operator can be performed in a single DAQC block, that re-
source Hamiltonians expected from hardware can be utilized
to implement QAOA Hamiltonians mitigating swapping over-
head associated with mainstream approaches, and that QAOA
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displays error resilience beyond that of preprogrammed algo-
rithms in the digital-analog paradigm. This work may provide
new possibilities for the design of NISQ devices for combina-
torial optimization, bridging the gap between current devices
and full, fault-tolerant quantum computers, bringing hardware
closer to the point of demonstrating a quantum advantage for
real-world problems.
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