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The ideal measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all
detector side-channel attacks, is built on the Bell state measurement of two single-photon states. However, in
practical MDI-QKD where phase-randomized weak coherent pulses (PR-WCPs) are used, the mismatch between
states preparation and measurement in X basis leads to the bit error rate of more than 25%, which poses a
challenge to the security of QKD. In this paper, we provide a security analysis of practical MDI-QKD based on
polarization coding. We analyze the Hong-Ou-Mandel interference of PR-WCPs and Poisson-distributed photon
number states (PNs), and find that these two sources are equivalent in MDI-QKD. The security analysis based on
entanglement distillation is carried out on PNs, and the measurement results in Z basis and X basis are averaged
to overcome the noncorrelation of the error rates in these two bases. Compared with GLLP scheme, a tighter key
rate is obtained in this work, and the key rate deviates from the linear key rate bound in a short distance due to
the finite proportion of multiphoton terms.
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I. INTRODUCTION

Quantum key distribution (QKD) is a way to generate
a set of shared random numbers for two far separated par-
ties, Alice and Bob, for encrypted communication through
the transmission and measurement of quantum states [1–3].
Its unconditional security is guaranteed by the principle of
quantum mechanics. However, the gap between ideal devices
and realistic devices in real-life implementation of QKD,
such as imperfection of source and detector, may provide the
eavesdropper, Eve, with opportunities to carry out source-
side [4–6] and detection-side attacks [7–11]. The combination
of decoy-state method [12–15] and measurement-device-
independent QKD (MDI-QKD) [15–23] ensures the security
of practical QKD despite the imperfect source and detector.
Inspired by MDI-QKD, twin-field QKD (TF-QKD) [24–26],
phase-matching QKD (PM-QKD) [27–29], and sending-or-
not sending QKD (SNS-QKD) [30–33], have been proposed,
where information is carried by wavelike state. The security
of these QKDs have been studied based on entanglement
distillation protocol (EDP), which can be used to verify the
security of a QKD against the most powerful channel attacks.
However, the practical MDI-QKD with imperfect source
and detection still needs further detailed EDP-based security
analysis.

MDI-QKD is a time-reversed version of entanglement-
based QKD protocol [29,34–36], in which correlation mea-
surement based on two-photon coincidence counting is
used to eliminate all the detector generated side-channel
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information about the transmitted quantum states. The core
component of MDI-QKD is Bell state measurement (BSM),
which involves two-photon Hong-Ou-Mandel (HOM) inter-
ference [37,38] in some of its measurements. The visibility of
HOM interference will have a non-negligible impact on the
BSM results, so the key rate will be affected accordingly. The
ideal MDI-QKD is built on the single-photon sources [16]
where 100% visibility of HOM interference can be reached.
Due to the lack of mature commercial single-photon sources,
the phase randomized weakly coherent pulses (PR-WCPs) are
always used as the source, for which the HOM interference
visibility is only about 50%. This will lead to the mismatch
between state preparation and measurement in X basis, and a
large bit error rate (BER) will be caused in X basis [17,18,39].
The imperfection of BSM of PR-WCPs will also cause the
noncorrelation of error rate between Z basis and X basis,
which will bring challenges to security analysis. In principle,
all errors may provide shield for eavesdroppers and cause the
loss of information. Thus, security analysis should take all
errors into account.

In this paper, we give a theoretical study on the security
of PR-WCPs-based MDI-QKD with polarization coding. The
core of this work is to analyze all possible decoding errors
caused by the imperfection of BSM of PR-WCPs, and take
them into account in security analysis. First, we analyze the
HOM interference of PR-WCPs and the Poisson distributed
photon number state (PNs), so as to establish the equivalence
of these two light sources in MDI-QKD. Next, according
to the BSM results of PR-WCPs, we construct a posteriori
probability decoding table to analyze the possible BER in Z
basis and X basis. Finally, we use PNs to analyze the BER
and phase error rate (PER) in Z and X bases in the security
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FIG. 1. Schematic diagram of MDI-QKD.

proof based on entanglement distillation protocol (EDP), and
take them into account in the extraction of the final key.

II. REVIEW OF MDI-QKD

Figure 1 is the schematic diagram of MDI-QKD, in which
Alice and Bob each prepare a single-photon state randomly
selected from two mutually unbiased bases (MUBs), and then
send them to the third party Charlie for BSM. In MDI-QKD,
BSM of the states does not need basis switch, so any attack on
the side information about detection can be eliminated. In fact,
in polarization coding, the joint states in Z basis are the eigen-
states of BSM in Fig. 1, which is why the BER can be very
low in Z basis even if Alice and Bob send non-single-photon
states [39]. While in X basis, the correlation measurement of
BSM strongly depends on the visibility of HOM interference,
which is determined by the indistinguishability of modes and
the fidelity of the single-photon state. In the ideal MDI-QKD,
the HOM interference with 100% visibility can ensure that
the joint states in X basis are the eigenstates of the correla-
tion measurement of BSM. While in the practical MDI-QKD
where both Alice and Bob send PR-WCPs, the BSM in X
basis will produce a non-negligible BER. The large difference
in the BSM results between Z basis and X basis implies that in
the security analysis based on EDP, we should not directly use
the key rate formula obtained from BB84-QKD. PR-WCPs
are usually regarded as Poisson distributed PNs because they
have the same density of states. This model has achieved a
great success in the security analysis of BB84-QKD. How-
ever, whether these two light sources are equivalent in BSM
still needs further proof.

Here we first compare HOM interference of PR-WCPs and
Poisson distributed PNs, which is the decisive factor in BSM
measurement. We assume that the single-photon state, the
basic unit of these two light sources, has a Gaussian spectral
distribution centered on ω0

|�(ω0)〉 = (2π�)
1
4

∫ ∞

−∞
exp

[−(ω − ω0)2

4�

]
â†

ω|0〉dω, (1)

FIG. 2. Comparison of the HOM interference for single-photon
source, Poisson distributed PNs and PR-WCPs.

where � is the shape factor of the Gaussian envelope, â†
ω

is the generating operator at frequency ω. Its time domain
counterpart can be obtained by Fourier transform

|�(t0)〉 =
(√

2�

π

) 1
4 ∫ ∞

−∞
exp[−�(t − t0)2 + iω0(t − t0)]

× â†
t |0〉dt, (2)

which is a Gaussian-shaped pulse centered on t0, where â†
t is

the generating operator at time t . Therefore, we have the time
domain WCP

∣∣�t0

〉
C =

(
2�

π

) 1
4
∫ ∞

−∞

∣∣√μt−t0 eiθt−t0
〉
Cdt, (3)

where |√μeiθ 〉C = e− μ

2
∑∞

k=0
μ

k
2 eikθ

k! (â†)k|0〉 is the coherent
state with an average photon number of μ and a phase of θ ,
μt−t0 = μ exp[−2�(t − t0)2] is the Gaussian-shaped ampli-
tude factor, θt−t0 = ω0(t − t0) is the time-dependent phase of
the WCP. In the slowly varying amplitude approximation with
� � ω0, the amplitude μt−t0 can be regarded as a constant
when θt−t0 continuously varies from 0 to 2π . In Fock represen-
tation, the PR-WCPs is equivalent to the Poisson distributed
PNs [40],

ρ̂M = e−μt−t0

∞∑
k=0

μk
t−t0

k!
ρ̂k, (4)

where ρ̂k = |k〉〈k| is the density of state with k photons and

its probability is pk = e−μt−t0
μk

t−t0
k! . If the value of μ is small

enough, the single-photon state accounts for a large proportion
except the vacuum state. This is the most commonly used light
source model in practical BB84-QKD.

The HOM interference can be expressed by the joint prob-
ability of the two outputs of the interferometer, as shown
in the left inset of Fig. 2. For Poisson distributed PNs, the
photon number state |n〉 is sent to the interferometer with a
probability of pn = e−μ μn

n! , where μ is the average photon
number of PNs. We denote the joint probability as pna,nb
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when there are na and nb photons incident on the a-side
and b-side of the 50 : 50 beam splitter (BS). Here it should
be noted that even though the single-photon state occupies
a large proportion in the PNs for μ small enough, but the
multiphoton terms also have comparable contributions in the
HOM interference. For example, the joint probabilities that
one side of the incident end is a vacuum state while the other
side is a two-photon state is equal to that both sides are single-
photon states. In this case, the total joint probability pPNs is
the weighted sum of the terms of different photon number
combination

pPNs(�) ≈
m+n=4∑
m+n=2

pm pn pm,n(�) + O(pm+n>4), (5)

where O(pm+n>4) is the high-order infinitesimal term with
m + n > 4. This term can be omitted in the simulation when
μ is small enough. The details of the derivation of pm,n are
given in Appendix A.

For PR-WCPs, the probability of photon state detection is
proportional to the average number of photons μ in the WCP,
which can be reflected from the linear bound in BB84-QKD.
Therefore, the HOM interference of this light source can also
be regarded as the second-order correlation of the light inten-
sities,

pWCP ∝
∫ 2π

0
dθa

∫ 2π

0
dθbIL(θa − θb,�)IR(θa − θb,�)

= 1

2

[
1 − 1

2
exp(−��2)

]
, (6)

where IL and IR are the light intensities on the left-hand side
and right-hand side of the outputs of the BS, θa and θb are
the global phases of the PR-WCPs incident on the a-side and
b-side of the BS. A detailed derivation of Eq. (6) is given in
Appendix B.

Figure 2 shows the comparison of time domain HOM in-
terference for Poisson distributed PNs and PR-WCPs from
Eqs. (5) and (6). These two light sources are assumed to
have the same pulse width, and all the joint probabilities
are normalized to their maximum values. In this figure, the
average number μ is set to 0.311, which is the optimal
value for key extraction in Sec. IV. We can see that the two
curves almost coincide, which directly proves the equiva-
lence of the two light source models in BSM. The right inset
shows the amplification of the dip of the HOM curves, the
omission of the high-order terms will almost cause 0.15%
deviation between the curves of these two models. As the
average photon number μ continues to decrease, we can ex-
pect that the deviation between them will tend to 0. This
means that the security analysis of practical MDI-QKD from
the perspective of Poisson distributed PNs and PR-WCPs are
equivalent.

III. VIRTUAL PROTOCOL OF MDI-QKD

In polarization encoded MDI-QKD, Alice and Bob de-
code the key according to Charlie’s BSM results and their
bases information. For ideal single-photon sources, there are
only four coincidence detection events, which are D1HD1V,
D2HD2V, D1HD2V, and D2HD1V. In practical MDI-QKD with

TABLE I. The normalized a posteriori probability of key de-
coding p(AB|C) for Alice and Bob based on Charlie’s BSM results.
Here, C is taken from four effective joint detection events D1HD1V,
D2HD2V, D1HD2V, and D2HD1V, AB ∈ {|	〉, |�〉}. If |�〉 is decoded,
Alice or Bob need to flip her or his bit, otherwise they do nothing to
their bits.

p(AB|C) D1HD1V D2HD2V D1HD2V D2HD1V

Z 	 0 0 0 0
basis � 1 1 1 1

X 	 3
4

3
4

1
4

1
4

basis � 1
4

1
4

3
4

3
4

PR-WCPs as the source, Alice and Bob send the WCPs
|√μeiα〉A,PA and |√μeiβ〉B,PB to Charlie for BSM, where α and
β are the randomized phases, the subscripts PA, PB denote the
polarizations of the MUBs with PA, PB ∈ {H,V } in Z basis
and PA, PB ∈ {+,−} in X basis. Here, H,V represent the
horizontal and vertical polarizations, +,− represent the +45◦

and −45◦ polarizations, and they satisfy |±〉 =
√

2
2 [|H〉 ±

|V 〉]. Because the WCPs, can be regarded as a semiclassical
light source, so the joint detection probability is propor-
tional to the second correlation of the light intensity at each
output,

p(Dj,P, Dj′,P′ ) ∝ 〈I j,PIj′,P′ 〉, (7)

with the subscripts j, j′ ∈ {1, 2} and P, P′ ∈ {H,V }. A de-
tailed calculation of the joint probabilities is given in
Appendix C. Here, in addition to the detection events in ideal
MDI-QKD, there are other two detection events D1HD2H and
D1VD2V. It is easy to prove that these two detection events are
invalid here. If the WCPs are prepared in Z basis, when Alice
and Bob use the same polarization, these two detection events
will provide information about the key for the eavesdropper,
and when Alice and Bob use different polarizations, these two
detection events cannot provide the correct decoding informa-
tion for Alice and Bob. If the WCPs are prepared in X basis,
by comparing Eqs. (C5) and (C7), we can see that these two
detection events will not provide any information for Alice’s
and Bob’s key extraction.

Accordingly, the normalized a posteriori probability of
key decoding p(AB|C) based on these four effective detection
events can be obtained, as shown in Table I. Here, the symbols
	 and � learn from the writing habits of the Bell states,
which determine the bit correlation between Alice and Bob.
If 	 is inferred, than Alice and Bob are assumed to have the
same bit, or else their bits are assumed to be different. In this
table we can see that the BER in Z basis is 0, while the BER
in X basis is 25% due to the imperfection of the BSM of
PR-WCPs. The large BER difference between the two bases
caused by BSM is what we need to consider in the security
analysis.

Here, the security of PR-WCPs-based MDI-QKD with
the a posteriori probability in Table I will be analyzed with
EDP. This security analysis method has achieved remarkable
success in BB84-QKD [41,42]. Although MDI-QKD evolved
from BB84-QKD, there are great differences between them at
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the detection end, which requires special attention in security
analysis. In BB84-QKD, the measurement of quantum states
is carried out by one of the communication participants with
properly selected basis, where no additional errors will be
caused by measurement, and the PER in Z basis is equal to
the BER in X basis. While in MDI-QKD, there is no basis
switch for the measurement of quantum states. Especially in
X basis, PR-WCPs is not the eigenstate of BSM, and a large
BER will be produced by in X basis, as shown in Table I.
In addition, the effective detection events of Z basis and X
basis have different gains. In the security analysis, all these
problems should be taken into account.

Here, we will analyze and compare the virtual protocols
of BB84-QKD and MDI-QKD based on the virtual entangle-
ment with an ancillary state, so as to find a solution to these
problems in practical MDI-QKD.

Virtual protocol of BB84-QKD. B1: Alice generates N
ancillary qubits A′ initialized to |+〉 =

√
2

2 [|0〉 + |1〉], N po-
larization encoded states A initialized to |H〉 and a random
string K = k1, k2, . . . , kN of length N . Alice applies the CNot
gate to qubits A′ and states A to generate the EPR pair
|	+

Z 〉A′A =
√

2
2 [|0〉|H〉 + |1〉|V 〉]. She keeps A′ and sends A to

Bob via a quantum channel. Before sending, she performs a
Hadamard operation on A to transform the ith EPR pair to
|	+

X 〉A′A =
√

2
2 [|0〉|+〉 + |1〉|−〉] when the value of the random

number ki is 1, or else she does nothing.
B2: After Bob receives all the states A, Alice announce

the random number string K publicly. For each time, Bob
performs Hadamard operation on the received state when the
value of K is 1.

B3: Alice and Bob use EDP or quantum Calderbank-Shor-
Steane (CSS) codes to distill m EPR pairs with fidelity of
almost 100% from those EPR pairs polluted by channel noise.
Finally, Alice and Bob conduct Z measurement on the distilled
EPR pairs to obtain a set of shared random numbers. Here we
extend the virtual protocol of BB84-QKD directly to MDI-
QKD.

Virtual protocol of MDI-QKD. M1: Similar to the state
preparation in BB84-QKD, Alice first generates N ancillary
qubits A′ initialized to |+〉A =

√
2

2 [|0〉 + |1〉], N polarization
encoded states A initialized to |H〉A and a random string
KA = kA

1 , kA
2 , · · · , kA

N of length N . Alice applies the CNot gate
to qubits A′ and states A to generate the EPR pair |	+

Z 〉A′A =√
2

2 [|0〉A′ |H〉A + |1〉A′ |V 〉A]. Whenever the value of kA
i is 1,

Alice performs a Hadamard operation on A to transform the
i-th EPR pair to |	+

X 〉A′A =
√

2
2 [|0〉A′ |+〉A + |1〉A′ |−〉A]. Sim-

ilarly, Bob generates N ancillary qubits B′, N polarization
encoded states B, a random number KB, and he applies the
CNot gate to B′ and B to obtain the EPR pairs |	+

Z 〉(N )
B′B =√

2
2 [|0〉B′ |H〉B + |1〉B′ |V 〉B]. Whenever the value of kB

i is 1,
Bob performs a Hadamard operation on B. Alice and Bob keep
A′ and B′, and send A and B to the third party Charlie for BSM
through two identical quantum channels.

M2: After Charlie completes the BSM of all states, Alice
and Bob publicly announce KA an KB. At each time j, when
kA

j �= kB
j , that is, they use different bases, they discard the

corresponding ancillary qubits. If both of them use Z bases,
and detectors DLHDLV or DRHDRV click, they need do nothing

to their ancillary qubits. If detectors DLHDRV or DRHDLV click,
Alice or Bob performs σZ on his ancillary qubit. If both of
them use X bases, and detectors DLHDLV or DRHDRV click,
Alice or Bob performs σZ on his ancillary qubit. If detectors
DLHDRV or DRHDLV click, one of them perform σX σZ on
the ancillary qubit. After this step, A′ and B′ are quantum
correlated.

M3: Alice and Bob use EDP or quantum CSS code to distill
EPR pairs with fidelity of 100% from A′B′ polluted by channel
noise. Finally, Alice and Bob conduct Z measurement on the
distilled EPR pairs to obtain a set of shared random numbers.

In conventional BB84-QKD and MDI-QKD, the use of
MUBs is to ensure the security of quantum key by the uncer-
tainty principle of quantum mechanics. In the above protocols
based on virtual entanglement, we can see that both Z basis
and X basis can be used to estimate the BER and PER of
the channels, and these two bases play the same role in the
generation of key.

IV. SECURITY ANALYSIS OF MDI-QKD BASED ON
ENTANGLEMENT DISTILLATION PROTOCOL

In the following, we will use the virtual protocol to ana-
lyze the security of practical MDI-QKD. Since PR-WCPs is
equivalent to the Poisson distributed PNs in BSM, we will
deduce the EDP-based key rate of MDI-QKD in Fock state
representation. In Z basis, the non normalized joint state sent
by Alice and Bob to Charlie is

|ϒ〉Z
m,n = AmAn

2
√

m!n!
[|0〉A′ (â+

H )m + |1〉A′ (â+
V )m]

⊗ [|0〉B′ (b̂+
H )m + |1〉B′ (b̂+

V )m]|0〉, (8)

where m, n are the photon numbers sent by Alice and Bob,
Am, An are the probability amplitudes of the corresponding
photon number states, â+

H , â+
V are the generation operators

of the photon state of horizontal and vertical polarizations
at Alice, and b̂+

H , b̂+
V are the generation operators at Bob.

Considering the effective detection events in Table I, after the
PNs passing through the BSM setup, the following state can
be obtained

|ϒ〉Z
m,n =

√
2AmAn√
m!n!

(√
2

2

)m+n

[(|�+〉 + |�−〉)(id̂+
1H + d̂+

2H )m

× (d̂+
1V + id̂+

2V )n + (|�+〉 − |�−〉)(id̂+
1V + d̂+

2V )m

× (d̂+
1H + id̂+

2H )n]|0〉, (9)

where d̂+
jH , d̂+

jV are the generation operators of the states at
D jH , D jV with j = 1, 2. For m = n = 1, this is equivalent to
the ideal MDI-QKD

|ϒ〉Z
1,1 =

√
2A1A1

2
[(d̂+

1H d̂+
1V + d̂+

2H d̂+
2V )|�+〉

+ (d̂+
1H d̂+

2V + d̂+
2H d̂+

1V )|�−〉]|0〉, (10)

so that Eq. (10) is equivalent to the BSM of the Z basis in
Table I, and the symbol � denotes the anticorrelation between
ancillary qubits A′ and B′. Here we set |	+〉 as the standard
Bell state, that is, the final Bell state to be obtained by entan-
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glement distillation. Hence, if D1H D1V or D2H D2V click, Alice
or Bob need to perform σX operation on the ancillary qubit,
if D1H D2V or D2H D1V click, Alice or Bob need to perform
σX σZ operation on the ancillary qubit. For Poisson distributed
PNs, in addition to the single-photon state, there will be the
situations that Alice or Bob send a multiphoton state. Actually,
Alice and Bob can not tell the number of photons they have
sent at each time, but only know the probability distribution of
the photon number states. Therefore, they treat every effective
detection result as generated by single-photon states. Besides,
in Z basis, sending vacuum state on either side can not produce
effective detection events.

In WCPs assumption, we only focus on the joint states
with m � 1, n � 1 and m + n � 4, any contributions from
m + n > 4 can be incorporated into the high-order infinites-
imal term O(ρZ

m+n>4). If m �= n, after Charlie’s measurement,
the joint state of Alice and Bob will reduce to the mixed state
of |	+〉 + |	−〉 and |	+〉 − |	−〉. Before entanglement dis-
tillation, Alice and Bob first use bilateral rotation operation to
transform the mixed state into the mixture of Bell states. After
this step, we can get the following non-normalized density of
state with Bell state diagonalization in Z basis conditioned on
Charlie’s detection results:

ρZ
1,1 = Q1,1

2
ρ	+ , ρZ

1,2 = ρZ
2,1 = Q1,2

8
(ρ	+ + ρ	− ),

ρZ
1,3 = ρZ

3,1 = Q1,3

16
(ρ	+ + ρ	− ),

ρZ
2,2 = Q2,2

16
(ρ	+ + ρ	− ),

O(ρZ
m+n>4) � 1

2
(1 −

m+n=4∑
m+n=0

Qm,n)
I

4
, (11)

where Qm,n = Qn,m = A2
mA2

n is the collision probability when
the state of A is |m〉 and the state of B is |n〉, ρ	 = |	〉〈	|
with 	 = {	+,	−, �+, �−}, I is the identity operator I =
ρ	+ + ρ	− + ρ�+ + ρ�− . In practical QKDs where the light
is transmitted in fibers, then the probability amplitude is Am =
e−μ μm

m! with μ = μ0ηlηd , where μ0 is the average photon
number of the PR-WCPs sent by Alice and Bob, ηl is the
transmittance of the quantum channel, ηd is the detection effi-
ciency of the single-photon detectors. As all the transmission
losses are incorporated into μ, the triple detectors click events
are regarded as invalid. Then the total non-normalized density
of states of A′B′ is the sum of each term in Eq. (11)

ρZ =
m+n=4∑

m=1,n=1

ρZ
m,n + O

(
ρZ

m+n>4

)
. (12)

We can see that even though no bit flip error occurs in Z basis,
there are still phase flip errors caused by multiphoton states.

If the PNs are prepared in X basis, Alice and Bob perform
Hadamard operations on A and B to transform Eq. (8) into the
following form:

|ϒ〉X
m,n = AmAn

2
√

m!n!
[|0〉A′ (â+

+)m + |1〉A′ (â+
−)m]

⊗ [|0〉B′ (b̂+
+)n + |1〉B′ (b̂+

−)n]|0〉, (13)

where â+
+, â+

− are the generation operators of states |+〉 and
|−〉 at Alice, and b̂+

+, b̂+
− are the generation operators at Bob.

Here it should be noted that even though the PR-WCPs are
prepared in ±45◦ polarizations, but the final measurement
of BSM is completed in Z basis. This leads to the fact that
the BSM of PNs in X basis is more complex than that in Z
basis, and the gains and error rates may differ in these two
bases. For example, in X basis, the cases that one of Alice and
Bob sends a two-photon state while the other sends a vacuum
state also contribute to the effective detection events. In WCPs
approximation, we may reasonably assume that the effective
detection events in X basis are mainly contributed by the cases
of 2 � m + n � 4. We first discuss the case of m = n = 1,
which is also equivalent to the ideal case. The joint state after
the PNs passing through the BSM setup is

|ϒ〉X
1,1 = −

√
2A1A1

4
[|	−〉(d+

1H d+
1V + d+

2H d+
2V ) + i|�−〉

× (d+
1H d+

2V + d+
2H d+

1V )]|0〉. (14)

In the assumption that |	+〉 is the standard Bell state, when
D1H D1V or D2H D2V click, Alice or Bob perform the σZ op-
eration on the ancillary qubit, and if D1H D2V or D2H D1V

click, Alice or Bob perform the σX σZ operation. Cases such
as m = 0, n = 2 or m = 2, n = 0 are also of concern because
they have the same collision probability as m = n = 1 in the
light source, and they are the main sources of BER and PER
in X basis. The non-normalized joint state with m = 0, n = 2
after PNs passing through the BSM setup is

|ϒ〉X
0,2 = −A0A2

4
(|	−〉 − |�−〉)(−id+

1H d+
1V + id+

2H d+
2V

+ d+
1H d+

2V + d+
2H d+

1V )|0〉, (15)

the ancillary qubits reduce to a pure state (|	−〉 − |�+〉)
conditioned on Charlie’s effective detection results. Since the
values of m and n are unknown, Alice and Bob can only
perform appropriate operations according to the measurement
results announced by Charlie. Then Alice and Bob use bilat-
eral rotation to transform A′B′ into a mixture of Bell states.
Following the same steps, we can get the density of states in
different cases

ρX
1,1 = Q1,1

2
ρ	+ ,

ρX
0,2 = ρX

2,0 = Q0,2

4
(ρ	+ + ρ�+ ),

ρX
0,3 = ρX

3,0 = 3Q0,3

32
(ρ	+ + ρ	− + ρ�+ + ρ�− ),

ρX
1,2 = ρX

2,1 = Q1,2

32
(9ρ	+ + 9ρ	− + ρ�+ + ρ�− ),

ρX
0,4 = ρX

4,0 = Q0,4

64
(4ρ	+ + 3ρ	− + 4ρ�+ + 3ρ�− ),

ρX
1,3 = ρX

3,1 = Q1,3

16
(4ρ	+ + 3ρ	− + ρ�+ ),

ρX
2,2 = ρX

2,2 = Q2,2

64
(12ρ	+ + 18ρ	− + ρ�− ),

O
(
ρX

m+n>4

) = O
(
ρZ

m+n>4

)
. (16)
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FIG. 3. Comparison of BER and PER in (a) Z basis and (b) X basis. In this figure, the average photon number μ is set to 0.3 when the
communication distance is 0 km.

The total density of states of A′B′ for entanglement distillation
in X basis is

ρX =
m+n=4∑
m+n=2

ρX
m,n + O

(
ρX

m+n=4

)
. (17)

By comparing Eqs. (16), (17) and Eqs. (11), (12), we can find
that the density of states for A′B′ in X basis is different from
that in Z basis, so the parameters such as BER, PER, and
measurement gain between these two bases are not correlated.

V. KEY RATE OF MDI-QKD

From the viewpoint of security analysis based on EDP,
there are two factors that affect the key rate of QKD: the gain
of the measurement; the BER and PER caused by various
channel noise. There has been a lot of evidence that in PR-
WCPs-based MDI-QKD, the measurement parameters in Z
basis and X basis are not correlated. This can be reflected
in the large error rate difference between these two bases.
Figure 3 shows the BER and PER with respect to the com-
munication distance in Z basis and X basis, the simulation
data in this figure are taken from Eqs. (11) and (16). Here,
the photons are assumed to be transmitted in two identical
optical fibers with a transmission loss coefficient of βl = 0.2
dB/km, and the corresponding quantum channel transmit-

tance is ηl = 10− βl L
10 where L is the transmission distance.

In addition, we only consider the influence of BSM of PNs
on entanglement distillation, and ignore the influence of any
noise from quantum channel and detection. Then one can
find that the transmission distance is actually related to the
intensity of the PR-WCPs. The average photon number μ is
set to 0.3 at the transmission distance of 0 km.

In this figure, we can see that the virtual channel for EDP
is asymmetrical in both bases, and the BER and PER between
these two bases are not correlated. In Z basis, as shown in
Fig. 3(a), the PER eP

Z is almost 0 at low light intensity and
increases with the light intensity, while BER eB

Z is equal to
0 in the whole communication distance, which is consistent
with the prediction of the BER in Table I. Therefore, in Z

basis, the BSM of PR-WCPs could generate finite PER that
will influence the rate of entanglement distillation. In X basis,
as shown in Fig. 3(b), the maximum value of BER eB

X is 0.25
and decreases with light intensity. While the value of eP

X has
the similar light intensity dependence as eP

Z but with a lower
increasing rate. In X basis, as the total error rate eB

X + eP
X

increases with the light intensity, so the rate of entanglement
distillation will decrease at a higher value of μ. Consider-
ing the practical error correction inefficiency, almost no Bell
states can be distilled in X basis.

By comparing Fig. 3 and Table I, we find a counterintuitive
phenomenon that under a relative high light intensity, the BER
obtained by EDP deviates from that obtained by prepare-and-
measure schemes. Here, the prepare-and-measure scheme is
that both Alice and Bob prepare a quantum state, and send
them to Charlie for measurement. In Table I, we have eB

Z = 0
and eB

X = 25% and both of them are light intensity indepen-
dent, the BER in Z basis is consistent with that in Fig. 3, but
the BER in X basis is inconsistent with that in Fig. 3. This
means that due to the imperfection of BSM, the commutation
relation between bit measurement and quantum operations,
such as bit error correction and phase error correction, in
EDP-based security proof is not always valid. The results
in Table I corresponding to the case that bit measurement is
conducted before entanglement swapping, while the results
in Fig. 3 correspond to the case that Z basis is conducted
after entanglement swapping. This deviation is totally caused
by multiphoton terms and it will disappear when the light
intensity decreases.

Another factor that affects the key rate is the gain of the
measurement results. Figure 4 shows the comparison of the
measurement gains between Z basis and X basis for μ = 0.2
and μ = 0.5 in logarithmic coordinate. In this figure, we can
see that all the measurement gains satisfy the linear bound
of QKDs with the particle nature of light as the information
carrier and they are proportional to the channel transmittance.
Under the same light intensity, the Z basis and the X basis
have different measurement gains, QX is almost twice that
of QZ . Therefore, not only the bit error rates and phase error
rates are uncorrelated between these two bases, but also their
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FIG. 4. Gain comparison between Z basis (blue curves) and X
basis (red curves) for μ = 0.2 and μ = 0.5 in logarithmic coordinate.

measurement gains are unequal. So, the conventional con-
jugation measurement in the EDP-based security proof is
questionable here.

According to the virtual protocol of MDI-QKD, one way
to solve the above problems is to mix the measurement results
of Z basis and X basis. In this case, the total density of states
of A′B′ is the average of that in Z basis and X basis,

ρ = 1
2 (ρZ + ρX )

= p	+ρ	+ + p	−ρ	− + p�+ρ�+ + p�−ρ�− , (18)

where p	 is the gain of state ρ	. In addition to the errors
caused by BSM of PR-WCPs, there are also other errors due to
the imperfection of practical experiments, such as dark counts
of single-photon detectors, optical misalignment errors. As-
sume that the four independent single-photon detectors have
the same dark count rate pd, and the error rate of dark counts is
1
2 , and the gain contributed by dark counts is 4p2

d. The optical
misalignment rate ed caused bit flip error rate and phase flip
error rate are

eB
mis = (p	+ + p	− − p�+ − p�− )ed,

eP
mis = (p	+ + p�+ − p	− − p�− )ed. (19)

Equation (19) is the state density of entanglement swapping
for virtual entanglement protocol. From Fig. 3, we know that
the multiphoton terms will cause the decrease of eB

X . Thus,
in order to make the bit error correction consistent with the
experiment results, as predicted in Table I, we set the BER
and PER as

eB = 0.25 × 0.5 × QX + eB
mis + 2p2

d

Q
,

(20)

eP = p	− + p�− + eP
mis + 2p2

d

Q
,

where 0.25 is the BER in X basis measured in experiment, as
shown in Table I, 0.5 is the probability that the quantum state
is prepared in X basis, Q is the total gain

Q = p	+ + p	− + p�+ + p�− + 4p2
d. (21)

As the PER eP increases with the average photon number, thus
eP in Eq. (20) sets the upper bound of the privacy amplifica-

tion. So the key rate is lower bound by

r � Q[1 − f ∗ H (eB) − H (eP )], (22)

where H (x) = −x log2 x − (1 − x) log2(1 − x) is the binary
Shannon entropy of the variable x, f is the error correction
efficiency, which always satisfies f � 1.

Figure 5 shows the simulation of the light-intensity-
dependent key rate of PR-WCPs based MDI-QKD and its
comparison with the GLLP scheme. The parameters used for
simulation fully consider the current laboratory technology, in
which the dark count rate pd = 8 × 10−8,, the error correction
inefficiency f = 1.15, detector efficiency ηd = 14.5%, mis-
alignment error ed = 1.5%. In Fig. 5(a), we can see that at
long communication distance the key rate satisfies the linear
bound. While at short communication distance, the key rate
deviates from the linear bound with the increase of light
intensity. Due to the linear relationship between the average
photon number μ and the channel transmittance, as well as
the explicit functional dependence of the measurement gain,
BER and PER on μ, so the key rate curve under different
light intensities can be obtained by translating one of them
in the horizontal direction. Under high light intensity, the
rate first increases and then decreases with the communica-
tion distance, this is due to the increased proportion of the
multiphoton terms. However, this phenomenon is contrary
to the nonincreasing of information in the process of infor-
mation processing and transmission, and this will also bring
the risk of beam-separation (BS) attacks. Here we choose
the maximum value of the key rate as the starting point of
communication. In this simulation, we find that the maximum
value of the key rate corresponds to μ = 0.311.

In Fig. 5(b), we give the comparison between the key rate
of this work and that obtained by GLLP scheme with infinite
decoy-state method [27,43]. In this figure, it can be seen that
in most of the communication distance, the key rate obtained
in this work is less than that obtained by the GLLP bound.
Actually, the GLLP scheme also uses the idea of entanglement
distillation, and this scheme assumes that all the absolutely
secure information is carried by the single-photon states. In
this way, it seems that our work should get a higher key rate
than GLLP scheme. The main reason for this opposite result
is the way these two models deal with the imperfection of the
BSM caused by nonideal sources. Our work makes the worst
assumption about the imperfection of these experimental de-
vices in key extraction, and considers that the imperfection of
BSM caused large values of BER and PER to be able to be
utilized by the eavesdroppers. While in GLLP scheme, the
noncorrelation of the measurement results between Z basis
and X basis are not considered in key generation. Therefore,
a tighter key rate bound is obtained in this work, and our
work proves that even in the case of imperfect BSM, the
PR-WCPs-based MDI-QKD is still secure.

The imperfection of the light source will also provide
Eve with the opportunity of photon-number-splitting (PNS)
attacks, where Eve is assumed to be able to control the
probability distribution, error rate and the yield of the pho-
ton number states. At present, the best tool to deal with
PNS attacks is the decoy-state method [12–14,40], which is
widely used in BB84-QKD [13,40], MDI-QKD [16,17,43],
and PM-QKD [27], and has achieved great success. In stan-
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FIG. 5. (a) Dependence of key rate on the average photon number μ, (b) Key rate comparison for MDI-QKD between this work and that
obtained by GLLP scheme with decoy state method [43].

dard decoy-state QKD systems, the probability distribution
is considered to be known, while the error rate and yield of
the photon number states need to be determined from the
experiment results, so as to exclude Eve’s invasion. According
to Eqs. (11), (16), it can be seen that the measurement gain Q,
BER eB and PER eP in Eq. (22) are related to parameters Qi, j

with i, j ∈ {0, 1, 2, 3, 4}, which we need to estimate through
decoy-state method. The details of the estimation of these
parameters is provided in Appendix D.

VI. CONCLUSION

In this paper, we have given the security analysis of PR-
WCPs-based MDI-QKD, and derive the corresponding key
rate. By analyzing the HOM effect of PR-WCPs and PNs, we
get that these two light source are equivalent in MDI-QKD,
that is to say, the security of practical MDI-QKD can be
equivalently analyzed in these two source models. We then
use the BSM results of PR-WCPs to construct the a posteriori
decoding probability table of MDI-QKD, and find that the
BER in X basis is larger than 25%, which is caused by the
mismatch between state preparation and measurement. The
large error rate difference between Z basis and X basis caused
by measurement indicates that the key rate formula derived
in BB84-QKD can not be directly used in MDI-QKD. The
security analysis of MDI-QKD based on EDP is carried out
on PNs, where the final virtual ancillary qubits is the mixed
average of that obtained in Z basis and X basis, so as to
ensure that the finite key rate can be extracted under the

given BER and PER. Finally, we compare the key rate in
this work with that obtained by GLLP scheme. The key rate
in this work deviates from the linear key rate bound in a
short communication distance and is lower than that obtained
by GLLP scheme. Because we consider all inevitable errors
caused by imperfect measurement as possible eavesdropping
risks, this work provides a tighter key rate bound for practical
PR-WCPs-based MDI-QKD.
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APPENDIX A: HOM INTERFERENCE
OF GAUSSIAN-SHAPED PNs

The experimental setup of HOM interference of the PNs
is given in the inset of Fig. 2. PNs is the mixture of photon
number state that at each time photon number state |m〉 is
sent out, m is the number of photons. Assume that at one
time there are m photons incident on tha a-side of the BS
and n photons incident on the b-side of the BS, the incident
photon number state is |m〉a|n〉b = 1√

m!n!
(a+)m(b+)n|0〉, and

all the photon states have the same spatial mode and frequency
spectrum. For Gaussian-shaped pulses, then the photon state
in time domain can be written as

|�m,n〉 =
(

2�

π

) m+n
4

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtm

∫ ∞

−∞
dtm+1 · · ·

∫ ∞

−∞
dtne−�(t1−t0 )2 · · ·

e−�(tm−t0 )2
e−�(tm+1−τ0 )2 · · · e−�(tm+n−τ0 )2

a+
t1 · · · a+

tm b+
tm+1

· · · b+
tm+n

|0〉, (A1)

where t0 and τ0 are the centers of the pulses sent by Alice and Bob in the time domain, respectively. For the convenience of
discussion, here we use the function f (t ) to represent e−�(t−t0 )2

and g(t ) to represent e−�(t−τ0 )2
. In the case of m = n = 1, which

is the most standard HOM interference, then we have

|�1,1〉 =
√

2�

π

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 f (t1)g(t2)a+

t1 b+
t2
|0〉. (A2)
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Because there are two time variables in Eq. (A2), it is not a good form to analyze HOM interference. Here we first make a
transform to the integral in Eq. (A2),

�1,1 =
√

2�

π

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 f (t1)g(t2)

=
√

2�

π

∫ ∞

−∞
dt1

∫ t1

−∞
dt2 f (t1)g(t2) +

√
2�

π

∫ ∞

−∞
dt1

∫ ∞

t1

dt2 f (t1)g(t2)

=
√

2�

π

∫ ∞

−∞
dt1

∫ 0

−∞
dτ f (t1)g(t1 + τ ) +

√
2�

π

∫ ∞

−∞
dt1

∫ ∞

0
dτ f (t1)g(t1 + τ ), (A3)

where τ is the time difference between t1 and t2, and Eq. (A3) can be further transformed to

�1,1 =
√

2�

π

∫ ∞

−∞
dt1

∫ ∞

0
dτ f (t1)g(t1 − τ ) +

√
2�

π

∫ ∞

−∞
dt1

∫ ∞

0
dτ f (t1)g(t1 + τ )

=
√

2�

π

∫ ∞

−∞
dt1

∫ ∞

0
dτ f (t1 + τ )g(t1) +

√
2�

π

∫ ∞

−∞
dt1

∫ ∞

0
dτ f (t1)g(t1 + τ )

=
√

2�

π

∫ ∞

−∞
dt1

∫ ∞

0
dτ [ f (t1 + τ )g(t1) + f (t1)g(t1 + τ )]. (A4)

Here we denote f (t1 + τ )g(t1) as A1 and f (t1)g(t1 + τ ) as A2, after the photon states passing through the BS, the joint state is

|�1,1〉 =
√

2�

π

∫ ∞

−∞
dt1

∫ ∞

0
dτA1

ic+
L,t1+τ + c+

R,t1+τ√
2

c+
L,t1

+ ic+
R,t1√

2
|0〉 +

√
2�

π

∫ ∞

−∞
dt1

∫ ∞

0
dτA2

ic+
L,t1

+ c+
R,t1√

2

c+
L,t1+τ + ic+

R,t1+τ√
2

|0〉
(A5)

Then the coincidence count rate is

p1,1 = 〈�1,1|P̂(1L,t1 , 1R,t1+τ ) + P̂(1L,t1+τ , 1R,t1 )|�1,1〉 = �

π

∫ ∞

−∞
dt1

∫ ∞

0
dτ |A1 − A2|2

= �

π

∫ ∞

−∞
dt1

∫ ∞

0
dτ (|A1|2 + |A2|2 − A∗

1A2 − A1A∗
2 ), (A6)

where P̂(1L,t , 1R,t ′ ) = |1L,t , 1R,t ′ 〉〈1L,t , 1R,t ′ | is the projection operator that one photon appears at time t on the left side and the
other photon appears at time t ′ on the right side. As

|A1|2 + |A2|2 = e−4�(t1+ τ−t0−τ0
2 )(e−�(τ−t0+τ0 ) + e−�(τ+t0−τ0 ) ), (A7)

and

A∗
1A2 + A1A∗

2 = 2e−4�(t1+ τ−t0−τ0
2 )2

e−�τ 2
e−�(t0−τ0 )2

, (A8)

then we have

p1,1 = �

π

∫ ∞

−∞
∞∞

0

(|A1|2 + |A2|2 − A∗
1A2 − A1A∗

2

)

= �

π

∫ ∞

−∞
e−4�(t1+ τ−t0−τ0

2 )dt1

∫ ∞

−∞
e−�(τ−t0+τ0 )dτ − �

π

∫ ∞

−∞
e−4�(t1+ τ−t0−τ0

2 )2

dt1

∫ ∞

−∞
e−�τ 2

dτe−�(t0−τ0 )2

= 1

2

(
1 − e−�(t0−τ0 )2)

. (A9)

In the three-photon HOM interference, the case of m = 1, n = 2 is equivalent to the case of m = 2, n = 1. In the following,
we will analyze the first case,

|�1,2〉 =
(

2�

π

) 3
4
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ ∞

−∞
dt3 f (t1)g(t2)g(t3)a+

t1 b+
t2 b+

t3 |0〉. (A10)
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According to the method above, we should first perform a transformation on the integral form in Eq. (A10). For the triple integral
A of any three functions, we first transform the integral variables of the first and second functions like that in Eq. (A4)

A =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ ∞

−∞
dt3 f (t1)g(t2)h(t3)

=
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

−∞
dt3 f (t1)g(t1 − λ)h(t3) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

−∞
dt3 f (t1)g(t1 + λ)h(t3). (A11)

By changing the variable t1 to t1 + λ in the second line of Eq. (A11), we obtain

A =
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

−∞
dt3 f (t1 + λ)g(t1)h(t3) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

−∞
dt3 f (t1)g(t1 + λ)h(t3). (A12)

Following the same procedures, we can obtain the transformation of the third variable,

A =
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ)g(t1)h(t1 + λ − γ ) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ)g(t1)h(t1 + λ + γ )

+
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1)g(t1 + λ)h(t1 + λ − γ ) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1)g(t1 + λ)h(t1 + λ + γ ).

(A13)

By changing the variable t1 to t1 + γ in the first and third lines of Eq. (A13), we obtain

A =
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ + γ )g(t1 + γ )h(t1 + λ) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ)g(t1)h(t1 + λ + γ )

+
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + γ )g(t1 + λ + γ )h(t1 + λ) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1)g(t1 + λ)h(t1 + λ + γ ).

(A14)

According to the transformation order of integral variables, the above integral can also be transformed into

A =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ ∞

−∞
dt3 f (t1)g(t2)h(t3)

=
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ + γ )g(t1 + λ)h(t1 + γ ) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ)g(t1 + λ + γ )h(t1)

+
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + γ )g(t1 + λ)h(t1 + λ + γ ) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1)g(t1 + λ + γ )h(t1 + λ),

(A15)

and

A =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ ∞

−∞
dt3 f (t1)g(t2)h(t3)

=
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ)g(t1 + λ + γ )h(t1 + γ ) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ + γ )g(t1 + λ)h(t1)

+
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ)g(t1 + γ )h(t1 + λ + γ ) +

∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ f (t1 + λ + γ )g(t1)h(t1 + λ).

(A16)

It is found that there are 12 integrands after transformation. According to the order in which the integrands appear above, we mark
the ith integrand as Ai. As g(x) = h(x), we have A1 = A5, A2 = A6, A3 = A7, A4 = A8, A9 = A11, and A10 = A12. In addition, the
integral transformation does not change the normalization of the integrand function, so we have(

2�

π

) 3
4
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ

(
A2

1 + A2
2 + A2

3 + A2
4

) = 1,

(
2�

π

) 3
4
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ

(
A2

5 + A2
6 + A2

7 + A2
8

) = 1,

(
2�

π

) 3
4
∫ ∞

−∞
dt1

∫ ∞

0
dλ

∫ ∞

0
dγ

(
A2

9 + A2
10 + A2

11 + A2
12

) = 1. (A17)
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Then the joint state of Eq. (A10) can be written as

|�1,2〉 =
√

6

(
2�

π

) 3
4
∫∫∫

dt1dλdγ (A1 + A5)a+
t1+λ+γ b+

t1+λb+
t1+γ +

√
6

(
2�

π

) 3
4
∫∫∫

dt1dλdγ (A2 + A6)a+
t1+λb+

t1+λ+γ b+
t1

+
√

6

(
2�

π

) 3
4
∫∫∫

dt1dλdγ (A3 + A7)a+
t1+γ b+

t1+λb+
t1+λ+γ +

√
6

(
2�

π

) 3
4
∫∫∫

dt1dλdγ (A4 + A8)a+
t1 b+

t1+λ+γ b+
t1+λ

+
√

6

(
2�

π

) 3
4
∫∫∫

dt1dλdγ (A9 + A11)a+
t1+λb+

t1+γ b+
t1+λ+γ +

√
6

(
2�

π

) 3
4
∫∫∫

dt1dλdγ (A10 + A12)a+
t1+λ+γ b+

t1 b+
t1+λ.

(A18)

In Eq. (A18), the integral ranges of the three variables are the
same as that in Eqs. (A15)–(A17), and

√
6 is the normalization

constant. Here, the transformation matrix of the BS is(
c+

L

c+
R

)
=

√
2

2

(−i 1

1 −i

)(
a+

b+

)
. (A19)

After the photon states pass through the BS, the coincidence
count rate for m = 1, n = 2 is

p1,2 = 〈�1,2|
∑

i

PiP̂L,R(1 j,t1 , 1 j′,t1+λ, 1 j′′,t1+λ+γ )

+
∑

i

PiP̂L,R(1k,t1+λ, 1k′,t1+γ , 1k′′,t1+λ+γ )|�1,2〉,

(A20)

where P̂L,R(1 j,t1 , 1 j′,t2 , 1 j′′,t3 )=|1 j,t1 , 1 j′,t2 , 1 j′′,t3〉〈1 j,t1 , 1 j′,t2 ,

1 j′′,t3 | is the projection operator of three photons at three
different times on the left side and right side of the BS with
j, j′, j′′ ∈ {L, R}, Pi is the permutation operator of L and R,

but it should be ensured that all L or all R cannot occur. After
complicated and lengthy calculations, we can get

p1,2 = p2,1 = 1
4

(
3 − 2e−�(t0−τ0 )2)

. (A21)

Similarly, we can also obtain the following HOM interference:

p1,3 = p3,1 = 1
8

(
7 − 3e−�(t0−τ0 )2)

,

p2,2 = 1
8

(
7 − 4e−�(t0−τ0 )2 − e−2�(t0−τ0 )2)

,

p0,2 = p2,0 = 1
2 , p0,3 = p3,0 = 3

4 , p0,4 = p4,0 = 7
8 .

(A22)

APPENDIX B: HOM INTERFERENCE
OF PR-WCPs

Alice and Bob each prepare a Gaussian-shaped PR-WCPs,
as given in Eq. (3), and send them to the BS for HOM inter-
ference. After passing the BS, the joint state is

|ϒ〉C =
(

2�

π

) 1
4
∫

dt

∣∣∣∣i
√

μt−t0

2
eiθA +

√
μt−τ0

2
eiθB

〉
L

∣∣∣∣
√

μt−t0

2
eiθA + i

√
μt−τ0

2
eiθB

〉
R

, (B1)

where θA and θB are the global random phases of Alice and Bob’s PR-WCPs with θA, θB ∈ [0, 2π ]. In the slow varying amplitude
approximation, the time-dependent amplitudes μt−t0 and μt−τ0 can be viewed as constants when θA and θB vary from 0 to 2π .
When the light intensity μ is low enough, the detection probability of a WCP is proportional to μ, which can be reflected from
the linear key rate bound in BB84-QKD. For any given θA, θB, the light intensity at the left side is

IL =
√

�μ2

π

∫
dt

(
e−2�(t−t0 )2 + e−2�(t−τ0 )2 − 2 sin θABe−2�(t− t0+τ0

2 )2− �(t0−τ0 )2

2
) =

√
2μ

2

(
1 − e− �(t0−τ0 )2

2 sin θAB
)
. (B2)

where θAB = θA − θB. Similarly, we can also obtain

IR =
√

2μ

2

(
1 + e− �(t0−τ0 )2

2 sin θAB
)
. (B3)

Then the correlation of these two arms is

〈ILIR〉 = μ2

2

∫
dθAB

(
1 − e− �(t0−τ0 )2

2 sin θAB
)(

1 + e− �(t0−τ0 )2

2 sin θAB
) = μ2

2

(
1 − 1

2
e−�(t0−τ0 )2

)
. (B4)

The coincidence count rate of PR-WCPs is proportional to Eq. (B3).
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APPENDIX C: BSM OF PR-WCPs

Assume that the PR-WCPs are prepared in Z basis, such
as |√μeiα〉A,H ⊗ |√μeiβ〉B,V , the joint state after passing
through the BSM setup is

|ϒAB〉Z
H,V

=
∣∣∣∣
√

μ

2
ieiα

〉
1,H

∣∣∣∣
√

μ

2
ieiβ

〉
1,V

∣∣∣∣
√

μ

2
ieiα

〉
2,H

∣∣∣∣
√

μ

2
ieiβ

〉
2,V

,

(C1)

from which we can see that the light at each output of the BSM
is equal to a constant μ

2 , and the joint detection probability is
proportional to the product of them

〈I j,PIj′,P′ 〉 ∝ μ2

4
, (C2)

where the subscripts j, j′ ∈ {1, 2} and P, P′ ∈ {H,V }.
If the PR-WCPs are prepared in X basis and have the same

polarization, for example |√μeiα〉A,+ ⊗ |√μeiβ〉B,+, then the
joint state after passing through the BSM is

|ϒAB〉X
+,+ =

∣∣∣∣
√

μ

4

(
ieiα + eiβ

)〉
1,H

⊗
∣∣∣∣
√

μ

4
i
(
ieiα + eiβ

)〉
1,V

⊗
∣∣∣∣
√

μ

4

(
eiα + ieiβ

)〉
2,H

⊗
∣∣∣∣
√

μ

4
i
(
ieα + ieiβ

)〉
2,V

.

(C3)

The light intensity at each output is a function of α − β,

I1,H = I1,V = μ

2
[1 − sin(α − β )],

I2,H = I2,V = μ

2
[1 + sin(α − β )], (C4)

The joint detection probabilities are proportional to the second
correlation of the light intensity at each output

〈I1,H I1,V 〉 =〈I2,H I2,V 〉 ∝ 3
8μ2,

〈I1,H I2,V 〉 =〈I2,H I1,V 〉 = 〈I1,H I2,H 〉 = 〈I1,V I2,V 〉 ∝ 1
8μ2,

(C5)

where 〈〉 is a double integral of α and β over 0 to 2π . The same
joint detection events can be obtained if both Alice and Bob
prepare their PR-WCPs in −45◦ polarization. If the PR-WCPs
are prepared in different polarizations, such as |√μeiα〉A,+ ⊗
|√μeiβ〉B,−, then the joint state after passing through the BSM
is

|ϒAB〉X
+,− =

∣∣∣∣
√

μ

4

(
ieiα + eiβ

)〉
1,H

⊗
∣∣∣∣
√

μ

4
i
(
ieiα − eiβ

)〉
1,V

⊗
∣∣∣∣
√

μ

4

(
eiα + ieiβ

)〉
2,H

⊗
∣∣∣∣
√

μ

4
i
(
ieα − ieiβ

)〉
2,V

.

(C6)

In this case, we can obtain the joint detection probabilities

〈I1,H I2,V 〉 =〈I2,H I1,V 〉 ∝ 3
8μ2,

〈I1,H I1,V 〉 =〈I2,H I2,V 〉 = 〈I1,H I2,H 〉 = 〈I1,V I2,V 〉 ∝ 1
8μ2.

(C7)

The same results can be obtained if Alice and Bob exchange
their polarizations.

APPENDIX D: DECOY STATE

In this Appendix, we show how to calculate the parameters
used for key estimation in Eq. (22) with standard decoy-state
method. As we have demonstrated in this paper that PR-WCPs
is equivalent to Poisson distributed PNs in BSM, so the photon
number model is suitable for describing the quantum channel.
In the decoy-state technique, in addition to signal states, Alice
and Bob also send decoy states, which are also PR-WCPs
but with different average photon number. From Eq. (4) we
can see that in Fock state representation, the PR-WCP with
intensity μ at the center of the pulse can be expressed as

ρ(μ) =
∞∑

k=0

e−μ μk

k!
ρk . (D1)

Suppose at some moment, Alice and Bob prepare the PR-
WCPs with intensities μ and υ, then the collision probability
for the photon number state ρi ⊗ ρ j is

Pμυ
i j = e−μ−υ μiυ j

i! j!
. (D2)

Once all the quantum channels and measuring devices have
been characterized before QKD, the yield Y w

i j and the error
probability ew

i j of a successful BSM measurement for ρi ⊗ ρ j

can be determined [40], where w = X,Y is the corresponding
basis. In decoy-state technique, the gain Qw

μυ , and BER Ew
μυ

satisfy the following equations [16]:

Qw
μυ =

∑
i, j

Pμυ
i j Y w

i j , Ew
μυQw

μυ =
∑
i, j

Pμυ
i j Y w

i j ew
i j . (D3)

From Eve’s point of view, she can not distinguish the signal
state from the decoy state, thus any of her PNS attacks will
modify Pμυ

i j , Y w
i j or ew

i j , which can be reflected from the values
of Qw

μυ and Ew
μυ . In Eq. (D3), one always assumes that Pμυ

i j
is known, which is determined by the nature of the light
source, Qw

μυ and Ew
μυ are the results of experimental measure-

ment, and Y w
i j and ew

i j are obtained by solving the equations.
Theoretically, when there are infinitely many decoy states,
all parameters for key rate estimation can be obtained from
this set of equations. When the average photon number μ

and υ are less than 1, it has been proved that the portion of
multiphoton terms tends to 0, so in fact, a finite decoy states
are sufficient for parameter estimation [43].

In the following, we will derive Qw
μυ and Ew

μυ for different
combination of decoy-state and signal state. This derivation is
inspired by the work of Ref. [17]. In Z basis, if Alice and
Bob prepare their PR-WCPs in different polarizations, like
|ϒμυ〉Z

H,V = |√μeiα〉H |√υeiβ〉V , then after passing through
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the BSM, the joint state at the output is

|ϒμυ〉Z
H,V =

∣∣∣∣
√

ηaμ

2
ieiα

〉
1,H

∣∣∣∣
√

ηbυ

2
eiβ

〉
1,V

∣∣∣∣
√

ηaμ

2
eiα

〉
2,H

∣∣∣∣
√

ηbυ

2
ieiβ

〉
2,V

, (D4)

where ηa and ηb are the quantum state transmittance of Alice and Bob, which include both the channel transmittance and
detection efficiency of the single-photon detectors. The detection probabilities of the four detectors in Fig. 1 are

D1H = D2H = 1 − (1 − pd )e− ηaμ

2 , D1V = D2V = 1 − (1 − pd )e− ηbυ

2 . (D5)

The probability of successful detection events, as shown in Table I, contributed by this joint state is

QZ
H,V (μ, υ ) = 1

4 [D1H (1 − D2H ) + D2H (1 − D1H )][D1V (1 − D2V ) + D2V (1 − D1V )]

= (1 − pd )2e− ηaμ+ηbυ

2
[
1 − (1 − pd )e− ηaμ

2
][

1 − (1 − pd )e− ηbυ

2
]
. (D6)

The same result can also be obtained if Alice and Bob exchange their polarizations, that is QZ
V,H (μ, υ ) = QZ

H,V (μ, υ ), and both
of them are called correct successful detection events. If Alice and Bob prepare their states in the same polarization, for example
both in horizontal polarization, then the joint state at the output is

|ϒμυ〉Z
H,H =

∣∣∣∣
√

ηaμ

2
ieiα +

√
ηbυ

2
eiβ

〉
1,H

∣∣∣∣
√

ηaμ

2
eiα +

√
ηbυ

2
ieiβ

〉
2,H

, (D7)

the corresponding detection probabilities are

D1H = 1 − (1 − pd ) exp

(
−

∣∣∣∣
√

ηaμ

2
ieiα +

√
ηbυ

2
eiβ

∣∣∣∣
2
)

,

D2H = 1 − (1 − pd ) exp

(
−

∣∣∣∣
√

ηaμ

2
eiα +

√
ηbυ

2
ieiβ

∣∣∣∣
2
)

, D1V = D2V = pd . (D8)

Following the simplification process of Ref. [17], we set

x =
√

ηaμηbυ

2
, y = (1 − pd )e− ηaμ+ηbυ

4 , φ = α − β. (D9)

So, the probability of successful detection events provided by state |ϒμυ〉Z
H,H is a function of φ, μ, and υ

QZ
H,H (μ, υ, φ) = 1

2
pd

(
y2e−2x sin φ + y2e2x sin φ − 2y4

1 − pd

)
. (D10)

By averaging QZ
H,H (μ, υ, φ) over φ, we can get

QZ
H,H (μ, υ ) = pd y2

(
I0(2x) − y2

1 − pd

)
, (D11)

where I0(x) is the modified Bessel function of the first kind. Accordingly, we have QZ
V,V (μ, υ ) = QZ

H,H (μ, υ ), and these are
called incorrect successful detection events. The probabilities for correct, incorrect, and total successful detection events in Z
basis are

QZ,C
μυ = QZ

H,V (μ, υ ) + QZ
V,H (μ, υ ), QZ,E

μυ = QZ
H,H (μ, υ ) + QZ

V,V (μ, υ ), QZ
μυ = QZ,C

μυ + QZ,E
μυ . (D12)

Considering the misalignment error ed , the BER EZ
μυ satisfies

EZ
μυQZ

μυ = (
QZ,C

μυ − QZ,E
μυ

)
ed + QZ,E

μυ . (D13)

In X basis, if Alice and Bob prepare their PR-WCPs in the same polarization, like |ϒμυ〉X
+,+ = |√μeiα〉+|√υeiβ〉+, then after

passing through the BSM, the joint state at the output is

|ϒμυ〉X
+,+ =

∣∣∣∣
√

ηaμ

4
ieiα +

√
ηbυ

4
eiβ

〉
1,H

∣∣∣∣−
√

ηaμ

4
eiα +

√
ηbυ

4
ieiβ

〉
1,V

⊗
∣∣∣∣
√

ηaμ

4
eiα +

√
ηbυ

4
ieiβ

〉
2,H

∣∣∣∣
√

ηaμ

4
ieiα −

√
ηbυ

4
eiβ

〉
2,V

. (D14)
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The detection probabilities of the four detectors are

D1H = D1V = 1 − (1 − pd ) exp

(
−

∣∣∣∣
√

ηaμ

4
ieiα +

√
ηbυ

4
eiβ

∣∣∣∣
2
)

,

D2H = D2V = 1 − (1 − pd ) exp

(
−

∣∣∣∣
√

ηaμ

4
eiα +

√
ηbυ

4
ieiβ

∣∣∣∣
2
)

. (D15)

From Table I, we can see that the correct and incorrect successful detection probabilities from this state are

QX,C
+,+ = 1

4 [D1H D1V (1 − D2H )(1 − D2V ) + D2H D2V (1 − D1H )(1 − D1V )],

QX,E
+,+ = 1

4 [D1H D2V (1 − D2H )(1 − D1V ) + D2H D1V (1 − D1H )(1 − D2V )]. (D16)

A same result can be obtained if both of the PR-WCPs are prepared in “−′′ polarization. If Alice and Bob prepare their PR-WCPs
in different polarizations, like |ϒμυ〉X

+,− = |√μeiα〉+|√υeiβ〉−, the correct and incorrect successful detection probabilities have
the following forms:

QX,C
+,− = 1

4 [D1H D2V (1 − D2H )(1 − D1V ) + D2H D1V (1 − D1H )(1 − D2V )],

QX,E
+,− = 1

4 [D1H D1V (1 − D2H )(1 − D2V ) + D2H D2V (1 − D1H )(1 − D1V )]. (D17)

The correct, incorrect, and total successful detection probabilities in X basis are

QX,C
μυ = QX,C

+,+ + QX,C
−,− + QX,C

+,− + QX,C
−,+, QX,E

μυ = QX,E
+,+ + QX,E

−,− + QX,E
+,− + QX,E

−,+, QX
μυ = QX,C

μυ + QX,E
μυ . (D18)

By averaging the detection probabilities over φ, the above three terms can be expressed as

QX,C
μυ = 2y2(I0(2x) − 2yI0(x) + y2), QX,E

μυ = 2y2[1 − 2yI0(x) + y2], QX
μυ = 2y2[1 + 2y2 + I0(2x) − 4yI0(x)]. (D19)

Similarly, the BER in X basis satisfies

EX
μυQZ

μυ = (
QX,C

μυ − QX,E
μυ

)
ed + QX,E

μυ . (D20)

With finite decoy states, enough Qw
μυ and Ew

μυ , w = Z, X can be predicted. By inserting these quantities into Eq. (D3), one can
estimate parameters Y w

i j and ew
i j , which can inversely provide the information of Pμυ

i j .
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