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Applications of universal parity quantum computation
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We demonstrate the applicability of a universal gate set in the parity encoding, which is a dual to the standard
gate model, by exploring several quantum gate algorithms such as the quantum Fourier transform and quantum
addition. Embedding these algorithms in the parity encoding reduces the circuit depth compared to conventional
gate-based implementations while keeping the multiqubit gate counts comparable. We further propose simple
implementations of multiqubit gates in tailored encodings and an efficient strategy to prepare graph states.
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I. INTRODUCTION

In recent decades, there has been an enormous effort
to develop novel strategies for quantum computation [1–7],
including measurement-based [8,9] or adiabatic [10] quan-
tum computation, complementing the gate-based paradigm
of quantum computation. In Ref. [11] we proposed univer-
sal quantum computation in the Lechner-Hauke-Zoller (LHZ)
scheme [12] as a dual to the conventional gate model. Recent
achievements in quantum hardware development on various
qubit platforms [13–20] might soon allow for experimental
realizations of well-known quantum algorithms for reason-
able system sizes. Nevertheless, a fundamental challenge
of state-of-the-art quantum devices remains the interqubit
connectivity on quantum chips [21,22]. This is especially
pressing because a long-range and dense (ideally all-to-all)
connectivity is a crucial ingredient for many key quantum
algorithms, unless algorithm-specific preprocessing steps are
performed [23]. Unless efficient native implementations for
long-range interactions as in, for example, the surface code
[24,25] exist, the connectivity problem is often dealt with
by utilizing resource-intensive SWAP gates which, apart from
requiring error-prone two-qubit gates, render a paralleliza-
tion of gates difficult. Although there exist several quantum
routing techniques [26,27], this is in particular problematic
for scalability of devices beyond the noisy intermediate-scale
quantum (NISQ) era [28].

An alternative way to address the connectivity issue and,
as a side effect, allow for the native implementation of higher-
order interactions, was introduced with the parity encoding
[12,29]. The parity encoding maps n logical qubits (with
operators σ̃ ) to K > n physical qubits (parity qubits, with
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operators σ ), encoding the relative alignment (parity) along
the z axis of two or more logical qubits such that for any state
|ψ〉 in the code space

σ̃ (i)
z σ̃ ( j)

z |ψ〉 = σ (i j)
z |ψ〉 . (1)

Here the superscripts correspond to qubit labels. In order to
deal with the additional degrees of freedom in the physical
Hilbert space, parity constraints of the form

Cl |ψ〉 := σ (l1 )
z σ (l2 )

z σ (l3 )
z

[
σ (l4 )

z

] |ψ〉 = |ψ〉 (2)

are introduced as stabilizers of the code space, which is also
referred to as the constraint-fulfilling subspace HCF. The in-
dices li represent pairs of logical qubits. In every constraint,
each logical index must occur zero or an even number of
times. The square brackets around σ (l4 )

z indicate that a con-
straint can contain either three or four qubits. The special
case of the parity encoding involving all n(n − 1)/2 two-body
terms (parity qubits) for n logical qubits is known as the LHZ
architecture [12]. It is possible to extend this by including
physical qubits representing single logical qubits such that

σ̃ (i)
z = σ (i)

z . (3)

We refer to these qubits as data qubits in the following. The
presence of data qubits in the parity encoding ensures that the
physical qubits uniquely define the state of the logical qubits.1

A variant of the LHZ architecture involving all data qubits has
recently been shown to provide a universal gate set [11], based
on the logical operators

R̃(i)
x (α) = exp

(
−i

α

2
σ (i)

x

∏
j<i

σ ( ji)
x

∏
j>i

σ (i j)
x

)
, (4)

R̃(i)
z (α) = exp

(
−i

α

2
σ (i)

z

)
= R(i)

z (α), (5)

CP̃
(i, j)
φ = R(i)

z

(
φ

2

)
R(i j)

z

(
−φ

2

)
R( j)

z

(
φ

2

)
. (6)

1Note that two-body parity qubits alone determine the logical state
only up to a global spin flip.
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Logical operators (with a tilde) act on the logical qubits
defined in the constraint-fulfilling subspace and commute
with all constraint operators. In contrast to that, physical
operators (without a tilde) do not necessarily preserve the
constraint-fulfilling subspace. The R̃x operators require chains
of controlled-NOT (CNOT) gates due to the product of Pauli
operators in the exponent (see, for example, Refs. [30–32] for
further background on exponentiating products of Pauli ma-
trices), while the other logical operators can be implemented
with physical single-qubit operations only. The set of physical
qubits that are involved in R̃(i)

x (i.e., the set of all physical
qubits containing the logical index i) is referred to as the
logical line associated with qubit (i).

In this work we study the implementation of several es-
sential quantum algorithms in this scheme and find that,
depending on the algorithm, the parity scheme can show an
advantage in circuit depth or multiqubit gate count. In par-
ticular, we focus on quantum algorithms essential for Shor’s
factoring algorithm [2], the quantum Fourier transform (QFT)
[31], and the quantum addition algorithm based on the QFT
[33], as well as the implementation of Grover’s diffusion
operator [4]. Furthermore, we present a strategy to efficiently
prepare graph states, which represent an important resource
for measurement-based quantum computing [34].

II. COMMON GATES AND GATE SEQUENCES

A. Arbitrary single-qubit gates

Any single-qubit unitary U can be decomposed into rota-
tions [31]

U = Rz(α)Rx(β )Rz(γ ), (7)

with some angles α, β, and γ . We can thus construct any log-
ical single-qubit gate using the operators defined in Eqs. (4)
and (5) as

Ũ = R̃z(α)R̃x(β )R̃z(γ ). (8)

The two R̃z rotations can be easily implemented in the LHZ
scheme with physical rotations on the corresponding data
qubits. The R̃x rotation requires a chain of CNOT gates along
the logical line and a physical Rx rotation on one of its qubits,
as discussed in Ref. [11]. If the physical Rx rotation is cho-
sen to be performed on the respective data qubit, it can be
recombined with the surrounding Rz rotations to the unitary
U , now acting on the physical qubit, as shown in Fig. 1. This
is possible because the CNOT gates commute with Rz gates
acting on their control qubit. Hence, a single-qubit unitary
on a logical qubit (i) can be implemented by performing the
gate on the data qubit (i) and applying CNOT gates along the
corresponding logical line.

Note that the single-qubit Rx rotation can be performed on
a parity qubit instead of the data qubit of the line. In that
case, the decomposed rotations cannot be recombined, but for
n > 4, the additional Rz rotations can be performed in parallel
with the CNOT chains. In combination with a partial paral-
lelization of CNOT chains (see the Appendix of Ref. [35]), this
leads to a minimal circuit depth for any single-qubit unitary of

dU = 2
⌈n

2

⌉
+ 1. (9)

Rz Rz Rx Rz Rz

U

Ũ

FIG. 1. Realization of a single-qubit unitary in universal parity
quantum computation by exploiting Eq. (7). CNOT gates commute
with Rz gates acting on their control qubit. The Rz gates on the data
qubit can thus be moved through the CNOT sequence and recombined
to the unitary U together with the Rx rotation. The unitary U acts
locally on a physical qubit, while Ũ denotes a logical operation.
The blue line represents the logical line corresponding to the qubit
targeted by the operation.

This result can be seen from the implementation of an R̃x gate,
as shown in Fig. 2 as a part of the logical CNOT gate. This
implementation requires three single-qubit rotations (of which
only one requires a separate step in depth) and 2(n − 1) CNOT

gates.
For products of single-qubit gates, it can be beneficial to

apply the decoding sequence, perform the rotations on the
respective data qubit, and encode again, which adds up to a
circuit depth of 2n + 3, as discussed in Ref. [11].

B. Two-qubit gates

While a logical CP̃φ gate can be implemented in the parity
encoding with only physical single-qubit gates according to
Eq. (6), a logical CNOT gate requires two additional Hadamard
gates on the target qubit,

CNOT(c,t ) = H (t )CZ(c,t )H (t ). (10)

In the decomposition (7), logical Hadamard gates require R̃x

gates and thus CNOT chains along the logical line. An imple-
mentation of the decomposition (10) in the LHZ scheme is

FIG. 2. Implementation of a CNOT gate in the LHZ architecture.
The gate count depends on the number of logical qubits n and the
distance |c − t | between control (c) and target (t) qubits. CNOT gates
marked with a red cross cancel; the blue line represents the logical
line corresponding to the target qubit. The outer Rz rotations of the
Hadamard gates are not shown; the Rz gates on qubit (t ) have been
merged.
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depicted in Fig. 2 and results in a circuit depth of

dCNOT = 2
[⌈n

2

⌉
+

⌊
max

(∣∣∣n

2
− c

∣∣∣, ∣∣∣n

2
− t

∣∣∣)⌋
+ k

]
+ 3,

(11)

where c and t represent the index of the control and the target
qubit, respectively, and

k =
{

1 if | n
2 − c| = | n

2 − t |
0 otherwise.

(12)

The circuit depth dCNOT corresponds to the depth of two R̃x

gates minus the depth saved due to gate canceling, as depicted
in Fig. 2. The number of required (physical) CNOT gates is
2(n − 1 + |c − t |), which is less than the CNOT count for two
logical Hadamard gates, also due to canceling gates. Further-
more, seven single-qubit rotations are needed to construct a
logical CNOT gate (six for the Hadamard parts and three for
the CZ part, where the Rz rotations on the data qubit can be
merged).

C. Intrinsic higher-order interactions

It is possible to encode the cumulative parity of multiple
logical qubits (qi ) in a single parity qubit, with operator cor-
respondences

σ̃ (q1 )
z σ̃ (q2 )

z · · · σ̃ (qn )
z |ψ〉 = σ (q1q2···qn )

z |ψ〉 (13)

for |ψ〉 ∈ HCF. As an example, consider the three-body parity
qubit (i jk). With this qubit, a logical three-body interaction of
the form

exp
(
iφσ̃ (i)

z σ̃ ( j)
z σ̃ (k)

z

)
(14)

is directly accessible via the physical single-qubit operation

exp
(
iφσ (i jk)

z

)
. (15)

Note that the placement of parity qubits σ
(q1q2···qn )
z involved in

more than two logical lines typically requires a tailored qubit
layout [29]. This approach is in particular useful for solving
combinatorial optimization problems with higher-order inter-
actions (see Sec. III D).

D. Derived higher-order interactions

Alternatively, we can combine parity qubits with actual
physical two-qubit gates to obtain logical multiqubit gates.
Consider, for example, a physical controlled phase gate
CP

(i,( jk))
φ between a parity qubit ( jk) and a data qubit (i).

For a computational basis state |si〉 |s j〉 |sk〉, s{i, j,k} ∈ {0, 1},
this gate applies a phase if and only if s j �= sk and si = 1.
Flipping the parity qubit ( jk), this can be used to construct
a logical 2-controlled phase gate (and in particular a CCZ gate
for φ = π) as

CCP̃
(i, j,k)
φ = CP̃

(i, j)
φ/2 CP̃

(i,k)
φ/2 σ ( jk)

x CP
(i,( jk))
φ/2 σ ( jk)

x P
(i)
−φ/2. (16)

Here P
(i)
−φ/2 is a single-qubit phase gate and up to a global

phase equivalent to a single-qubit rotation R(i)
z (−φ/2). The

action of the operators in Eq. (16) on all computational basis
states is given in Table I.

TABLE I. Phases acquired by application of the constituent oper-
ators for the CCP̃

(i, j,k)
φ gate on a computational basis state |si〉 |s j〉 |sk〉.

For all basis states, the phases of the gate sequence sum up to the
required phase. Physical operations, which are applied directly to the
parity or data qubits, are written without a tilde, while a tilde denotes
effective logical operations.

si s j sk CCP̃
(i, j,k)
φ CP̃

(i, j)
φ/2 CP̃

(i,k)
φ/2 σ ( jk)

x CP
(i,( jk))
φ/2 σ ( jk)

x P
(i)
−φ/2

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 φ/2 −φ/2
1 0 1 0 0 φ/2 0 −φ/2
1 1 0 0 φ/2 0 0 −φ/2
1 1 1 φ φ/2 φ/2 φ/2 −φ/2

The Toffoli gate, an important constituent of many quan-
tum circuits [2,36–38], can be decomposed as

CCNOT(i, j,k) = H (k)CCZ(i, j,k)H (k) (17)

and, together with Eq. (16), reduced to two-qubit operators in
the parity scheme. Here i and j denote the control qubits and
k the target qubit. The circuit depth and the two-qubit gate
count of this decomposition depend solely on the number of
parity qubits in the logical line of the target qubit (i.e., the
connectivity requirements of the logical qubit k). All required
gates apart from the Hadamard gates on the target qubits can
be implemented natively (i.e., without CNOT chains) as long
as the data qubit (i) and the parity qubit ( jk) are close enough
on the chip to perform the physical controlled phase gate.

Similarly, a physical CPφ gate between two parity qubits
(i j) and (kl ) effectively represents a four-qubit gate which
adds a phase if and only if si �= s j and sk �= sl . In the square
lattice implementation of the all-to-all connected graph, these
derived multiqubit gates can be realized along the diagonal of
a parity constraint. If the required connectivity is not available,
the qubits can be rearranged to an algorithm-specific layout to
provide the desired interactions.

E. Negative controls

For many applications [39,40], it is useful to invert control
inputs of controlled multiqubit gates. That corresponds to
applying a spin flip on the respective qubit before and after
the controlled gate. In the parity encoding, a logical spin flip is
realized by simultaneously flipping all physical spins along a
logical line [11]. However, as the spin flips on parity qubits not
involved in the operation cancel out, it is sufficient to only flip
the data qubit corresponding to the desired negative control
and the parity qubits involved in decomposition (16).

III. APPLICATIONS

A. Quantum Fourier transform

The quantum Fourier transform [31] is the quantum analog
to the discrete Fourier transform and an important ingredi-
ent for many quantum algorithms such as quantum phase
estimation [41] and, in further consequence, Shor’s factoring
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FIG. 3. Circuit for performing the QFT in the LHZ scheme. CNOT gates are required to perform the logical Hadamard gates, while single-
qubit Rz rotations implement logical CPHASE gates. Gates which do not contribute to the circuit depth are faded out. For all but the first and the
last line, increasing the system size would only add gates which do not contribute to the circuit depth. The diagram on the bottom visualizes
the time steps occupied by each gate block of the QFT algorithm. In the layout on the left, lines depict logical lines and the gray squares and
triangles represent parity constraints.

algorithm [2]. The unitary for the QFT on n qubits is given by

UQFT =
n∏

i=1

[
H (i)

n∏
j=i+1

CR(i, j)
j−i+1

]
, (18)

where the gates Rk are in this context defined as

Rk ≡ P2π/2k =
(

1 0
0 e2π i/2k

)
(19)

and the superscripts denote the logical qubits the unitary is
acting on. For an implementation of the QFT on a square lat-
tice device in the standard gate model, SWAP gates are required
to realize the controlled-phase gates. In contrast to that, in the
parity architecture, these can be completely removed at the
cost of requiring CNOT gates to perform the Hadamard gates
according to the decomposition (7). The corresponding circuit
for a possible low-depth implementation is shown in Fig. 3.
The CNOT chains for implementing the logical Hadamard
gates can be parallelized apart from a small contribution: For
the logical qubit (0) (light blue line in the figure), the first
CNOT chain along the line, the Hadamard gate on the data qubit
and the second chain until qubit (0, 1) need to be performed
before qubit (0, 1) is free to be used in the next line. In general,
for any line i, only the gates between the crossing to the
previous line [qubit (i − 1, i)] and the crossing to the next line
[qubit (i, i + 1)] contribute to the circuit depth. The necessary
logical CPHASE gates appear in the circuit as single-qubit Rz

rotations (marked with Z). Note that many of them can be
merged into other Rz rotations and are therefore not shown
in Fig. 3. Following that procedure, the operations on the
first qubit (light blue) block n + 3 steps. The second and the
(n − 1)th ones take five steps and the last one (dark blue)
n + 2, because there is no CPHASE gate required. All other

operations in between occupy six time steps. This construction
results in a total circuit depth of 8n − 9.

A comparison of the required resources in the parity archi-
tecture and in the standard gate model is given in Table II.
The circuit depth for the QFT in the LHZ scheme is up to
a constant the same as in an all-to-all connected setup. This
is remarkable in that the LHZ scheme can be implemented
in current experiments and does not rely on impracticable
hardware requirements.

B. Quantum addition

Another prominent problem in various quantum algorithms
is quantum addition as the basic building block of algebraic
manipulation of quantum registers. An efficient circuit for
the addition of two quantum registers based on the QFT,
proposed by Draper [33], performs the addition in the Fourier

TABLE II. Comparison of the required resources for the QFT
implemented on an all-to-all connected device, a square lattice with
nearest-neighbor interactions (requiring SWAP operations), and par-
ity mapped on a square lattice with nearest-neighbor interactions.
The numbers for the gate model implementations are taken from
Ref. [23], while the numbers for the LHZ encoding are analytically
deduced. All operations have been decomposed into single-body
rotations Rx and Rz, H , and CNOT gates.

Resource all-to-all square lattice LHZ

qubits n n 1
2 n(n + 1)

CNOT n(n − 1) 3
2 n(n − 1) 2n(n − 1)

single-qubit n2 n2 1
2 n(n + 3)

total gates n(2n − 1) 1
2 n(5n − 3) 1

2 n(5n − 1)
circuit depth 8n − 10 10n − 13 8n − 9
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FIG. 4. Implementation proposal for the quantum addition of two
registers R1 (labeled with numbers) and R2 (labeled with letters) in
the LHZ scheme. The embedding consists of three standard LHZ
schemes, two encoding the interactions within register R1 and R2,
respectively, and one encoding the interregister interactions. The
solid lines represent logical lines for register R1 and the dashed
lines the logical lines for qubits in register R2. The qubits encoding
interactions within register R2 (white) can be left out if no operations
are necessary in register R2.

space with conditional rotation gates. Reference [42] suggests
extensions of the resulting circuit that allow for computing the
mean or weighted sum of a set of numbers, or even performing
(modular) multiplication and exponentiation.

Quantum addition (modulo 2n) of two n-qubit quantum
states stored in registers R1 and R2 is realized by performing
a QFT on one register (say, register R1), then performing
controlled Rz rotations between the two registers, and finally
applying the inverse QFT to the previously Fourier trans-
formed register [33,42]. The corresponding quantum circuit
is given by

U R1
QFT

[
n−1∏
i=0

n−1∏
j=i

CR
(bn− j ,an−i )
j−i+1

]
U R1†

QFT, (20)

where ai and bi denote qubits of registers R1 and R2, respec-
tively, and U R1

QFT denotes a QFT on register R1. An illustration
of the circuit is provided in Ref. [33].

On a chip with all-to-all connectivity, the quantum addition
algorithm can be implemented in logarithmic depth, neglect-
ing the gates required for performing the necessary QFT steps.
In the parity encoding, we can perform the logarithmic-depth
part in a single time step and add the linear-depth QFT cir-
cuits, without requiring any SWAP gates.

As discussed in Sec. II, the controlled rotations can be
implemented with single-qubit operations only, provided the
necessary parity qubits are available. In order to fulfill that
requirement, we suggest the qubit layout depicted in Fig. 4.
The amount of physical qubits compared to the previously
introduced architecture increases by n(n + 1) such that there
are 3n(n + 1)/2 qubits in total.

If one of the registers does not require any computations
within itself (for example, if it represents classical data), the
parity qubits corresponding to interactions within that register
are not necessary and the data qubits of the register can be
added directly in continuation of the remaining logical lines,
requiring n(n + 2) qubits in total. Note that either way, the
extensions of logical lines hardly affect the circuit depth of
the QFT part, as they do not cross any lines corresponding
to the other register. Our architecture therefore allows us to
perform the core quantum addition circuit in a single time step
and the surrounding QFT parts with a depth linear in n, as

TABLE III. Required resources for the core step of the QFT-
based quantum addition algorithm on an all-to-all connected device
and parity mapped on a square lattice with nearest-neighbor con-
nectivity. The resources required for the involved QFT circuits are
not included in this table. All operations have been decomposed into
single-body rotations Rx and Rz, H , and CNOT gates.

Resource all-to-all LHZ

qubits 2n n(n + 2) a

CNOT n(n + 1) 0
single-qubit 1

2 n(n + 5) n(n + 2)
total gates 1

2 n(3n + 7) n(n + 2)
circuit depth 3 log2(n) + 1 1

aIf computations involving multiqubit gates are required within both
registers, the number of qubits increases to 3

2 n(n + 1).

discussed in Sec. III A. A list comparing required resources
for the quantum circuit in the standard gate model and in the
parity scheme is given in Table III.

C. Multicontrolled gates and Grover’s diffusion operator

A difficulty arising in many quantum algorithms is the
implementation of multicontrolled quantum gates, as it re-
quires a considerable number of nonlocal interactions and
therefore SWAP gates. In the following, we present an imple-
mentation of the m-controlled phase gate on a parity-mapped
architecture with m + 1 logical qubits. In Grover’s search
algorithm [4], the multicontrolled phase gate is especially
relevant for the implementation of the diffusion operator [43].
The diffusion operator on m + 1 qubits corresponds to an
m-controlled phase gate. We exploit the decomposition into
2-controlled phase and Toffoli gates [31], which are further
decomposed according to Eq. (17). The decomposition is
depicted in Fig. 5 and introduces m − 1 ancilla qubits, la-
beled with capital letters. Here m is the number of control
qubits. In the LHZ scheme, this enables us to implement an
m-controlled phase gate CmP̃φ (and multicontrolled-NOT gates
by using Hadamard gates) with gate resources scaling linearly
with m and introducing 4m + 3 ancilla qubits in total. As dis-
cussed in Ref. [11], it is not necessary to use all parity qubits
if the corresponding connections are not required. Figure 6
shows a possible qubit arrangement to implement the diffu-
sion operator with the introduced decomposition for m = 4.
In this layout, the CCP̃

(i, j,k)
φ gates are decomposed such that the

FIG. 5. Gate decomposition of a multicontrolled phase gate into
Toffoli and CPφ gates using ancilla qubits A-C, following Ref. [31].
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FIG. 6. Implementation layout for the n-controlled phase gate.
Ancilla qubits are labeled with capital letters, parity qubits are shown
in light gray, and data qubits are dark gray. Dotted lines indicate
connectivity requirements between the physical qubits during com-
putation. The parity encoding is reduced to the minimal required set
of physical qubits such that only the ancilla qubits require (short)
logical lines, shown by the colored lines.

physical CP
(i,( jk))
φ/2 gate occurring in Eq. (16) is performed be-

tween a problem qubit (i) and an ancilla qubit ( jk). On the
chip layout in Fig. 6, these correspond to the black dashed
lines. The other CPφ gates are performed via the protocol given
in Eq. (6).

The Hadamard gates in Eq. (17), which only occur on
ancilla qubits, can be implemented with eight CNOT gates
each, as the logical lines (colored lines in Fig. 6) of ancilla
qubits consist of only five qubits, independent of the number
of control qubits. This allows for an implementation of the
m-controlled-NOT gate scaling linearly in circuit depth as well
as in gate count. We note that this example serves as a proof
of principle for the implementation of Grover’s diffusion op-
erator in the parity encoding. While it cannot beat standard
implementations using, e.g., Margolus construction of a Tof-
foli gate [6] in terms of quantum resources, the encoding
offers additional flexibility, especially regarding chip layouts
with sparse connectivity.

D. Optimization problems

Optimization problems can be formulated as energy mini-
mization of Hamiltonians of the form

HZ =
∑

i

Jiσ
(i)
z +

∑
i, j

Ji jσ
(i)
z σ ( j)

z +
∑
i, j,k

Ji jkσ
(i)
z σ ( j)

z σ (k)
z + · · · ,

(21)
with the particular optimization problem being encoded in
the prefactors Ji, Ji j , etc. Such optimization problems can be
tackled on digital gate-based architectures using the quan-
tum approximate optimization algorithm (QAOA) [44]. The
QAOA variationally evolves the system with Hamiltonians HX

and HZ as

|ψ〉 =
p∏

j=1

e−iβ j HX e−iγ j HZ , (22)

where HX = ∑
i σ

(i)
x is a driver term to explore the search

space. While the problem Hamiltonian HZ can be imple-
mented in the parity architecture in a single step, the driver
Hamiltonian can be realized with a gate sequence of depth
7n − 8 analogous to the circuit shown in Fig. 3 (leaving out
the Rz rotations and replacing the physical Hadamard gates by
parameterized Rx rotations). Such implementations and simi-
lar variants have been analyzed thoroughly in recent literature

[35,45,46]. Typically, an additional Hamiltonian containing
parity constraints is added to give an energy penalty to states
which are not in the code space. These constraints simplify the
operations required for the driver Hamiltonian. In particular,
whenever all parity constraints are energetically penalized,
the driver Hamiltonian reduces to a sum of single-body
terms.

E. Preparation of graph states

Graph states are an important resource for measurement-
based quantum computing [8,9] as well as for several error
correction protocols [47,48]. Cluster states, corresponding to
square grid graphs, can be prepared efficiently using nearest-
neighbor interactions. The preparation of more arbitrary graph
states, however, typically requires long-range interactions be-
tween many different qubits, as it involves applying a CZ

gate for every edge in the graph [34]. In the parity encoding,
arbitrary graph states containing n qubits can be created with
a circuit depth of at most n + 3 and a CNOT-gate count of
2n(n − 1) as follows. We start by preparing n data qubits
in the superposition state |+〉. We then apply the encoding
sequence, in either the LHZ scheme or a reduced version of it,
depending on the connectivity requirements of the respective
graph, requiring a circuit of depth n + 1 or less (for reduced
versions). Subsequently, we apply CZ gates to every pair of
logical qubits to be connected in the graph, using parallel
single-qubit gates on the physical qubits according to the
decomposition (6). The result of this is a graph state encoded
in the parity architecture. For measurement-based quantum
computing, which involves measurements of the logical qubits
(in arbitrary axes), an additional decoding step of depth n + 1
is required.

The number of parity qubits required for this procedure is
in principle equal to the number of edges in the desired graph
state. However, in some cases it can be useful to have addi-
tional ancillary qubits to simplify the encoding and decoding
circuits.

IV. CONCLUSION AND OUTLOOK

In this work we have presented an approach to implement
fundamental quantum algorithms for arbitrary system sizes,
completely avoiding SWAP gates. A gate count analysis shows
that our implementation has the potential to save multiqubit
gates or reduce circuit depth for key constituents of Shor’s
algorithm. In addition, tailored parity encodings for particular
algorithms can be constructed by utilizing the parity compiler
[29]. On top of that, due to the redundant encoding of infor-
mation, the parity encoding provides an intrinsic potential to
detect and correct bit-flip errors.

One possible approach to error correction in the parity
encoding is the belief propagation proposed in Ref. [49]. The
effects of this fault tolerance on circuit execution results was
not covered in this work.

Our proposal requires interactions between nearest neigh-
bors only and can thus be implemented on various current
NISQ devices with their natural interqubit connectivity. The
proposal is also independent of the specific qubit plat-
form. Suitable platforms are, for example, superconducting
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qubits [50–55], neutral atoms [13,14,56], or trapped ions
[18,19,57,58]. In order to complement the bit-flip tolerance
of the parity encoding, the use of noise-biased qubits [59–61]
may be considered.

A combination of our findings regarding the QFT in the
LHZ scheme with the achievements presented in Refs. [62,63]
on programming arbitrary superposition states using quantum
annealers may give rise to a QFT device without exponential
gate overhead for the initial state preparation [31] and opens
up a promising avenue for further research.
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