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Most previous efforts on quantum error correction focused on either extending classical error-correction
schemes to the quantum regime by performing a perfect correction on a subset of errors or seeking a recovery
operation to maximize the fidelity between an input state and its corresponding output state of a noisy channel.
There are few results concerning quantum error precompensation. Here we design an error-precompensated
input state for an arbitrary quantum noisy channel and a given target output state. By following a procedure,
the required input state, if it exists, can be analytically obtained in single-partite systems. Furthermore, we
also present semidefinite programs to numerically obtain the error-precompensated input states with maximal
fidelities between the target state and the output state. The numerical results coincide with the analytical results.
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I. INTRODUCTION

Quantum error-correction (QEC) schemes are extremely
important for physical quantum information processing sys-
tems [1–3] because without suitable error-correcting proce-
dures many quantum information protocols are not realizable.
Therefore, in order to protect quantum information against
noise, the basic theory of QEC was developed [4–6], fol-
lowing the seminal papers of Shor [7] and Steane [8]. In
analogy to classical coding for noisy channels, the earliest
efforts in QEC have generalized encoding techniques from
classical error-correction schemes, and a theory of quantum
error-correcting codes (QECCs) has been developed [1–16].
If the noise is not too severe, the input quantum information,
which is embedded in a coded subspace, can be exposed to the
ravages of a noisy environment and recovered via a designed
operation to perfectly correct a set of errors.

Furthermore, the design of QEC can also be cast as an
optimization problem [17–26]. Unlike the QECCs designed
for perfect correction, the quantum error-recovery (QER)
methods, as explained in [19], focus on seeking a recovery
operation to maximize the fidelity between an input state and
its corresponding output state of a noisy channel. Consider a
noisy quantum channel E ; the goal of any QER scheme is to
design a recovery operation R which maximizes the fidelity
between an input state � and its output state R[E (�)] [19].
This optimization problem can be solved by a semidefinite
program (SDP) [27].

The QECC and QER methods are designed to perform
recovery operations after errors have occurred. Is there any
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method to use before errors have occurred? Actually, Ref. [28]
introduced active methods for protecting quantum information
against errors, in which they proposed to use a quantum oper-
ation before errors happen. Subsequently, the active protecting
methods were formalized in Ref. [29] and further developed
in Ref. [30].

However, the methods that can be used before errors hap-
pen are much smaller in number than the methods that are
used after errors have occurred. We propose a quantum error-
precompensation (QEPC) scheme which is another method
that can be used before errors happen. In Fig. 1, we compare
the QECC and QER methods with the QEPC model. In the
QECC and QER methods, if Alice (the sender) would like
to send a target state �t to Bob (the receiver) via a quantum
noisy channel E , she will use �t as the input state, i.e., �in =
�t [19]. However, in the QEPC model, we design an error-
precompensated input state �in such that �out := E (�in ) = �t ,
or the output state �out is as close as possible to the target
output state �t . The input state �in, in general, is not equal
to the target state �t , i.e., �in �= �t . The QEPC model is
error suppression rather than an error-correction procedure.
One of the motivations of the QEPC model is that it would
be useful in quantum communications with photonic qubits,
such as quantum key distribution via optical fibers. Since
large multiphoton entangled states are hard to realize in ex-
periments; previous methods which use large multiphoton
entangled states, like QECC or decoherence-free subspace
methods, may not work well, but the QEPC method becomes
feasible.

Here we design an error-precompensated input state �in for
an arbitrary fixed quantum noisy channel E with a given target
output state �t . If the required input state �in exists, it can be
analytically obtained by following the procedure in Fig. 2.
Furthermore, we also present two semidefinite programs to
numerically obtain the error-precompensated input states. The
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FIG. 1. (a) Comparison of the QECC and QER methods [19]
(usually �in = �t), with (b) the proposed quantum error-pre-
compensation model (usually �in �= �t).

numerical results coincide with the analytical results. If the
required input state �in does not exist, we can use the second
semidefinite program to numerically obtain the best input state
�in, which maximizes the fidelity between the target state �t

and the output state E (�in ).

II. ANALYTICALLY DESIGNED
ERROR-PRECOMPENSATED INPUT STATES

FOR QUANTUM CHANNELS

Suppose that there is a quantum channel between Alice and
Bob. The quantum channel can be viewed as a completely
positive trace-preserving (CPTP) map E , with the output state
corresponding to an input state � being written in a Kraus
form [1],

E (�) =
∑

i

Ki�K†
i , (1)

where Ki are operators satisfying the completeness relation∑
i K†

i Ki = 1.

A. Single-partite systems

It is worth noticing that the complete information for this
CPTP map E can be measured by quantum process tomog-
raphy [1,31,32], and thus, Alice and Bob can obtain full
information about {Ki} (we assume that once the quantum
channel has been set up, it is fixed). If Alice would like to send
a special target state �t to Bob via a given quantum channel E ,
she must design an input state �in for error precompensation
such that �t = E (�in ). Generally, the designed input state �in

is different from the target state �t since the quantum channel
E between Alice and Bob is probably a noisy channel. The
input state �in, however, may not exist. If �in exists, it may not
be unique. We will discuss all the cases which depend on E
and the target state �t .

Hereafter, we will use the notation |A〉 as [33,34]

|A〉 := A ⊗ 1
∑

i

|ii〉 =
∑

i j

Ai j |i j〉, (2)

with
∑

i |ii〉 being the unnormalized maximally entangled
state between subsystems A and B and the operator A =∑

i j Ai j |i〉〈 j|, which relates the vector |A〉 and the operator A.
Now we focus on our main question: Suppose that Alice

and Bob share a quantum channel E , described by Eq. (1),
and Alice and Bob obtain all the information of this quantum

channel in advance. If Alice would like to send a special target
state �t to Bob, what input state should Alice choose?

To answer the above question, we assume that there exists
an input state �in such that

�t = E (�in ) =
∑

i

Ki�inK†
i , (3)

which is equivalent to [33,34]

|�t〉 =
∣∣∣∣∣
∑

i

Ki�inK†
i

〉
=

∑
i

Ki ⊗ K∗
i |�in〉; (4)

the equation above holds due to the definition of |A〉, with
a detailed proof shown in Appendix A. Therefore, there are
several cases for the choice of Alice’s input state depending
on the target state �t and the matrix M := ∑

i Ki ⊗ K∗
i .

Case 1. The matrix M := ∑
i Ki ⊗ K∗

i has an inverse ma-
trix M−1 (i.e., its determinant det M �= 0). Since M−1 exists,
from Eq. (4) we have

|�in〉 = M−1|�t〉, (5)

and from |�in〉 we can obtain �in by using A = TrB(|A〉∑
i〈ii|)

since TrB(|A〉∑
i〈ii|) = TrB(A ⊗ 1

∑
i |ii〉

∑
i′ 〈i′i′|) = A,

where TrB is the partial trace for subsystem B. Note that �in

from |�in〉 may not be a valid quantum state (i.e., �in may not
be a semidefinite matrix).

There are two subcases in which M−1 exists. In case 1a,
M−1|�t〉 corresponds to a valid quantum state �in, where �in =
TrB(|�in〉

∑
i〈ii|) = TrB(M−1|�t〉

∑
i〈ii|); in this case there is

only one solution for the input state �in. In case 1b, there is
no valid quantum state �in such that |�in〉 = M−1|�t〉; that is,
TrB(M−1|�t〉

∑
i〈ii|) is not a valid quantum state, and thus,

the expected input state �in does not exist. All we need to do
is calculate from M its inverse matrix M−1 and check whether
δ := TrB(M−1|�t〉

∑
i〈ii|) is a valid quantum state or not [if it

is, �in = TrB(M−1|�t〉
∑

i〈ii|); otherwise, �in does not exist].
Case 2. The matrix M := ∑

i Ki ⊗ K∗
i has no inverse ma-

trix M−1 (i.e., its determinant det M = 0). There are two
subcases as well. In case 2a, M|�in〉 = |�t〉 has no solu-
tion for |�in〉 (i.e., MMg|�t〉 �= |�t〉 [35,36], where Mg is the
Moore-Penrose pseudoinverse of M [36]), and thus, in this
subcase the input state �in does not exist. Mathematically, the
Moore-Penrose pseudoinverse Ag of matrix A is the most well
known generalization of the inverse matrix, which is unique
for simultaneously satisfying the following four conditions:
AAgA = A, AgAAg = Ag, (AAg)† = AAg, and (AgA)† = AgA
(see [37,38]). In case 2b, M|�in〉 = |�t〉 has an infinite num-
ber of solutions for |�in〉 (i.e., MMg|�t〉 = |�t〉), and all the
solutions can be written as |��

in 〉 = Mg|�t〉 + (1 − MgM )|�〉,
where |�〉 is an arbitrary vector with the same dimension
as |�t〉 [35,36]. For all the solutions of |��

in 〉 we need to
check whether each δ� := TrB(|��

in 〉∑
i〈ii|) is a valid quan-

tum state (if δ� � 0) or not (δ� has at least one negative
eigenvalue).

In principle, for an arbitrary quantum channel E and tar-
get state �t , we can always follow the above procedure by
checking which case it belongs to and analytically obtaining
the expected input state �in if it exists. The above procedure is
shown in Fig. 2.
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FIG. 2. The procedure for analytically designing input state �in with a given quantum channel E and a target state �t . If the whole
system is just a single-partite system with a quantum channel, as in Eq. (3), we can obtain M := ∑

i Ki ⊗ K∗
i , |�t〉 := �t ⊗ 1

∑
i |ii〉,

δ := TrB(M−1|�t〉
∑

i〈ii|), and δ� := TrB(|��
in 〉

∑
i〈ii|).

Example 1. Let us consider one qubit system with the
quantum channel being Pauli maps. Suppose Alice and Bob
share a Pauli map Ep, �t = Ep(�in ) = ∑3

i=0 piσi�inσ
†
i , where

σ0 is the identity matrix, {σi}3
i=1 are the Pauli matrices, and∑3

i=0 pi = 1, with 0 � pi � 1. Based on the definition of the
matrix M, we can obtain M = ∑3

i=0 piσi ⊗ σ ∗
i .

Case 1. The matrix M = ∑3
i=0 piσi ⊗ σ ∗

i has an inverse
matrix M−1 (its determinant det M �= 0); that is, the following
three conditions must hold simultaneously: (i) q1 := p0 +
p1 − p2 − p3 �= 0, (ii) q2 := p0 − p1 + p2 − p3 �= 0, and (iii)
q3 := p0 − p1 − p2 + p3 �= 0. Suppose that the target out-
put state is �t = 1

2 (1 + ∑3
i=1 riσi ), where ri = Tr(σi�t ); from

�in = TrB(M−1|�t〉
∑

i〈ii|) we have

�in = 1

2

(
1 +

3∑
i=1

Riσi

)
, (6)

where Ri := ri/qi. Clearly, �in in Eq. (6) is a valid quantum
state if and only if

∑3
i=1 R2

i � 1, i.e., (R1, R2, R3) is a true
Bloch vector.

Case 2. The matrix M = ∑3
i=0 piσi ⊗ σ ∗

i has no inverse
matrix M−1 (its determinant det M = 0), which means that at
least one of {qi}3

i=1 must be zero. We denote k, l, m ∈ {1, 2, 3},
and k, l , and m are different from each other.

(i) If only qk = 0 (ql and qm are not zero), from
MMg|�t〉 = |�t〉 we have rk = 0 for the target output
state �t = 1

2 (1 + ∑3
i=1 riσi ), and all the solutions of |�in〉

can be written as |��
in 〉 = Mg|�t〉 + (1 − MgM )|�〉, where

|�〉 is an arbitrary vector with the same dimension
as |�t〉. Thus, δ� = TrB(|��

in 〉∑
i〈ii|) = 1

2 (1 + ∑3
i=1 R̃iσi ),

where R̃l = rl/ql , R̃m = rm/qm, but R̃k can be an arbitrary real
number. Furthermore, we can see that δ� � 0 if and only if∑3

i=1 R̃2
i � 1.

(ii) If qk = ql = 0 but qm �= 0, from MMg|�t〉 = |�t〉 we
have rk = rl = 0 and δ� = 1

2 (1 + ∑3
i=1 R′

iσi ), with R′
m =

rm/qm, and R′
k and R′

l can be arbitrary real numbers. Further-
more, we can see that δ� � 0 if and only if

∑3
i=1 R′

i
2 � 1.

(iii) If q1 = q2 = q3 = 0, from MMg|�t〉 = |�t〉 we have
r1 = r2 = r3 = 0 and δ� = 1

2 (1 + ∑3
i=1 R̃′

iσi ), with R̃′
1, R̃′

2,

and R̃′
3 being arbitrary real numbers satisfying

∑3
i=1(R̃′

i )
2 � 1.

B. Bipartite systems

We have designed the input state for when Alice would like
to send a special target state �t to Bob via a quantum chan-
nel. The whole system we considered is just a single-partite
system. Let us now assume that Alice and Bob would like
to share an entangled target state �AB

t and that this entangled
state is initially prepared by Alice. So Alice needs to send one
subsystem to Bob and keep the other one. In this case, what
initial state �AB

in should Alice prepare?
Suppose that there is a quantum channel between Alice and

Bob. The quantum channel can be viewed as a CPTP map E ,
with the output state corresponding to an input state � written
in a Kraus form (1). Alice would like to share a special target
state �AB

t with Bob. She can try to prepare an initial quantum
state �AB

in and sends subsystem B to Bob such that

�AB
t = 1 ⊗ E

(
�AB

in

) =
∑

i

1 ⊗ Ki�
AB
in 1 ⊗ K†

i , (7)

where Ki are operators satisfying the completeness relation∑
i K†

i Ki = 1. Similarly, we use the notation∣∣HAB
〉

:= HAB ⊗ 1A′B′ ∑
i j

|i ji j〉ABA′B′
, (8)

which relates the vector |HAB〉 and the operator HAB. There-
fore, Eq. (7) is equivalent to

∣∣�AB
t

〉 =
∣∣∣∣∣
∑

i

1 ⊗ Ki�
AB
in 1 ⊗ K†

i

〉

=
∑

i

1 ⊗ Ki ⊗ 1 ⊗ K∗
i

∣∣�AB
in

〉
, (9)

which holds due to the definition of |HAB〉. Therefore, there
are several cases for the choice of Alice’s input state depend-
ing on the target output state �AB

t and the matrix

M :=
∑

i

1 ⊗ Ki ⊗ 1 ⊗ K∗
i . (10)

Case 1. The matrix M := ∑
i 1 ⊗ Ki ⊗ 1 ⊗ K∗

i has an in-
verse matrix M−1 (i.e., its determinant det M �= 0). Since M−1
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exists, from Eq. (9) we have∣∣�AB
in

〉 = M−1
∣∣�AB

t

〉
, (11)

and from |�AB
in 〉 we can obtain �AB

in by using

HAB = TrA′B′ (|HAB〉
∑

i j

〈i ji j|) (12)

because of the following equations:

TrA′B′ (|HAB〉
∑

i j

〈i ji j|)

= TrA′B′

(
HAB ⊗ 1A′B′ ∑

i j

|i ji j〉
∑
i′ j′

〈i′ j′i′ j′|
)

= HAB. (13)

It is worth noticing that �AB
in from |�AB

in 〉 may not be a valid
quantum state.

There are two subcases in which M−1 exists. In case 1a
M−1|�AB

t 〉 corresponds to a valid quantum state �AB
in , where

�AB
in = TrA′B′ (

∣∣�AB
in

〉 ∑
i j

〈i ji j|)

= TrA′B′ (M−1
∣∣�AB

t

〉 ∑
i j

〈i ji j|). (14)

In this case there is only one solution for the input state �AB
in . In

case 1b there is no valid quantum state �AB
in such that |�AB

in 〉 =
M−1|�AB

t 〉; that is, TrA′B′ (M−1|�AB
t 〉∑

i j〈i ji j|) is not a valid
quantum state, and thus, the expected input state �AB

in does not
exist. All we need to do now is calculate from M its inverse
matrix M−1 and check whether

δAB := TrA′B′ (M−1
∣∣�AB

t

〉 ∑
i j

〈i ji j|) (15)

is a valid quantum state or not [if it is, �AB
in =

TrA′B′ (M−1|�AB
t 〉∑

i〈i ji j|); otherwise, �AB
in does not exist].

Case 2. The matrix M := ∑
i 1 ⊗ Ki ⊗ 1 ⊗ K∗

i has no in-
verse matrix M−1 (i.e., its determinant det M = 0). There are
two subcases as well. In case 2a, M|�AB

in 〉 = |�AB
t 〉 has no solu-

tion for |�AB
in 〉 (i.e., MMg|�AB

t 〉 �= |�AB
t 〉 [35], where Mg is the

Moore-Penrose pseudoinverse of M), and thus, in this subcase
the input state �AB

in does not exist. In case 2b, M|�AB
in 〉 = |�AB

t 〉
has infinite solutions for |�AB

in 〉 (i.e., MMg|�AB
t 〉 = |�AB

t 〉), and
all the solutions can be written as∣∣��

in

〉 = Mg
∣∣�AB

t

〉 + (1 − MgM )|�〉, (16)

where |�〉 is an arbitrary vector with the same dimension as
|�AB

t 〉 [35]. For all the solutions of |��
in 〉 we need to check

whether each

δ� := TrA′B′

(∣∣��
in

〉 ∑
i j

〈i ji j|
)

(17)

is a valid quantum state or not.
In principle, for arbitrary quantum channels and target out-

put states �AB
t we can always follow the above procedure by

checking which case it belongs to and analytically obtaining
the expected input state �AB

in if it exists, similar to the proce-
dure shown in Fig. 2.

Example 2. Let us consider a two-qutrit system with only
subsystem B passing through an amplitude damping channel.
Assume that Alice and Bob share an amplitude damping chan-
nel E ,

�AB
t = 1 ⊗ E

(
�AB

in

) =
2∑

i=0

1 ⊗ Ai�
AB
in 1 ⊗ A†

i , (18)

where

A0 = |0〉〈0| +
√

1 − γ |1〉〈1| + (1 − γ )|2〉〈2|, (19)

A1 = √
γ |0〉〈1| +

√
2γ (1 − γ )|1〉〈2|, (20)

A2 = γ |0〉〈2|, (21)

with 0 � γ � 1. Assume that our target output state is

�AB
t = p|ψ+〉〈ψ+| + (1 − p)

1

9
, (22)

where |ψ+〉 = (|00〉 + |11〉)/
√

2, 1 is the 9 × 9 identity ma-
trix, and 0 � p � 1. Based on the definition of matrix M, we
can obtain

M =
∑

i

1 ⊗ Ai ⊗ 1 ⊗ A∗
i . (23)

Case 1. The matrix M = ∑
i 1 ⊗ Ai ⊗ 1 ⊗ A∗

i has an in-
verse matrix M−1 (i.e., its determinant det M �= 0), which
means γ �= 1. From �AB

in = TrA′B′ (M−1|�AB
t 〉∑

i j〈i ji j|) we
have

�AB
in = 1

c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 b 0 0 0 0
0 a2 0 0 0 0 0 0 0
0 0 a3 0 0 0 0 0 0
0 0 0 a4 0 0 0 0 0
b 0 0 0 a5 0 0 0 0
0 0 0 0 0 a6 0 0 0
0 0 0 0 0 0 a7 0 0
0 0 0 0 0 0 0 a8 0
0 0 0 0 0 0 0 0 a9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(24)

where a1 = 2 − 6γ̄ γ + p(7 − 12γ + 3γ 2), a2 = a8 =
2 p̄(1 − 3γ ), a3 = a6 = a9 = 2 p̄, a4 = 2 − 6γ̄ γ − p(2 +
3γ̄ γ ), a5 = 2 + 7p − 3(2 + p)γ , a7 = 2 p̄(1 − 3γ̄ γ ),
b = 9pγ̄ 3/2, c = 18γ̄ 2, p̄ = 1 − p, and γ̄ = 1 − γ . It is
easy to check that �AB

in in Eq. (24) is a valid quantum state if
and only if the following two conditions hold simultaneously:

0 � γ � 1
3 , (25)

0 � p � 2 − 6γ̄ γ

2 + 3γ̄ γ
. (26)

Case 2. The matrix M = ∑
i 1 ⊗ Ai ⊗ 1 ⊗ A∗

i has no in-
verse matrix M−1 (i.e., its determinant det M = 0), which
means γ = 1. In this case, we can see that MMg|�AB

t 〉 �= |�AB
t 〉

holds. Therefore, there is no solution for �AB
in when M−1 does

not exist.
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III. NUMERICAL CALCULATION USING SDP

In the preceding section, we provided an analytical result
for designing input states with a given quantum channel and a
target output state. Now we reconsider this problem by using
the SDP numerical method. Assume that Alice and Bob share
a quantum channel E described by Eq. (1) and that Alice and
Bob obtain all the information about this quantum channel in
advance. If Alice would like to send a special target state �t

to Bob, to get the input state, we assume that there exists an
input state �in such that Eq. (3) holds.

Let us choose operator-basis sets {Fk} in the Hilbert-
Schmidt spaces of Hermitian operators [39,40], where k =
1, . . . , d2, and d is the dimension of the Hilbert space of
�t . These basis sets {Fk} satisfy Tr(FkFk′ ) = δkk′ and σ =∑d2

k=1 Tr(σFk )Fk , with σ being an arbitrary d × d Hermi-
tian matrix. For simplicity, we can choose F1 = 1/

√
d .

Therefore, Eq. (3) is equivalent to Tr[FkE (�in )] = Tr(Fk�t ),
with k = 1, . . . , d2. Furthermore, we have Tr[FkE (�in )] =
Tr[E∗(Fk )�in], where E∗ is a dual map of E and E∗(Fk ) =∑

i K†
i FkKi. Thus, Eq. (3) is equivalent to

Tr[E∗(Fk )�in] = Tr(Fk�t ), k = 1, . . . , d2. (27)

When k = 1, Eq. (27) is equivalent to the trace-normalization
condition of �in,

Tr�in = 1, �in � 0. (28)

Equations (27) and (28) form a natural SDP problem:

minimize Tr(CX )

such that Tr(BkX ) = bk, k = 1, . . . , d2

X � 0, (29)

where C = 0, Bk = E∗(Fk ), and bk = Tr(Fk�t ) for k =
1, . . . , d2, X = �in. Note that C = 0 here. So the optimal
value (always zero) does not depend on the choice of X as
long as it exists. This kind of SDP problem is called the
“feasibility problem” because it is only used to determine
whether a feasible solution exists. The SDP problem (29) can
be solved by using the parser YALMIP [41] with the solvers
SEDUMI [42] and SDPT3 [43,44].

If no input state �in such that E (�in ) = �t exists, we
can still maximize the fidelity F [�t, E (�in )] between the
target state �t and E (�in ) over all possible input states
�in, where the fidelity F (�1, �2) := Tr[(

√
�1�2

√
�1)

1
2 ] =

‖√�1
√

�2‖1 = maxU |Tr(U
√

�1
√

�2)| [1], with U being
an arbitrary unitary operator and ‖ · ‖1 being the trace
norm. In particular, when the target state is a pure
state |ψt 〉, we have F [|ψt 〉, E (�in )] = √〈ψt |E (�in )|ψt 〉 =√

Tr[E∗(|ψt 〉)�in]. Therefore,

max
{�in}

F (|ψt 〉, E (�in )) =
√

λmax, (30)

where λmax is the largest eigenvalue of E∗(|ψt 〉) and �in is the
corresponding eigenstate.

When the target state is a mixed state �t , we can numer-
ically calculate the maximum fidelity F [�t, E (�in )] via the

SDP as [45,46]

maximize
1

2
Tr(P) + 1

2
Tr(P†)

such that

(
�t P
P† E (�in )

)
� 0 (31)

since the optimal value 1
2 Tr(P) + 1

2 Tr(P†) is equal to the
fidelity F [�t, E (�in )]. We can use the parser YALMIP [41] with
the solvers SEDUMI [42] and PENBMI [47] to solve the SDP
problem (31).

Now we reconsider the Pauli map Ep in Example 1
with p0 = 0.7 and p1 = p2 = p3 = 0.1 in Appendix B. We
have numerically generated 10 000 random target states �t .
Using the above SDP, we found that 75.16% of the tar-
get states can be perfectly error precompensated (in this
case F [�t, E (�in )] = 1, and our analytical results coincide
with SDP results), 89.3% of the target states have fidelity
F [�t, E (�in )] > 0.99, and 100% of the target states have fi-
delity F [�t, E (�in )] > 0.90.

IV. ADVANTAGES AND SHORTCOMINGS OF QEPC

The advantage of the QEPC method is that Bob does not
need to do anything after the quantum process tomography
of a given quantum channel. If Alice would like to send a
target state to Bob, she can design an error-precompensated
input state according to Fig. 2, and Bob would just receive
the output state without any a priori information of the target
state. As mentioned before, in the QECC and QER methods,
Bob needs to do correcting or recovery operations, which
more or less depend on a priori knowledge of the target state.

Let us now compare the QEPC scheme with the QECC
method. Suppose we encode a single qubit of information in
an n-qubit quantum code which can correct arbitrary errors on
any single qubit, with the total error probability p. Using the
n-qubit quantum code, the fidelity satisfies (see Sec. 10.3.2 in
[1])

F =
√

(1 − p)n−1(1 − p + np) = 1 −
(n

2

)
2

p2 + O(p3). (32)

Thus, when n is large, the total probability of all errors p
should be sufficiently small. Otherwise, the n-qubit quantum
code cannot improve the fidelity of the state protected by the
code. We present the following example to show the case.

Example 3. Let us consider the depolarizing channel,
Ed (�in ) = (1 − p)�in + p/3(

∑3
i=1 σi�inσi ). If the target state

is |0〉, using the Shor code |0L〉 = (|000〉 + |111〉)(|000〉 +
|111〉)(|000〉 + |111〉)/(2

√
2), we can calculate the fidelity

based on Eq. (32) with n = 9,

Fd =
√

(1 − p)8(1 + 8p), (33)

and obtain the details in Appendix C. Let us now design an
input state �in = 1

2 (1 + ∑3
i=1 Riσi ) and maximize the fidelity

F ′
d = max

{�in}

√
〈0|Eb(�in )|0〉 =

√
1/2 + |1/2 − 2p/3|. (34)

When 1 � p > 0.0204, F ′
d = √

1/2 + |1/2 − 2p/3| >√
(1 − p)8(1 + 8p) = Fd . See Fig. 3 for details.
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FIG. 3. (a) Comparison of the fidelity F ′
d using the QEPC scheme and the fidelity Fd using the Shor code. The solid red line denotes the

fidelity F ′
d using the QEPC scheme, and the dashed line denotes the fidelity Fd using the Shor code. (b) Details of (a) when 0.1 � p � 0.

Furthermore, we may use the [[5, 1, 3]] code instead of
the Shor code. In this case, n = 5, and the fidelity based on
Eq. (32) is

F ′′
d =

√
(1 − p)4(1 + 4p). (35)

We find that when 1 � p > 0.0782, F ′
d =√

1/2 + |1/2 − 2p/3| >
√

(1 − p)4(1 + 4p) = F ′′
d .

However, the QEPC method has its shortcomings. First
of all, the QEPC scheme needs the full information about
the quantum channels from quantum process tomography, but
QECC methods do not need it. Moreover, when the target
states are pure states, we can maximize the fidelity between
the output mixed state and the target pure state; however, in
general, the fidelity is less than 1 because there is no mea-
surement or recovery operation in the QEPC scheme. Another
limitation is that the QEPC scheme is not resistant under small
deviations from the calculated channel noise and the actual
channel effects. For instance, if the channel is strongly time
dependent or there are no exact methods to obtain the Kraus
operators, the QEPC is not suitable.

V. DISCUSSION AND CONCLUSIONS

In Fig. 1, the initial state �in of the QEPC model, if it
exists, can be an arbitrary pure state or a mixed state. Will
the difficulty of the initial-state preparation balance the benefit
brought by getting rid of error recovery? Actually, it depends
on the physical realization and the scheme to be realized.
Consider this special case: if Bob has no ability to do perform
operation on the output state, then Alice’s precompensation is
better than Bob’s recovery procedure. On the other hand, even
in the standard encoding-error-recovery model, Alice needs to
carry out initial-state preparation and encoding as well.

Compared with the active protecting methods in
Refs. [28–30], our QEPC scheme is also applied before
error events have occurred. The difference is that the input
state �in is usually the target state �t in the active protecting
methods in Refs. [28–30]; however, in the QEPC model �in is
not �t in general.

Let us compare the analytical and numerical methods.
First, following Fig. 2, we can always analytically find so-
lutions of �in if they exist. Furthermore, if more than one
solution of �in exists, all solutions of �in can be analytically
obtained. But the SDP numerical methods will find only one
solution of �in. Second, the analytical procedure and the SDP
(29) are designed for perfect error precompensation. Nev-
ertheless, the SDP (31) is designed to find the maximum
fidelity, which is not a perfect error precompensation when
the maximum fidelity is not 1. Third, if there is no solution
for �in, the analytical procedure and the SDP (29) will get
nothing. However, using the SDP (31) we can always find the
maximum fidelity between the target state �t and E (�in ), even
though the maximum fidelity is less than 1.

A practical scenario for the QEPC method is polarization-
encoding quantum key distribution via optical fibers. In
Refs. [48–51], the authors experimentally tested and compen-
sated the polarization random drifts, which usually compen-
sate the drifts only for the states {|H〉, |V 〉, |45〉, | − 45〉} after
the quantum channel of optical fibers. Here we introduce the
QEPC method for precompensation of the errors before the
quantum channels. We may use the QEPC model to prec-
ompensate the polarization random drifts in experiments of
quantum key distribution via optical fibers.

In conclusion, we have proposed a QEPC method for
quantum noisy channels. The required input state can be ana-
lytically and numerically obtained if it exists. If the required
input state does not exist, we can find the input state such
that the output state is as close as possible to the target output
state by SDP. In this work, there is no encoding or decoding
operation, and we do not combine the QEPC model with
other strategies, such as dynamical decoupling [4,52–57]. For
future research, one could use encoding and decoding (or even
recovery) operations and dynamical decoupling in the QEPC
model.
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APPENDIX A: CALCULATION OF |�t〉
We use the notation

|A〉 := A ⊗ 1
∑

i

|ii〉 = 1 ⊗ AT
∑

i

|ii〉 =
∑

i j

Ai j |i j〉, (A1)

with A = ∑
i j Ai j |i〉〈 j| [33,34]. AT denotes transposition of A,

and 1 is the identity operator. We suppose that an input state
�in exists such that

�t = E (�in ) =
∑

i

Ki�inK†
i , (A2)

which is equivalent to [33,34]

|�t〉 =
∣∣∣∣∣
∑

i

Ki�inK†
i

〉
=

∑
i

Ki ⊗ K∗
i |�in〉. (A3)

To obtain the equation above, we use the definition of |A〉,

|�t〉 =
∣∣∣∣∣
∑

i

Ki�inK†
i

〉

=
∑

i

Ki�inK†
i ⊗ 1

∑
j

| j j〉

=
∑

i

Ki�in ⊗ K∗
i

∑
j

| j j〉

=
(∑

i

Ki ⊗ K∗
i

)
(�in ⊗ 1)

∑
j

| j j〉

=
∑

i

Ki ⊗ K∗
i |�in〉, (A4)

where the third equation holds since A ⊗ 1
∑

j | j j〉 = 1 ⊗
AT

∑
j | j j〉.

APPENDIX B: EXAMPLE USING
SEMIDEFINITE PROGRAMS

Let us reconsider Example 1 in the main text using the
semidefinite program (29). Let us assume that Alice and Bob
share a Pauli map Ep,

�t = Ep(�in ) =
3∑

i=0

piσi�inσ
†
i , (B1)

where σ0 is the identity matrix, {σi}3
i=1 are Pauli matrices, and∑3

i=0 pi = 1, with 0 � pi � 1. For simplicity, we can choose
F1 = 1√

2
, F2 = σ1√

2
, F3 = σ2√

2
, and F4 = σ3√

2
. Using Bk =

E∗(Fk ), we can obtain

B1 = E∗
p (F1) = 1√

2
,

B2 = E∗
p (F2) = σ1√

2
(p0 + p1 − p2 − p3) = σ1√

2
q1,

B3 = E∗
p (F3) = σ2√

2
(p0 − p1 + p2 − p3) = σ2√

2
q2,

B4 = E∗
p (F4) = σ3√

2
(p0 − p1 − p2 + p3) = σ3√

2
q3,

i.e.,

Bi = E∗
p (Fi ) = σi√

2
qi (i = 0, 1, 2, 3), (B2)

where

q0 := p0 + p1 + p2 + p3 = 1, (B3)

q1 := p0 + p1 − p2 − p3, (B4)

q2 := p0 − p1 + p2 − p3, (B5)

q3 := p0 − p1 − p2 + p3. (B6)

Suppose that the target output state is

�t = 1
2 (1 + r1σx + r2σy + r3σz ). (B7)

From bk = Tr(Fk�t ) we have

b1 = Tr(F1�t ) = 1√
2
, (B8)

b2 = Tr(F2�t ) = r1√
2
, (B9)

b3 = Tr(F3�t ) = r2√
2
, (B10)

b4 = Tr(F4�t ) = r3√
2
. (B11)

Therefore, the conditions of the SDP problem (29) in the main
text Tr(Bk�in ) = bk become

Tr(�in ) = 1, (B12)

q1Tr(σ1�in ) = r1, (B13)

q2Tr(σ2�in ) = r2, (B14)

q3Tr(σ3�in ) = r3. (B15)

When qi �= 0 simultaneously, this SDP problem becomes case
1 of Example 1 (which uses the analytical method) in the main
text. When at least one qi = 0, this SDP problem becomes
case 2 of Example 1. In case 2, if more than one solution of
�in exists, all solutions of �in can be analytically obtained, but
this SDP numerical method will find only one solution of �in.
The MATLAB code for the semidefinite program (31) is simple.
We can use the parser YALMIP [41] with the solvers SEDUMI

[42] and SDPT3 [43,44]. The numerical results coincide with
the analytical results.

Furthermore, let us reconsider Example 1 in the main text
using the semidefinite program (31). The MATLAB code for
the semidefinite program (31) is simple. We have used the
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parser YALMIP [41] with the solvers SEDUMI [42] and PENBMI

[47], where PENBMI is useful as designed for solving opti-
mization problems (like ours) with bilinear matrix inequality
constraints.

The numerical results coincide with the analytical results
and the numerical results from the semidefinite program (31).
For instance, for the Pauli map with p0 = 0.7 and p1 = p2 =
p3 = 0.1, we have numerically generated 10 000 random tar-
get states �t . Using the above MATLAB code, we found that
75.16% of the target states can be perfectly error precompen-
sated (in this case F [�t, E (�in )] = 1, and our analytical results
coincide with SDP results), 89.3% of the target states have
fidelity F [�t, E (�in )] > 0.99, and 100% of the target states
have fidelity F [�t, E (�in )] > 0.90.

APPENDIX C: FIDELITIES OF THE QEPC SCHEME AND
QUANTUM ERROR-CORRECTING CODES

Let us now consider the depolarizing channel, which is a
special case of Pauli maps,

Ed (�in ) = (1 − p)�in + p

3
(σ1�inσ1 + σ2�inσ2 + σ3�inσ3).

(C1)

If the target state is |0〉, we use the Shor code

|0L〉 = (|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉)

2
√

2
.

(C2)

Suppose the depolarizing channel with parameter p acts inde-
pendently on each of the qubits, giving rise to a joint action on
all nine qubits of the Shor code; then the quantum state after
both the noise and error correction is (see Sec. 10.3.2 in [1])

�QECC = [(1 − p)9 + 9p(1 − p)8]|0L〉〈0L| + · · · . (C3)

Therefore, we can calculate the fidelity (see Sec. 10.3.2 in [1]),

Fd = √〈0|�QECC|0〉
=

√
(1 − p)8(1 + 8p). (C4)

On the other hand, let us design an input state

�in = 1

2

(
1 +

3∑
i=1

Riσi

)
(C5)

and maximize the fidelity

F ′
d = max

{�in}

√
〈0|Eb(�in )|0〉

= max
{�in}

√
(1 − p)〈0|�in|0〉 + 2p

3
〈1|�in|1〉 + p

3
〈0|�in|0〉

= max
R3

√
(1 − p)

1 + R3

2
+ p

3
(1 − R3) + p

3

1 + R3

2

= max
R3

√
1

2
+ R3

(1

2
− 2p

3

)

=
√

1

2
+

∣∣∣1

2
− 2p

3

∣∣∣. (C6)

In Fig. 3 in the main text, we show that when 1 � p > 0.0204,

F ′
d =

√
1

2
+

∣∣∣1

2
− 2p

3

∣∣∣ >
√

(1 − p)8(1 + 8p) = Fd . (C7)

The Shor code can improve the fidelity only when p is ex-
tremely small (0 < p < 0.0204).

Similarly, we can use the [[5, 1, 3]] code instead of the
Shor code. In this case, n = 5, and the fidelity is

F ′′
d =

√
(1 − p)4(1 + 4p). (C8)

We find that when 1 � p > 0.0782,

F ′
d =

√
1

2
+

∣∣∣1

2
− 2p

3

∣∣∣ >
√

(1 − p)4(1 + 4p) = F ′′
d . (C9)
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