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Circuit depth scaling for quantum approximate optimization
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Variational quantum algorithms are the centerpiece of modern quantum programming. These algorithms
involve training parametrized quantum circuits using a classical coprocessor, an approach adapted partly from
classical machine learning. An important subclass of these algorithms, designed for combinatorial optimization
on current quantum hardware, is the quantum approximate optimization algorithm (QAOA). Despite efforts
to realize deeper circuits, experimental state-of-the-art implementations are limited to a fixed depth. However,
it is known that problem density—a problem constraint to a variable ratio—induces underparametrization in
fixed depth QAOA. Density-dependent performance has been reported in the literature, yet the circuit depth
required to achieve fixed performance (henceforth called critical depth) remained unknown. Here, we propose
a predictive model, based on a logistic saturation conjecture for critical depth scaling with respect to density.
Focusing on random instances of MAX-2-SAT, we test our predictive model against simulated data with up to 15
qubits. We report the average critical depth, required to attain a success probability of 0.7, saturates at a value of
10 for densities beyond 4. We observe the predictive model to describe the simulated data within a 3σ confidence
interval. Furthermore, based on the model, a linear trend for the critical depth with respect to problem size is
recovered for the range of 5–15 qubits.
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I. INTRODUCTION

The quantum approximate optimization algorithm
(QAOA) was introduced to solve combinatorial optimization
problems by Farhi et al. [1]. In this algorithm, the candidate
solution is prepared using a fixed ansatz structure with
tunable parameters that are variationally adjusted to minimize
an objective function. QAOA was inspired by adiabatic
quantum computation [2–4], where a system prepared in
the ground state of an initial Hamiltonian evolves towards
the ground state of a problem Hamiltonian, given a slow
enough evolution. The circuit structure of QAOA shares
a resemblance to adiabatic evolution via a finite depth
Trotterization procedure, and thus allows for recovering the
exact ground state of the problem Hamiltonian in the infinite
depth limit. In contrast, a fixed p-depth QAOA circuit consists
of alternating applications of the complex exponentiation of
the problem Hamiltonian and a so-called mixer Hamiltonian,
accounting for 2p variational parameters.

Although QAOA recovers adiabatic evolution in the in-
finite depth limit, short depth circuits have indeed been
shown to offer some benefits in approximating solutions to
low-density instances of combinatorial optimization problems
[1,5,6]. Farhi et al. [1] studied the performance of QAOA
applied to the Maximum-Cut (or MAX-CUT) problem on 3-
regular graphs and reported that for p = 1, QAOA guarantees
a cut that is at least 0.6924 of the optimal cut. Furthermore,
the quality of the approximation is shown to improve with
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increasing p. Beyond combinatorial optimization problems,
Farhi and Harrow [7] reported that the split operator structure
of QAOA might be a suitable candidate for establishing quan-
tum supremacy, since the output distributions of such circuits
may not be efficiently sampled classically. Moreover, in the
works of Jiang et al. [8] and Morales et al. [9], the O(

√
N )

query complexity of Grover’s algorithm is recovered by a
class of QAOA circuits, thus establishing quantum advantage
within the QAOA framework. These, along with universality
results [10–12], make QAOA a promising model for noisy
intermediate-scale quantum (NISQ) era devices.

Although several advantages have been reported
[1,5–9,13–15], the effects limiting the performance of
QAOA have also been discovered [16–18]. Considering the
energy error in the approximation as a performance metric,
Akshay et al. [16,17] demonstrated reachability deficits,
an effect limiting performance for fixed depth QAOA on
high-density problem instances. Deeper circuits therefore
become a necessity and hence come with overheads in
classical outer-loop optimization. While approaches such as
layerwise training aim to reduce this classical computational
cost, Campos et al. [18] showed that such a strategy would not
improve performance beyond some threshold depth. Other
approaches aimed at reducing the classical computation cost
exploit what are known as concentration effects [19–22].
Although these effects allow one to heuristically guess
near-optimal parameters at fixed depth and for an increasing
number of qubits, they fail to address the depth required to
guarantee fixed performance.

Here, we propose a logistic saturation conjecture which
states that the minimum depth required for QAOA to achieve
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fixed performance up to some tolerance (henceforth called
critical depth) scales logistically with problem density. We
numerically test this conjecture for the case of maximum
satisfiability (specifically MAX-2-SAT) with up to 15 qubits
and maximum density of 4, and observe (i) the predictive
model describes the simulated data within a 3σ confidence
interval and (ii) the critical depth scales linearly with problem
size in this data set.

II. BACKGROUND

A. Quantum approximate optimization algorithm

The objective function of a combinatorial optimization
problem is prescribed as a map from the assignment of vari-
ables to non-negative real numbers C : {0, 1}×n → R+. Under
a vector space embedding [23,24], the objective function then
induces a corresponding problem Hamiltonian Hc, which en-
codes the solutions to the problem instance in its ground
state space,

Hc =
∑

z∈{0,1}×n

C(z)|z〉〈z|, (1)

where |z〉 are the computational basis vectors in the
2n-dimensional Hilbert space of n qubits.

The optimization problem aims to find assignments such
that the objective function C(z) is minimized. This is equiva-
lent to finding a state |z∗〉 such that

|z∗〉 ∈ span

{
arg min
z∈{0,1}×n

〈z|Hc|z〉
}
. (2)

Measuring the state |z∗〉 in the computational basis outputs a
bit string which is a solution to the optimization problem C.

To approximate solutions to an optimization problem in-
stance using a p-depth QAOA circuit, we generate ansatz
states |ψ (γ,β)〉 on a quantum computer with tunable real
parameters γ,β ∈ [0, 2π )×p, [0, π )×p. These states are pre-
pared by applying an alternating sequence of 2p parametrized
unitary gates on the initial state |+〉⊗n = 1√

2n

∑
z∈{0,1}×n |z〉 as

|ψ (γ,β)〉 =
p∏

k=1

e−iβkHx e−iγkHc |+〉⊗n, (3)

with the mixing Hamiltonian Hx = ∑n
l=1 Xl . Here, Xl is the

Pauli matrix applied to the lth qubit.
The ansatz state in Eq. (3) is iteratively adjusted via an

outer-loop optimization routine to obtain an energy approx-
imation as

min
γ,β

〈ψ (γ,β)|Hc|ψ (γ,β)〉 � min (Hc). (4)

The algorithmic performance of QAOA can be assessed
under performance metrics such as (i) the energy error in the
approximation and (ii) the ground state overlap [16–18]. Both
these quantifiers feature shortcomings as energy approxima-
tions fail to indicate the closeness to optimal solutions while
computing the ground state overlap requires prior knowledge
of optimal solutions. However, it can be demonstrated that
both metrics interrelate and therefore have some advantages
as a theoretical tool for studying algorithmic performance.

Let H† = H � 0 be an optimization problem instance with
d-degenerate ground state energy λ0. In its eigenbasis |φ j〉,
we can write H = λ0

∑d
j=1 |φ j〉〈φ j | + ∑

k>d λk|φk〉〈φk|, with
subsequent excited state energies, λ0 < λk � λmax for k > d ,
separated by a gap 	 = mink>d |λ0 − λk|. For any arbitrary
state |ψ〉, the ground state overlap is calculated as

g(ψ ) =
d∑

j=1

|〈φ j |ψ〉|2. (5)

It is straightforward now to derive (see Appendix B)
the bounds relating the energy error in approximations
〈ψ |H|ψ〉 − λ0, and the ground state overlap g(ψ ):

1 − 〈ψ |H|ψ〉 − λ0

	
� g(ψ ) � 1 − 〈ψ |H|ψ〉 − λ0

λmax − λ0
. (6)

Note that the relation works when the error in approximation
is less than the spectral gap 	. These bounds are the extended
version of the variational stability lemma in Ref. [10] to the
degenerate case and allows one to recover an estimate on the
ground state overlap from the measured energy.

B. Satisfiability

Boolean satisfiability, or SAT, is the problem of determin-
ing the satisfiability of Boolean formulas. More specifically,
one aims to decide whether a given formula can be satis-
fied by assigning truth values to the variables. Limited to k
variables or literals per clause, and expressed in the conjunc-
tive normal form (CNF), k-SAT is NP-complete for k � 3
[25]. k-SAT clauses are randomly generated to form instances
by uniformly selecting unique k-tuples from the union of a
variable set (cardinality n > k) and its elementwise negation.
Generated random instances admit an order parameter called
a clause or problem density given by

α = m/n, (7)

where m is the number of clauses and n is the number of
Boolean variables in the k-SAT instance.

The clause density plays an important role in the study of
satisfiability phase transitions. It has been observed that for
random k-SAT instances, an abrupt change in satisfiability
occurs at some critical clause density αc. Though this critical-
ity has been studied only empirically for 3-SAT (αc ≈ 4.27),
it is proven for 2-SAT [26]. Furthermore, it is observed that
the computational resources required for SAT solvers increase
at the transition point with an easy-hard-easy pattern. This
behavior suggests that the hard instances concentrate around
the critical clause density [26–31].

In this paper we focus on the optimization version of
k-SAT, otherwise called MAX-k-SAT. MAX-k-SAT is the
canonical NP-hard optimization problem (for k � 2) [32]
where one seeks to determine variable assignments that max-
imize the number of satisfied clauses in a given instance.
Similar to decision k-SAT, MAX-k-SAT also features a phase
transition with an easy-hard pattern [33]. Although the point
of criticality differs for the optimization and decision variants
of these problems, they coincide for k = 2 with αc = 1 [34].

With standard Ising embedding techniques [23,24],
MAX-2-SAT instances can be mapped onto 2-local Ising
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Hamiltonians of the form

H =
∑
i< j

Ji jZiZ j +
∑

i

hiZi, (8)

with appropriate coefficients and scale such that (i) for satis-
fiable assignments |z〉, 〈z|H|z〉 = 0 and (ii) for unsatisfiable
assignments 〈z|H|z〉 = m′, where m′ is the number of clauses
violated by the assignment. A detailed construction of such
Hamiltonians is shown in Appendix A. By construction, the
ground state space of H is spanned by assignments that violate
the least number of clauses in a given MAX-2-SAT instance.

III. LOGISTIC SATURATION CONJECTURE

The state space which can be prepared with a p-depth
QAOA circuit is defined as

� =
⋃
γ,β

|ψ (γ,β)〉, (9)

with |ψ (γ,β)〉 given by Eq. (3). In general, for a given in-
stance size n, density α, and depth p, the variational state
space may not cover the whole Hilbert space. Therefore,
optimization over � may not converge to the exact ground
state energy. The difference, or the energy error, in the
approximation,

f(p, α, n) = min
ψ∈�⊆C⊗n

2

〈ψ |H|ψ〉 − min
φ∈C⊗n

2

〈φ|H|φ〉, (10)

quantifies the performance of p-depth QAOA. Whenever
f (p, α, n) > 0, QAOA suffers a reachability deficit. This be-
havior has been studied in Refs. [16,17], and it is observed that
the onset of these deficits correspond to the phase transition
criticality of the considered optimization problem. For the
case of MAX-2-SAT, it was shown that f (p, α, n) grows with
increasing clause density beyond αc ≈ 1. Though better per-
formance is achieved at the cost of increasing QAOA depth, a
similar trend for deficits is reflected.

Motivated by these findings, we propose a logistic satura-
tion conjecture: Given some fixed tolerance on performance,
ε > 0. For QAOA on instances characterized by density α, the
critical depth p∗, required to guarantee approximations that
fall within an ε tolerance, is given by

p∗(α) = min{p | f(p, α, n) � ε}. (11)

We conjecture the critical depth to scale with density as

p∗(α) ≈ pmax

1 + e−κ (α−αc )
, (12)

where αc is the critical density, κ the logistic growth rate, and
pmax the saturation value.

IV. RESULTS

We first recover the findings of Refs. [16,17] in Fig. 1
by studying the performance of fixed depth QAOA on 300
randomly generated MAX-2-SAT instances on 15 variables
and clauses ranging from 1 to 60 (α ∈ [0.06, 4.0]).

Numerically, it is seen that the average performance
worsens monotonically with increasing clause density. This
is also evident (see Fig. 2) for the case of ground state overlap
as described by stability bounds in Eq. (6).

FIG. 1. Average energy error in approximation, f in Eq. (10),
vs clause density for MAX-2-SAT instances on 15 variables. Data
points represent the average value obtained over statistics of 300
random instances with error bars representing 3σ for the estimated
mean. Colors indicate varying QAOA depths p = {5, 10, 15}, illus-
trating improved performance at higher depths.

It becomes apparent that for guaranteeing fixed perfor-
mance, the QAOA depth must necessarily increase with
increasing clause density.

To test the logistic saturation conjecture, we numerically
calculate the depth required to attain performance within an
ε tolerance. This is done by incrementing depth, until the
energy error in the approximations falls within acceptance,
f(p, α, n) � ε. For each instance this process is repeated and

the average critical depth is calculated. Figure 3 illustrates
scaling of the average critical depth with respect to clause
density and compares the numerical data against the predic-
tive model in Eq. (12). We see that the model is able to
match the numerical data well within a 3σ confidence interval
for the estimated mean.

We further investigate the reliability of the predictive
model by treating the critical density as a fitting parameter in
Eq. (12) and compare against the theoretical value of αc ≈ 1.
In Fig. 4 fitting parameters are recovered for n = 5 up to
15 and indeed we see the critical density recovered from the
predictive model matches the theoretical value up to finite-size
variations.

FIG. 2. Ground state overlap vs clause density for depth p = 10
QAOA on MAX-2-SAT instances with 15 variables. Stability lower
bound is calculated by considering average energy error in approx-
imation obtained over statistics of 300 random instances. Points in
orange indicate the corresponding average ground state overlap.

042438-3



V. AKSHAY et al. PHYSICAL REVIEW A 106, 042438 (2022)

FIG. 3. Average critical depth p∗ vs clause density. Data points
represent the average p∗ calculated according to Eq. (11) across the
problem density for MAX-2-SAT with tolerance ε = 0.3. Colors
correspond to different problem sizes n = {5, 10, 15} with error bars
representing 3σ for the estimated mean. Solid curves represent the
least-squares fit of the data to the predictive model as described
in Eq. (12).

V. NUMERICAL DETAILS

The computationally intensive calculations were per-
formed on the KunLun supercomputer with a maximum CPU
frequency of 2.1 GHz. The code was written in PYTHON and
C++ and we employ a full state-vector emulation scheme
with the unitaries appearing in Eq. (3) implemented as array
manipulations. The PYTHON code is responsible for providing
easy-to-use interfaces and C++ code is responsible for the
actual simulation tasks as the underlying simulation code. The
code is executed in parallel with a resource of 1500 cores.
The calculations were performed for 300 random instances
for each respective problem density and problem sizes.

We used a heuristic optimisation strategy, motivated by
layerwise training [35,36], to find good initial parametrization
for the ansatz such that gradient-based classical optimizers
may avoid most local minima and saturation effects [18,37].

In order to find optimal parameters for depth p, we start by
optimizing a depth one ansatz (single layer). Then keeping the
previous parameters fixed, a second layer is added and trained.
We then use this layerwise trained circuit as a starting point for
simultaneously optimizing all the circuit parameters before
considering the third layer. This simultaneous optimization
step allows for the optimizer to explore paths in the optimiza-
tion landscape which do not saturate [18]. Furthermore, the
approach can recursively be repeated until the desired depth
p is attained. In our implementation of this heuristic, at each
training step, the best result out of 25 random seed runs of
the L-BFGS-B optimizer is considered to escape potential
local minima.

VI. CONCLUSION

QAOA is among the most studied gate-based approaches
for combinatorial optimization in NISQ era devices. Although
analytical techniques address QAOA either at low depth or in
the adiabatic limit, p → ∞, understanding the performance
at intermediate depths remains largely open. Furthermore,
problem density induces underparametrization and limits the

FIG. 4. Fitting parameters vs number of qubits for QAOA on
MAX-2-SAT with tolerance ε = 0.3. Note that the recovered critical
density αc ≈ 1, and growth rate κ , show very little variability with
respect to the number of qubits. In contrast, the saturation value pmax

illustrates a linear trend in the considered range of 5–15 qubits.

performance of fixed depth QAOA. An open question in this
regard is the required depth for QAOA to succeed. Addition-
ally, by treating the circuit depth of QAOA as a computational
resource, it becomes paramount in complexity studies to
know the scaling of depth with respect to the problem size.
Understanding these open problems paves the way towards
identifying the quantum advantage in QAOA.

In this paper we introduce a methodology based on a pre-
dictive model that aims to address these open problems. We
first relate QAOA energy approximations and success proba-
bility (or ground state overlap) via Eq. (6). This relation then
determines the success/failure of the algorithm up to some ε

tolerance. Based on this acceptance criterion, we numerically
recovered the critical depth needed for QAOA to achieve a
success probability of at least 0.7 for the case of MAX-2-SAT.
Considering up to 15 variables and a clause density up to 4
we indeed observe that our proposed model describes the data
within a 3σ confidence interval. Furthermore, we recovered
critical depth scaling with respect to the problem size to
illustrate a linear trend for our considered range of problem
sizes. Though this finite range is insufficient to assert quantum
advantage, we anticipate future works to test the accuracy of
the presented model over comprehensive ranges of densities
and problem sizes.

The data that support the findings of this study are available
within the paper. The code for generating the data will be
available on reasonable request.
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APPENDIX A: ISING EMBEDDING OF SAT INSTANCES

We start by mapping logical bits {0, 1} to states {|0〉, |1〉} ∈
C2, respectively. The objective function to be minimized is
equivalent to minimizing a Hamiltonian HSAT, constructed by
the real linear extension of {P0, P1,1} as

x j −→ P0
j , ¬x j −→ P1

j , (A1)

and

∧ −→ +, ∨ −→ ⊗. (A2)

Here, P1
j = |1〉〈1| j and P0

j = |0〉〈0| j are rank-one projec-
tors acting on the jth qubit. The construction ensures each
clause in a given SAT instance is mapped onto projectors,
Pαβ···γ

i j···k = Pα
i ⊗ Pβ

j ⊗ · · · ⊗ Pγ

k , which penalize unsatisfiable

assignments |x〉 ∈ C⊗n
2 with a penalty 〈x|Pαβ···γ

i j···k |x〉 = 1.
The full Hamiltonian HSAT is then constructed by summing

over all the clauses in an instance,

HSAT =
m∑

l=1

Cl
{
Pαβ···γ

i j···k
}
, (A3)

where Cl assigns the value of α, β, . . . , γ ∈ {0, 1}, cor-
responding to the negation of the literals indexed by
i, j, . . . , k ∈ {1, 2, . . . , n} in the lth clause. It is straight-
forward to see that the ground state space of this SAT
Hamiltonian is spanned by assignments that violate the mini-
mal number of clauses.

Decomposing the projectors onto the Z Pauli basis as

Pα
j = 1

2
[1 + (−1)αZj], (A4)

Eq. (A3) can be rewritten in the form of a generalized Ising
Hamiltonian with at most a k-body interaction. In case of
2-SAT, the Hamiltonian H2SAT contains at most two-body
interactions as

H2SAT =
m∑

l=1

Cl
{
Pα

j ⊗ Pβ

k

}

= 1

4

⎛
⎝m1 +

∑
j

h jZ j +
∑
j<k

J jkZ jZk

⎞
⎠,

(A5)

with appropriate coefficients h j and J jk .

APPENDIX B: DERIVATION OF ENERGY-OVERLAP
BOUNDS

Once a variational state |ψ (θ)〉 has been prepared on a
quantum computer as a function of a set of tunable parameters
θ, we would like to know how close this state is to the solution
space of the problem being solved. We will adapt and extend
the Lemma 1 (variational stability) from Ref. [10] to the
degenerate case.

Let H � 0 be some Hamiltonian with d-degenerate ground
state energy λ0 � 0. The Hamiltonian in its eigenbasis can be
expressed as

H = λ0

d∑
j=1

|φ j〉〈φ j | +
∑
k>d

λk|φk〉〈φk|. (B1)

Here, we reorder the eigenbasis so that λ0 < λ1 �
· · · λk · · · � λmax. Consider the expectation value of the
Hamiltonian on an arbitrary state |ψ〉,

〈ψ |H|ψ〉 = λ0

d∑
j=1

|〈φ j |ψ〉|2 +
∑
k>d

λk|〈φk|ψ〉|2. (B2)

Assuming the gap 	 = λ1 − λ0 is known,

〈ψ |H|ψ〉=λ0

d∑
j=1

|〈φ j |ψ〉|2 +
∑
k>d

λk|〈φk|ψ〉|2

� λ0

(
d∑

j=1

|〈φ j |ψ〉|2
)

+ (λ0 + 	)

(∑
k>d

|〈φk|ψ〉|2
)

= λ0

(
d∑

j=1

|〈φ j |ψ〉|2
)

+(λ0+	)

(
1−

d∑
j=1

|〈φ j |ψ〉|2
)

= λ0 + 	

(
1 −

d∑
j=1

|〈φ j |ψ〉|2
)

.

Rearranging the terms now gives the required upper bound as:

d∑
j=1

|〈φ j |ψ〉|2 � 1 − 〈ψ |H|ψ〉 − λ0

λmax − λ0
. (B3)

For the upper bound, we substitute for each excited state
energies λk in Eq. (B2) by λmax,

〈ψ |H|ψ〉 � λ0

d∑
j=1

|〈φ j |ψ〉|2 + λmax

∑
k>d

|〈φk|ψ〉|2

� λ0

(
d∑

j=1

|〈φ j |ψ〉|2
)

+ λmax

(
1 −

d∑
j=1

|〈φ j |ψ〉|2
)

.

(B4)

Rearranging the terms now gives the required upper bound as

d∑
j=1

|〈φ j |ψ〉|2 � 1 − 〈ψ |H|ψ〉 − λ0

λmax − λ0
. (B5)

By combining both bounds, we obtain the stability theorem
that relates energy error in approximation with the success
probability (or the ground state overlap) for the degenerated
case:

1 − f

	
�

d∑
i=1

|〈φi|ψ〉|2 � 1 − f

λmax − λ0
, (B6)

where f = 〈ψ |H|ψ〉 − λ0.
Notice that for the case of MAX-2-SAT instances, λmax �

m, where m the number of clauses in the instance and 	 � 1.
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