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Quantum speed limits for observables
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In the Schrödinger picture, the state of a quantum system evolves in time and the quantum speed limit describes
how fast the state of a quantum system evolves from an initial state to a final state. However, in the Heisenberg
picture the observable evolves in time instead of the state vector. Therefore, it is natural to ask how fast an
observable evolves in time. This can impose a fundamental bound on the evolution time of the expectation
value of quantum-mechanical observables. We obtain the quantum speed limit time bound for observable for
closed systems, open quantum systems, and arbitrary dynamics. Furthermore, we discuss various applications of
these bounds. Our results can have several applications ranging from setting the speed limit for operator growth,
correlation growth, quantum thermal machines, quantum control, and many-body physics.
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I. INTRODUCTION

Time is one of the fundamental notions in the physical
world and it plays a significant role in almost every exist-
ing physical theory. However, understanding time has been a
challenging task and often it is treated like a parameter. Even
though time is not an operator, there is a geometric uncertainty
relation between time and energy fluctuation which imposes
inherent limitation on how fast a quantum system can evolve
in time. This was first discovered in an attempt to operational-
ize the time-energy uncertainty relation. This concept is now
known as the quantum speed limit (QSL) [1,2]. Even though
how fast a quantum system evolves in time was addressed
in Ref. [1], the notion of speed of transportation of the state
vector was formally defined using the Fubini-Study metric in
Ref. [2] and using the Riemannian metric in Ref. [3]. Subse-
quently, an alternate speed limit for quantum state evolution
was proved involving the average energy above the ground
state of the Hamiltonian [4]. The QSL determines the minimal
time of evolution of the quantum system. It entirely depends
on intrinsic quantities of evolving quantum systems, such as
the shortest path connecting the initial and final states of the
quantum system and the uncertainty in the Hamiltonian.

The QSL bounds were first investigated for the unitary dy-
namics of pure states [1,2,4–27]. Later, the QSL was studied
for the case of the unitary dynamics of mixed states [28–37],
the unitary dynamics of multipartite systems [38–41], and
more general dynamics [42–51]. The study of the QSL is
significant for a theoretical understanding of quantum dynam-
ics and has relevance in developing quantum technologies
and devices, etc. The QSL has applications in several fields,
such as quantum computation [52], quantum thermodynamics
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[53,54], quantum control theory [55,56], and quantum metrol-
ogy [57].

In quantum physics, during the arbitrary dynamical evolu-
tion of the quantum system, we often encounter the situation
where a time-evolved state becomes perfectly distinguishable
(orthogonal) from the initial state. At the same time, the
expectation value of a given observable does not change or
changes at a slower rate. For instance, let us consider a closed
quantum system with internal Hamiltonian σz and initial state
|+〉. This initial state evolves to its orthogonal state |−〉 (up
to a phase) by an external Hamiltonian σy, where |+〉 and |−〉
are the eigenstates of σx. In this scenario, the initial state and
final state of the system are distinguishable. However, both
the initial and final states are energetically indistinguishable,
so the evolution time for the average energy of the quantum
system is zero. Similarly, one can consider that if a given
quantum system interacts with a pure dephasing environment
(dephasing in σz), then its state evolves to a decohered state.
However, the expectation value of energy does not change in
this process. The above discussion suggests that observables
of a system can have different quantum speed limit bounds.

In the Schrödinger picture, the state vector evolves in time,
while in the Heisenberg picture, the observable of the quantum
system evolves; both of these formalisms are equivalent. In
quantum mechanics, there is also an interaction picture where
both the state and the observables can change in time. This
has important applications in quantum field theory and many-
body physics. In this paper we will use the Heisenberg picture
for most of our discussion. The natural question that then
arises is how fast an observable evolves in time. Specifically,
we will answer the question of how to obtain a lower bound
on the evolution time of a quantum observable and define
the quantum speed limit for the observable. Thus, a seem-
ingly technical difference between the Schrödinger and the
Heisenberg pictures becomes rather important in the context
of many-body physics. Here, often one cannot describe a state
analytically due to its immense computational complexity.
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However, it is possible to compute expectation values of local
observables in an efficient manner. Thus, it is desirable to
bound how fast the expectation value corresponding to an
observable changes in time in the Heisenberg picture.

Another motivation for studying an observable’s speed
limit is that this can have application in understanding the
operator growth in many-body physics. In the context of com-
plex systems, one of the pressing questions is to understand
the universal operator growth hypothesis [58]. The observ-
ables of a system which may be represented as operators in
quantum systems tend to grow over time, i.e., they become
more complicated as the system evolves in time. If we start
with a simple many-body operator at some initial time, then
because of the interaction Hamiltonian, the operator may be-
come complex at a later time. The quantum speed limit for the
observable can answer the fundamental question of how fast a
many-body operator is to tend to be complex. It is important
to know the rate of operator growth and we believe that the
quantum speed limit for the observable can throw light on this
question.

In complex quantum systems and many-body physics the
bound on the commutator of two operators, one operator being
the time-evolved version of an operator with support on some
region and the other operator with support on some other re-
gion, plays a major role in the derivation of the Lieb-Robinson
bound [59,60]. The latter proves that the speed of propagation
of perturbation in the quantum system is bounded. Physically,
this implies that for small times only small amounts of in-
formation can propagate from one region of the many-body
system to another region. While the Lieb-Robinson bound
leads to a speed limit of information in quantum systems,
the quantum speed limit for the observable can answer the
question of how fast the commutator changes for observables
belonging to two distant regions. This is also important in
the physical context where the underlying dynamics is highly
chaotic [61]. The growth of the commutator between two
operators as a function of their separation in time has been
used to quantify the rate of growth of chaos and informa-
tion scrambling [62–64]. Therefore, the quantum speed limit
for the commutator can answer the question of how fast a
localized perturbation spreads in time in a quantum many-
body system. Since the timescale over which scrambling of
information occurs is distinct from the relaxation time of the
physical system, the observable quantum speed limit for the
two-time commutator can play an important role in giving an
estimate of the scrambling time in complex quantum systems.

To answer these fundamental questions, we formally intro-
duce the notion of the quantum speed limit for observables.
It is characterized as the maximal evolution speed of the ex-
pectation value of the given observable of the quantum system
during arbitrary dynamical evolution, which can be unitary or
nonunitary. It sets the bound on the minimum evolution time
of the quantum system required to evolve between different
expectation values of a given observable. We do this for both
closed and open quantum dynamics. We illustrate our main
results for the ergotropy rate of a quantum battery, the rate of
probability which also gives the standard QSL for the state
of the system. Moreover, we also compute the QSL for the
two-time correlation of an observable, which is a central quan-
tity in the theory of quantum transport and complex quantum

systems. We also apply our bound to obtain the quantum speed
limit for the commutator of two observables belonging to two
distant regions in a many-body system. Our result can be
equally important like the Lieb-Robinson bound.

II. OBSERVABLE’S QUANTUM SPEED LIMIT

Here we show how to obtain the QSL for an observable.
This will answer the question of how fast the expectation
value of a given observable changes in time instead of the
state of the quantum system. The observable’s QSL is defined
as the maximum rate of evolution of the expectation value of
an observable of a given quantum system during dynamical
evolution. It establishes a limit on the minimum evolution time
necessary to evolve between different expected values of a
given observable of the quantum system. Here we will derive
the observable’s QSL for closed and open system dynamics.

A. Unitary dynamics

In this section we derive a bound for the observable un-
dergoing unitary dynamics in the Heisenberg picture. Let
us consider a closed quantum system whose initial state is
|ψ〉 ∈ H and whose dynamical evolution is dictated by uni-
tary U (t ) = e−iHt/h̄, where H is the time-independent driving
Hamiltonian of the quantum system. Here we want to deter-
mine how fast a quantum observable O of the quantum system
evolves in time and lower bound its minimal evolution time.
We know that the Heisenberg equation of motion governs the
time evolution of an observable, which is given by

ih̄
dO(t )

dt
= [O(t ), H], (1)

where H is the Hamiltonian of the system and O(t ) =
U †(t )O(0)U (t ), with U †(t )U (t ) = I .

Now we take the average of the above in the state
|ψ〉 and take the absolute value of Eq. (1). On using the
Heisenberg-Robertson uncertainty relation, i.e., �A�B �
1
2 〈[A, B]〉, where A and B are two incompatible observables
[65], we obtain the inequality∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ = 1

h̄
|〈[O(t ), H]〉| � 2�O(t )�H

h̄
, (2)

where �O(t ) =
√

〈O(t )2〉 − 〈O(t )〉2 and �H =√
〈H2〉 − 〈H〉2.
The above inequality (2) is the upper bound on the rate of

change of the expectation value of a given observable of the
quantum system evolving under unitary dynamics. After inte-
grating the above inequality with respect to time, we obtain
the desired bound

T � h̄

2�H

∫ T

0

|d〈O(t )〉|
�O(t )

. (3)

We call the quantity (right-hand side of the inequality) T O
QSL =

h̄
2�H

∫ T
0

|d〈O(t )〉|
�O(t ) the quantum speed limit time of an observable

(OQSL), i.e., T � T O
QSL.

If an observable O satisfies the condition O2 = I , i.e., for
the self-inverse observable, the inequality (3) can be expressed
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as.

T � h̄

2�H
| arcsin〈O(T )〉 − arcsin〈O(0)〉|. (4)

Here we illustrate the tightness of the above speed limit for
the observable with a simple example. Consider a qubit in a
pure state |ψ〉 = α|0〉 + √

1 − α2|1〉 (0 � α � 1) which does
not evolve in time. The Hamiltonian of the system is given by
H = m̂ · �σ , with m̂ a unit vector. In the Heisenberg picture, an
observable evolves in time and we would like to evaluate the
minimum evolution time of the expectation value of a given
observable O(0) = n̂ · �σ , with n̂ the unit vector in the state
|ψ〉. We can calculate the quantities �H = 1, 〈O(0)〉 = 1, and
〈O(T )〉 = −1, where we assume n̂ = (1, 0, 0), m̂ = (0, 0, 1),
α = 1√

2
, and T = π

2 . By using Eq. (4), we can obtain T O
QSL =

π
2 = T . Hence, the bound given by Eq. (4) is indeed tight.
This simple example illustrates the usefulness of the OQSL.
The bound given in (3) may be thought of as the analog of the
Mandelstam-Tamm (MT) bound for the observable.

1. Quantum speed limit for states

Here we discuss how the QSL for an observable is con-
nected to the standard QSL for the state of a quantum system.
We will show that the standard state-speed limit for the state
may be viewed as a special case of the observable’s speed limit
when the observable is chosen to be a projector on the initial
state. Let us consider the initial state of a quantum system
which is prepared in a state |ψ〉 = ∑

i ai|i〉. If we choose our
observable to be a projector, i.e., O(0) = P, then the proba-
bility of finding the quantum system in state |i〉 at t = 0 is
p(0) = |ai|2 (if we measure a projector P = |i〉〈i|). Here we
want to obtain the speed limit for the projector for the unitarily
evolving quantum system, i.e., how fast the probability of
finding the quantum system in state |i〉 changes in time. From
(3) we can then obtain the inequality

T � h̄

2�H

∫ T

0

|d〈P(t )〉|√〈P(t )〉[1 − 〈P(t )〉] ,

where P(t ) = U †(t )P(0)U (t ) and 〈P(t )〉 = p(t ) is the proba-
bility of the quantum system being in state |i〉 at a later time

T � h̄

�H
| arcsin[

√
p(T )] − arcsin[

√
p(0)]|. (5)

If p(0) = 1 i.e., |ψ〉 = |i〉, then the inequality (5) yields the
well-known Mandelstam-Tamm bound of the QSL for state
evolution

T � h̄

�H
arccos[

√
p(T )]. (6)

This is the usual QSL obtained by Mandelstam and Tamm
[1] and Anandan and Aharaonov [2]. Thus, the observable
QSL also leads to a standard QSL for the state change. In this
sense, our approach also unifies the existing QSLs. Note that
this is an expression for survival probability and it is related
to fidelity decay, which is an important quantity in quantum
chaos [66].

Since the bound (3) is harder to compute, one can derive
the alternate bound for an arbitrary initial state which may be

pure or mixed (see Appendix A), which is easier to compute,

T � h̄

2
√

tr(ρ2)

|〈O(T )〉 − 〈O(0)〉|
‖O(0)H‖HS

, (7)

where tr(ρ2) is the purity of the initial state, ‖A‖HS =√
tr(A†A) is the Hilbert-Schmidt norm of the operator A, and

the right-hand side is defined as T O
QSL. The bound (7) suggests

that if the initial state of the system is mixed, then the observ-
able evolves slower (the OQSL depends on the initial state).
However, this bound (7) may not always be tight compared to
the bound (3).

The above result can have an interesting application in
physical systems where one tries to estimate approximate
conserved quantities. We know that if O is the generator of a
symmetry operation that acts on the physical system and if it
commutes with the Hamiltonian, then it is conserved. Suppose
that O does not commute with the Hamiltonian. Then we
know that the observable will not be conserved. However, the
bound (7) can suggest, over some time interval T , how much
〈O(T )〉 differs from 〈O(0)〉. For a pure state, this difference is
upper bounded by 2T

h̄ ‖O(0)H‖HS.
Next we obtain another QSL for the observable. Let us

consider a quantum system with a pure state ρ = |ψ〉〈ψ |.
The time evolution of the expectation value of any system
observable O is given as

〈O(t )〉 = tr[U †(t )O(0)U (t )ρ]. (8)

To find the rate of change of expectation value of the observ-
able, we need to differentiate Eq. (8) with respect to time. By
taking the absolute value of the rate equation and applying the
triangular inequality and the Hölder inequality [67–69], we
obtain the inequality∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � 2

h̄
‖HO(t )‖op. (9)

This inequality (9) provides the upper bound on the rate of
change of the expectation value of a given observable of the
quantum system evolving under unitary dynamics.

The operator norm, the Hilbert-Schmidt norm, and the
trace norm of an operator satisfy the inequality ‖A‖op �
‖A‖HS � ‖A‖tr and the operator norm is unitary invariant
‖U †AU‖op = ‖A‖op. Then we can obtain the bound as (see
Appendix B)

T � h̄

2

{ |〈O(T )〉 − 〈O(0)〉|
min{‖O(0)H‖op, ‖O(0)H‖tr}

}
, (10)

where T O
QSL = h̄

2 { |〈O(T )〉−〈O(0)〉|
min{‖O(0)H‖op,‖O(0)H‖tr} } is the OQSL time.

One should consider the maximum of (3), (7), and (10)
for the tighter bound. For the unitary evolution, the bounds
(3), (7), and (10) determine how fast the expectation value of
an observable of the quantum system changes in time. If a
given observable’s initial and final expectation values do not
change undergoing unitary evolution, then the OQSL is zero.
Since the minimal evolution time for state evolution cannot
be zero in the above scenario, the aforementioned scenario
is the major difference between OQSL bounds and standard
QSL bounds (MT and Margolus-Levitin bounds) for unitary
dynamics.
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B. Arbitrary dynamics

In general, for an arbitrary observable O one can obtain
the following inequality using the triangle inequality for the
absolute value and the Hölder inequality (see Appendix C):

|〈O〉ρ − 〈O〉σ | � 2‖O‖opl (ρ, σ ). (11)

Here l (ρ, σ ) = 1
2 tr|ρ − σ | is the trace distance between states

ρ and σ . With the help of the inequality relation (11), we can
define a distance that captures the change in the expectation
of an observable during the arbitrary dynamical evolution (in
general, the evolution governed by the master equation Ȯ(t ) =
L†

t [O(t )], where L†
t is adjoint of the Liouvillian superoperator,

which can be unitary or nonunitary), and it is given by

D(O(t ), O(0)) = |tr[(O(t ) − O(0))ρ]|
2‖O(0)‖op

, (12)

where ‖O(0)‖op is a rescaling factor because the spectral gap
in the observable can be arbitrarily large.

Using Eq. (12), we can obtain the desired QSL bound on
the evolution time of the expectation value of an observable
for arbitrary dynamics as

T � |〈O(T )〉 − 〈O(0)〉|√
tr(ρ2)�T

, (13)

where �T = 1
T

∫ T
0 dt‖L†

t O(t )‖HS is the evolution speed of the
observable O and T O

QSL = |〈O(T )〉−〈O(0)〉|√
tr(ρ2 )�T

is the OQSL time.

Details of the derivation are provided in Appendix D. For
arbitrary dynamics, the bound (13) determines how fast the
expectation value of an observable of the quantum system
changes in time. The derived bound (13) implies that the
OQSL is dependent on the purity of the initial state of the
quantum system as well as the evolution speed of the observ-
able.

C. Lindblad dynamics

Let us consider a quantum system S that is interacting
with its environment E . The total Hilbert space of the com-
bined system is HS ⊗ HE and we assume that the initial
state of the combined system is represented by the separable
density matrix ρSE (0) = ρ ⊗ σ , where the quantum sys-
tem’s initial state ρ can be pure or mixed and σ is the state
of the environment. The Lindbladian L governs the reduced
dynamics of a quantum system S. Here we aim to determine
how fast the expectation value of a given observable O of the
reduced quantum system S evolves in time and lower bound its
minimal evolution time. The quantum system has an internal
Hamiltonian HS . If the system interacts with its surroundings,
then the dynamics of the given observable of the quantum
system is governed by the Lindblad master equation in the
Heisenberg picture. Hence, the expectation value of the ob-
servable O belonging to the system follows the dynamics

〈O(t )〉 = tr[O(0)	t (ρ)] = tr{	†
t [O(0)]ρ}, (14)

where 	t is the generator of the dynamics and O(t ) =
	t [O(0)] = eL

†t O(0), with L† the adjoint of the Lindbladian.

The time evolution of an observable O is given by

dO(t )

dt
= L†[O(t )], (15)

where L†[O(t )] = i
h̄ [HS, O(t )] + D[O(t )], with D[O(t )] =∑

k γk (t )[L†
k O(t )Lk − 1

2 {L†
k Lk, O(t )}] and Lk the jump opera-

tors of the system.
Let us take the average of Eq. (15) in the state ρ and its

absolute value. By applying the Cauchy-Schwarz inequality,
we obtain the inequality∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ �
√

tr(ρ2)‖L†[O(t )]‖HS, (16)

where ‖A‖HS =
√

tr(A†A) is the Hilbert-Schmidt norm of op-
erator A.

The inequality (16) is the upper bound on the rate of
change of the expectation value of the given observable of
the quantum system evolving under Lindblad dynamics. After
integrating the inequality (16), we obtain the bound

T � |〈O(T )〉 − 〈O(0)〉|√
tr(ρ2)�T

, (17)

where �T = 1
T

∫ T
0 dt‖L†[O(t )]‖HS is evolution speed of the

observable O and T O
QSL = |〈O(T )〉−〈O(0)〉|√

tr(ρ2 )�T

is the OQSL time.

For the Lindblad dynamics, the bound given in (17) deter-
mines how fast the expectation value of an observable of the
quantum system changes in time. The obtained bound (17)
suggests that the OQSL depends on the purity of the initial
state of the evolving quantum system. Note that the OQSL
time is zero if the expectation value of a given observable does
not change during the dynamics.

1. Comparison between QSL and OQSL for pure
dephasing dynamics

Let us consider the QSL bound for open quantum systems
governed by a Lindblad quantum master equation. For the
Markovian dynamics of an open quantum system expressed
via a Lindbladian L, the lower bound on the evolution time
needed for a quantum system to evolve from initial state ρ0 to
final state ρT was given in Ref. [43] as

T � | cos θ − 1|tr(ρ2
0 )√

tr[L†
(
ρ0

)
]2

, (18)

where θ = cos−1( tr(ρ0ρT )
tr(ρ2

0 )
) is expressed in terms of relative

purity between the initial and the final state.
Let us consider a two-level quantum system with the

ground state |1〉〈1| and the excited state |0〉〈0| interacting with
a dephasing bath. The corresponding dephasing Lindblad or

jump operator of the system is given by L0 =
√

γ

2 σz, where

σz is the Pauli-Z operator and γ is a real parameter denoting
the strength of dephasing. The Lindblad master equation [70]
governs the time evolution of the two-level quantum system
and is given by

dρt

dt
= L(ρt ) = γ

2
(σzρtσz − ρt ). (19)
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FIG. 1. Plot of TQSL/OQSL vs T for γ = 1.

If the quantum system is initially in a state ρ0 = |+〉〈+|,
where |+〉 = 1√

2
(|0〉 + |1〉), then the solution of the Lindblad

equation is given by

ρt = 1
2 [|0〉〈0| + |1〉〈1| + e−γ t (|1〉〈0| + |0〉〈1|)]. (20)

If the given observable is O(0) = σx, then the solution of (15)
for the dephasing dynamics is given as

O(t ) = e−γ tσx. (21)

To estimate the bounds (17) and (18), we require the quantities

tr
(
ρ2

0

) = 1, (22)

cos θ = 1 + e−γ t

2
, (23)

tr[L†(ρ0)]2 = γ 2

2
, (24)

〈O(0)〉 = tr(σzρ0) = 1, (25)

〈O(t )〉 = tr(e−γ tσzρ0) = e−γ t , (26)

‖L†[O(t )]‖HS =
√

2γ e−γ t . (27)

In Fig. 1 we plot TQSL/OQSL vs T ∈ [0, π
2 ] for pure de-

phasing dynamics and for γ = 1. Figure 1 shows that our
OQSL bound (17) is tighter than the QSL bound (18) for
the pure dephasing process. Both bounds [our bound (17) and
bound (18)] are obtained by employing the Cauchy-Schwarz
inequality. Therefore, one expects both these bounds to be
equally tight, but it is not true. It turns out that the bound (18)
is loose. It happens because while deriving the bound (18) in
Ref. [43] the authors used an additional inequality along with
the Cauchy-Schwarz inequality, i.e., tr(ρ2

t ) � 1 [see Eq. (7) of
Ref. [43]]. They did this to obtain a time-independent bound
on the rate of change of the purity.

D. Dynamical map

We can also express the QSL for the observable using the
Kraus operator evolution. Suppose a given quantum system
has initial state ρ and its dynamical evolution is governed
by a completely positive and trace-preserving (CPTP) map E ,
which is described by a set of Kraus operators {Ki(t )} and

∑
i K†

i (t )Ki(t ) = IS . The dynamics of the observable O in the
Heisenberg picture is described as

O(t ) =
∑

i

K†
i (t )O(0)Ki(t ). (28)

Using Eq. (28), we obtain the QSL for the observable as given
by

T � |〈O(T )〉 − 〈O(0)〉|
2
√

tr(ρ2)�T

, (29)

where �T = 1
T

∫ T
0 dt‖K†

i (t )O(0)K̇i(t )‖HS is the evolution
speed of the observable O and T O

QSL = |〈O(T )〉−〈O(0)〉|
2
√

tr(ρ2 )�T

is the

OQSL time.
Details of the derivation are provided in Appendix E. For

dynamical map dynamics, the bound (29) determines how
fast the expectation value of an observable of the quantum
system changes in time. According to the obtained bound (29),
the OQSL depends on the purity of the initial state of the
evolving quantum system and on the speed of the observable’s
evolution.

E. State-independent QSL for an observable

The bounds for the QSL for an observable that have
been proved in previous sections are state-dependent bounds.
One may be curious to know if we can prove some state-
independent bounds, i.e., whether we can derive the bounds
which are given merely in terms of properties of the observ-
ables themselves. Here we make an attempt to formulate a
bound without optimizing over states. To derive the state-
independent speed limit for the observable, consider the
Hilbert-Schmidt inner product for observables. The Hilbert-
Schmidt inner product of two observables O(0) and O(t ) is
defined as

〈O(0), O(t )〉 = tr[O(0)O(t )], (30)

where O(t ) = eL†t O(0) (L† is the adjoint of the Liouvillian
superoperator).

After differentiating Eq. (30) with respect to time, we ob-
tain

d

dt
〈O(0), O(t )〉 = tr[O(0)Ȯ(t )] = tr[O(0)L†(O(t ))]. (31)

Let us take the absolute value of this equation. Then, by
applying the Cauchy-Schwarz inequality, we can obtain the
inequality∣∣∣∣ d

dt
〈O(0), O(t )〉

∣∣∣∣ � ‖O(0)‖HS‖L†[O(t )]‖HS. (32)

After integrating this inequality, we obtain the bound

T � |〈O(0), O(T )〉 − 〈O(0), O(0)〉|
‖O(0)‖HS�T

, (33)

where �T = 1
T

∫ T
0 dt‖L†[O(t )]‖HS is the evolution speed of

the observable O and T O
QSL = |〈O(0)|O(T )〉−〈O(0)|O(0)〉|

‖O(0)‖HS�T
is the

OQSL time.
The bound (33) is independent of the state of the quantum

system and it is applicable for arbitrary dynamics, which
can be unitary or nonunitary. In the future, it will be worth
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exploring if it is possible to obtain some bounds using a dif-
ferent approach, for example, which may involve separation
between extreme eigenvalues of the operators or optimizing
over possible initial states. The state-independent bound will
have its own merit as it could be understood as representing
some best-case scenario where the time is the shortest pos-
sible to modify the expectation value of a given observable
when optimizing over all possible states. This kind of bound
may find applications in the context of quantum metrology,
where we optimize over the probe states in order to obtain the
fastest change of the state from the point of view of certain
parameters.

III. APPLICATIONS

In this section we illustrate the usefulness of the OQSL for
a quantum battery, growth of a two-time correlation function,
and connection to the Lieb-Robinson bound.

A. Quantum batteries

A quantum battery is a microscopic energy storage device
introduced by Alicki and Fannes [71]. Several theoretical
works have been done to strengthen this novel idea of quantum
battery and enhance its nonclassical features [72–86]. Quan-
tum batteries can easily outperform classical batteries because
of several quantum advantages. Here our main aim is to obtain
a minimal unitary charging time of the quantum battery using
the OQSL.

The quantum battery consists of many quantum systems
with several degrees of freedom in which we can deposit work
to or extract work from it. Let us consider the battery with
Hamiltonian HB and charged by field HC . The total Hamilto-
nian of the quantum battery is described by

HT = HB + HC . (34)

The amount of extractable energy from the quantum system
by unitary operations is termed the ergotropy of quantum
battery [75], which is given by

ε(t ) = 〈ψ (t )|HB|ψ (t )〉 − 〈ψ (0)|HB|ψ (0)〉, (35)

where |ψ (0)〉 and |ψ (t )〉 are the initial and final states of the
quantum battery while charging.

Note that the expression (35) holds true in the Schrödinger
picture. However, in the Heisenberg picture the ergotropy can
be rewritten as

ε(t ) = 〈ψ (0)|[HB(t ) − HB(0)]|ψ (0)〉,
where HB(t ) = eiHt/h̄HB(0)e−iHt/h̄ and HB(0) = HB.

The rate of change ergotropy of the quantum battery during
the charging process can be obtained by differentiating the
above equation with respect to time, which is given by

dε(t )

dt
= d

dt
〈ψ (0)|HB(t )|ψ (0)〉.

Using our bound, we can write the QSL for ergotropy as

T � h̄

2�HT

∫ T

0

|d〈HB(t ) − HB(0)〉|
�HB(t )

, (36)

where T is the charging time period of the quantum battery.
Also, an alternative unified bound can be obtained by using

bounds (7) and (10),

T � h̄

2

|〈HB(T )〉 − 〈HB(0)〉|
min{‖ • ‖op, ‖ • ‖HS, ‖ • ‖tr} , (37)

where • stands for HB(0)HT and the operator norm, the
Hilbert-Schmidt norm, and the trace norm of an operator
satisfy the inequality ‖A‖op � ‖A‖HS � ‖A‖tr .

Since previously obtained bounds [73,75] on the charging
time of the quantum battery are based on distinguishability
of the initial and final state vectors of the quantum battery,
the bounds we have presented in this section are based on
the difference between the initial ergotropy and the final er-
gotropy of the quantum battery. The bounds obtained in this
section can easily outperform previously obtained bounds,
especially when the battery has degenerate energy levels.

For example, let us consider the model of a qubit quantum
battery which has Hamiltonian HB = σz and let us consider
the battery to initially be in state |φ+〉 = a|0〉 + b|1〉 (which
has nonzero ergotropy). Then, by applying some charging
field HC (t ), we reach the final state |φ−〉 = a|0〉 − b|1〉. In this
process we neither extract any work from the quantum battery
nor store any work in the quantum battery because both initial
and final states have the same ergotropy according to Eq. (35).
Note that if we calculate the charging time according to the
standard QSL (6) or bounds presented in [73,75], we obtain a
nonzero minimal charging time, but according to our bounds
(36) and (37) the minimal charging time is zero. This happens
because the standard QSL and bounds presented in [73,75]
are based on the notion of state distinguishability while our
bounds (36) and (37) depend on a change in the ergotropy.
Therefore, our bounds (36) and (37) yield the correct minimal
charging time.

B. Transport properties

A crucial quantity in the theory of quantum transport in
many-body physics is the two-time correlation function of
an observable. This section aims to obtain a speed limit for
a two-time correlation of an observable and its time-evolved
observable. For an arbitrary pure quantum state ρ, we can de-
fine the two-time correlation function C(A(t ), A(0)) between
observables A(t ) and A(0) as

C(t ) = 〈A(t )A(0)〉 − 〈A(t )〉〈A(0)〉. (38)

For the closed dynamics case A(t ) = U †(t )A(0)U (t )
[U (t ) = e−iHt/h̄] and for the open dynamics case A(t ) =
eL

†t A(0) (L† is the adjoint of the Lindbladian). We can derive
the following speed limit bound on the two-time correlation
function for closed dynamics:

T � h̄

2

|C(T ) − C(0)|
‖A(0)‖op

1
T

∫ T
0 dt‖[H, A(t )]‖op

. (39)

Similarly, we can derive the following speed limit bound on
the two-time correlation function for open dynamics:

T � h̄

2

|C(T ) − C(0)|
‖A(0)‖op

1
T

∫ T
0 dt‖L†[A(t )]‖op

. (40)

Details of the derivation of bounds (39) and (40) are provided
in Appendixes F and G.
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C. Relation to the Lieb-Robinson bound

The Lieb-Robinson bound [59,60] provides the speed limit
for information propagation about the perturbation. This gives
an upper bound for the operator norm of the commutator of
A(t ) and B, where A and B are spatially separated operators of
a many-body quantum system. This bound implies that even
in the nonrelativistic quantum dynamics one has some kind of
locality structure analogous to the notion of finiteness of the
speed of light in the relativistic theory.

This section aims to derive a distinct speed limit bound for
the commutator of A(t ) and B, i.e., how fast the commutator
changes in the Heisenberg picture. The commutator of two
observables in two different regions of a many-body system is
defined as

O(t ) = [B(0), A(t )]. (41)

The average of the commutator in the state ρ is given by
〈O(t )〉 = tr[O(t )ρ], where ρ is a pure state of the given quan-
tum system.

Here we want to obtain the speed limit bound for the com-
mutator for both the closed system dynamics and open system
dynamics. For the closed dynamics A(t ) = U †(t )A(0)U (t )
[U (t ) = e−iHt/h̄] and for the open dynamics A(t ) = eL

†t A(0)
(L† is the adjoint of the Lindbladian). We can derive the
following speed limit bound on the commutator for closed
dynamics:

T � 2

h̄

|〈O(T )〉|
‖B(0)‖op

1
T

∫ T
0 dt‖[H, A(t )]‖op

. (42)

Similarly, we can derive the following speed limit bound
on the commutator for open dynamics:

T � 2

h̄

|〈O(T )〉|
‖B(0)‖op

1
T

∫ T
0 dt‖L†[A(t )]‖op

. (43)

Details of the derivation of bounds (42) and (43) are provided
in Appendixes H and I. Note that our bounds are state de-
pendent while the Lieb-Robinson bound is state independent.
Also, to prove the Lieb-Robinson bound, one needs bounded
interactions such as those encountered in quantum spin sys-
tems, whereas the quantum speed limit for the commutator
does not require any assumption about the underlying Hamil-
tonian.

IV. CONCLUSION

The standard quantum speed limit for the evolution of a
state plays an important role in quantum theory, quantum
information, quantum control, and quantum thermodynam-
ics. However, if we describe the quantum dynamics in the
Heisenberg picture, then we cannot use the QSL for the state
evolution. We need to define the evolution speed of the observ-
able for a quantum system in the Heisenberg picture. In this
paper we have derived the quantum speed limits for general
observables for the unitary, the Lindbladian dynamics, and
the completely positive dynamics. Along with this, we have
presented several possible applications of these bounds such
as in the quantum battery, probability dynamics, growth of the
two-point correlation function, and time development of the
commutator and its connection to the Lieb-Robinson bound.

A salient outcome of our approach is that the standard QSL
for the state can be viewed as a special case of the QSL
for an observable. In the future, we hope that these bounds
can have useful applications in quantum metrology, quantum
control, detection of non-Markovianity, quantum thermody-
namics, charging and discharging of quantum batteries, and
many other areas as well.
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APPENDIX A: DERIVATION OF EQ. (7)

To obtain the alternate OQSL given in Eq. (7), let the state
of a quantum system be described by a density operator ρ (not
necessarily pure). The time evolution of the expectation value
of any system observable O is given as

〈O(t )〉 = tr[U †(t )O(0)U (t )ρ]. (A1)

After differentiating this equation with respect to time, we
obtain

d〈O(t )〉
dt

= tr[U̇ †(t )O(0)U (t )ρ] + tr[U †(t )O(0)U̇ (t )ρ].

Let us take the absolute value of this equation and use the
triangular inequality |A + B| � |A| + |B| to obtain∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � |tr[U̇ †(t )O(0)U (t )ρ]| + |tr[U †(t )O(0)U̇ (t )ρ]|.

Now, using the Cauchy-Schwarz inequality |tr(AB)| �√
tr(A†A)tr(B†B), we can obtain the inequality∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � 2
√

tr[U̇ †(t )O2(0)U̇ (t )]tr(ρ2).

This inequality can be further simplified as∣∣∣∣d〈O(t )〉
dt

∣∣∣∣ � 2

h̄

√
tr(ρ)2‖O(0)H‖HS,

where ‖A‖HS =
√

tr(A†A) is the Hilbert-Schmidt norm of op-
erator A.

After integrating with respect to time, we obtain the bound

T � h̄

2
√

tr(ρ2)

|〈O(T )〉 − 〈O(0)〉|
‖O(0)H‖HS

. (A2)

If an observable satisfies O2 = I , then for the pure state case
the bound (A2) can be expressed as

T � h̄

2‖H‖HS
|〈O(T )〉 − 〈O(0)〉|. (A3)

This completes the proof of Eq. (7).

APPENDIX B: DERIVATION OF EQ. (10)

To derive the bound given in Eq. (10), let us assume that a
quantum system has a state ρ (pure state). The time evolution
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of the expectation value of any system observable O is given
as

〈O(t )〉 = tr[U †(t )O(0)U (t )ρ]. (B1)

To find the rate of change of the expectation value of the
observable, we need to differentiate Eq. (B1) with respect to
time, which is given by

d〈O(t )〉
dt

= tr[U̇ †(t )O(0)U (t )ρ] + tr[U †(t )O(0)U̇ (t )ρ].

Let us take the absolute value of this equation. Then, by
applying the triangular inequality |A + B| � |A| + |B|, we can
obtain the inequality∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � 1

h̄
{|tr[HO(t )ρ]| + |tr[O(t )Hρ]|}. (B2)

Next we use the Hölder inequality |tr(AB)| � ‖A‖p‖B‖q,
where p, q ∈ [1,∞) such that 1

p + 1
q = 1 [67–69]. This leads

to the inequality ∣∣∣∣d〈O(t )〉
dt

∣∣∣∣ � 2

h̄
‖HO(t )‖op.

We know that the operator norm, the Hilbert-Schmidt
norm, and the trace norm of an operator satisfy the inequal-
ity ‖A‖op � ‖A‖HS � ‖A‖tr and the operator norm is unitary
invariant ‖U †AU‖op = ‖A‖op. Then we can express the above
inequality as ∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � 2

h̄
‖HO(0)‖tr.

After integrating this inequality, we obtain the desired bound

T � h̄

2

|〈O(T )〉 − 〈O(0)〉|
‖HO(0)‖tr

.

In general, we can write the above bound as

T � h̄

2

{ |〈O(T )〉 − 〈O(0)〉|
min{‖O(0)H‖op, ‖O(0)H‖tr}

}
. (B3)

This completes the proof of Eq. (10).

APPENDIX C: TRACE DISTANCE BOUNDS ON THE
OBSERVABLE DIFFERENCE

We know that we can use the trace distance to figure out
how close two density operators are. We can ask a similar
question for the expectation value of the observable.

Note that

|〈O〉ρ − 〈O〉σ | ≡ |tr(ρ − σ )O| � tr|(ρ − σ )O|

= ‖(ρ − σ )O‖tr

Hölder
� ‖(ρ − σ )‖tr‖O‖op

= 2‖O‖opl (ρ, σ ).

These inequalities are obtained by using the triangle inequal-
ity for the absolute value and the Hölder inequality

‖AB‖tr = ‖A‖p‖B‖q,
1

p
+ 1

q
= 1,

with p = 1 and q = ∞. Note that ‖X‖∞ = ‖X‖op is the
maximal absolute value of all eigenvalues of X when X is
Hermitian. Here p = 1 corresponds to the trace norm.

APPENDIX D: OQSL FOR ARBITRARY DYNAMICS

By using the Cauchy-Schwarz inequality |tr(AB)| �√
tr(A†A)tr(B†B) in Eq. (12), we can obtain the inequality

D �
√

tr(ρ2)

2‖O(0)‖op

√
tr[{O(t ) − O(0)}†{O(t ) − O(0)}].

This inequality can be written in the form

D � D′ =
√

tr(ρ2)

2‖O(0)‖op
‖{O(t ) − O(0)}‖HS. (D1)

The rate of change of distance D′ can be obtained by differen-
tiating Eq. (D1) with respect to time. Thus, we obtain

Ḋ′=
√

tr(ρ2)

2‖O(0)‖op

tr[Ȯ(t ){O(t ) − O(0)} + {O(t ) − O(0)}Ȯ(t )]

2‖O(t ) − O(0)‖HS
.

This inequality can be further simplified as

Ḋ′ =
√

tr(ρ2)

2‖O(0)‖op

tr[Ȯ(t ){O(t ) − O(0)}]
‖O(t ) − O(0)‖HS

.

If we take the absolute value of Ḋ′ and again apply
the Cauchy-Schwarz inequality |tr(AB)| �

√
tr(A†A)tr(B†B),

then we can obtain the inequality

|Ḋ′| �
√

tr(ρ2)

2‖O‖op
‖Ȯ(t )‖HS =

√
tr(ρ2)

2‖O‖op
‖L†

t (O(t ))‖HS.

After integrating the above inequality, we obtain

D′(O(T ), O(0)) �
√

tr(ρ2)

2‖O‖op
T �T ,

where �T = 1
T

∫ T
0 dt‖L†

t (O(t ))‖HS is the evolution speed of
the observable O. If we use Eq. (D1), then we obtain

D(O(T ), O(0)) �
√

tr(ρ2)

2‖O‖op
T �T .

Finally, we obtain the desired bound on the evolution time of
the expectation value of an observable as

T � |〈O(T )〉 − 〈O(0)〉|√
tr(ρ2)�T

, (D2)

where T O
QSL = |〈O(T )〉−〈O(0)〉|√

tr(ρ2 )�T

. This completes the proof of

Eq. (13).

APPENDIX E: OQSL FOR THE DYNAMICAL MAP

If the given quantum system has the initial state ρ and its
evolution is governed by a CPTP map E which is described
by a set of Kraus operators {Ki(t )} and

∑
i K†

i (t )Ki(t ) = IS ,
the dynamics of the observable in the Heisenberg picture is
described as

O(t ) =
∑

i

K†
i (t )O(0)Ki(t ). (E1)

The time evolution of the expectation value of the observable
O is given by

〈O(t )〉 =
∑

i

tr[K†
i (t )O(0)Ki(t )ρ].
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The rate of change of the expectation value of the observable
O can be obtained by differentiating the above equation with
respect to time, which is given by

d〈O(t )〉
dt

=
∑

i

{tr[K̇†
i (t )O(0)Ki(t )ρ] + tr[K†

i (t )O(0)K̇iρ]}.

If we take its absolute value, then we can apply the trian-
gle inequality |A + B| � |A| + |B| and the Cauchy-Schwarz
inequality |tr(AB)| �

√
tr(A†A)tr(B†B). Finally, we have

obtained the inequality∣∣∣∣d〈O(t )〉
dt

∣∣∣∣ �
∑

i

{
√

tr[K̇†
i (t )O(0)Ki(t )K†

i (t )O(0)K̇i(t )]tr(ρ2)

+
√

tr[K†
i (t )O(0)K̇i(t )K̇†

i (t )O(0)Ki(t )]tr(ρ2)}.
The simplified form of this inequality is given as∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � 2
√

tr(ρ2)
∑

i

‖K†
i (t )O(0)K̇i(t )‖HS,

where ‖A‖HS =
√

tr(A†A) is the Hilbert-Schmidt norm of op-
erator A.

After integrating the above inequality, we obtain the bound

T � |〈O(T )〉 − 〈O(0)〉|
2
√

tr(ρ2)�T

, (E2)

where �T = 1
T

∫ T
0 dt‖K†

i (t )O(0)K̇i(t )‖HS is the evolution
speed of the observable O and T O

QSL = |〈O(T )〉−〈O(0)〉|
2
√

tr(ρ2 )�T

, as given

in Eq. (29).
For open dynamics, the bounds (17) and (29) determine

how fast the expectation value of an observable of the quan-
tum system changes in time. This completes the proof of
Eq. (29).

APPENDIX F: QSL OF THE TWO-POINT FUNCTION
(UNITARY CASE)

Let us consider the two-point correlation function, which
is defined as

C(t ) = 〈A(t )A(0)〉 − 〈A(t )〉〈A(0)〉, (F1)

where A(t ) = U †(t )A(0)U (t ) and U †(t )U (t ) = I . After dif-
ferentiating Eq. (F1) with respect to time, we obtain

dC(t )

dt
= 〈Ȧ(t )A(0)〉 − 〈Ȧ(t )〉〈A(0)〉. (F2)

If we take the absolute value of Eq. (F2) and use the triangular
inequality |A + B| � |A| + |B|, we obtain∣∣∣∣dC(t )

dt

∣∣∣∣ � |〈Ȧ(t )A(0)〉| + |〈Ȧ(t )〉||〈A(0)〉|. (F3)

Now, using the fact that |tr(Aρ)| � ‖A‖op (where ρ is pure
state), we can obtain the inequality∣∣∣∣dC(t )

dt

∣∣∣∣ � ‖Ȧ(t )A(0)‖op + ‖Ȧ(t )‖op‖A(0)‖op. (F4)

This equation can be expressed as∣∣∣∣dC(t )

dt

∣∣∣∣ � ‖Ȧ(t )‖op‖A(0)‖op + ‖Ȧ(t )‖op‖A(0)‖op, (F5)

which leads to ∣∣∣∣dC(t )

dt

∣∣∣∣ � 2‖A(0)‖op‖Ȧ(t )‖op. (F6)

Therefore, we have∣∣∣∣dC(t )

dt

∣∣∣∣ � 2

h̄
‖A(0)‖op‖[H, A(t )]‖op. (F7)

After integrating, we obtain the bound

T � h̄

2

|C(T ) − C(0)|
‖A(0)‖op

1
T

∫ T
0 dt‖[H, A(t )]‖op

. (F8)

This completes the proof of Eq. (39).

APPENDIX G: QSL OF THE TWO-POINT FUNCTION
(OPEN-SYSTEM CASE)

Let us consider the two-point function, which is defined as

C(t ) = 〈A(t )A(0)〉 − 〈A(t )〉〈A(0)〉, (G1)

where A(t ) = eL
†t A(0) and L† is the adjoint of the Lindbla-

dian. After differentiating Eq. (G1) with respect to time, we
obtain

dC(t )

dt
= 〈Ȧ(t )A(0)〉 − 〈Ȧ(t )〉〈A(0)〉. (G2)

If we take the absolute value of Eq. (G2) and use the triangular
inequality |A + B| � |A| + |B|, we can obtain∣∣∣∣dC(t )

dt

∣∣∣∣ � |〈Ȧ(t )A(0)〉| + |〈Ȧ(t )〉||〈A(0)〉|. (G3)

Now, using the fact that |tr(Aρ)| � ‖A‖op (where ρ is pure
state), we can obtain the inequality∣∣∣∣dC(t )

dt

∣∣∣∣ � ‖Ȧ(t )A(0)‖op + ‖Ȧ(t )‖op‖A(0)‖op, (G4)

which leads to∣∣∣∣dC(t )

dt

∣∣∣∣ � ‖Ȧ(t )‖op‖A(0)‖op + ‖Ȧ(t )‖op‖A(0)‖op. (G5)

Equation (G5) can be rewritten as∣∣∣∣dC(t )

dt

∣∣∣∣ � 2‖A(0)‖op‖Ȧ(t )‖op. (G6)

Therefore, we have∣∣∣∣dC(t )

dt

∣∣∣∣ � 2

h̄
‖A(0)‖op‖L†[A(t )]‖op. (G7)

After integrating, we obtain the bound

T � h̄

2

|C(T ) − C(0)|
‖A(0)‖op

1
T

∫ T
0 dt‖L†[A(t )]‖op

. (G8)

This completes the proof of Eq. (40).
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APPENDIX H: QSL BOUND FOR COMMUTATORS
(UNITARY CASE)

The commutator of operators in two different regions of a
many-body system is defined as

〈O(t )〉 = 〈[B(0), A(t )]〉, (H1)

where A(t ) = U †(t )A(0)U (t ), with U †(t )U (t ) = I . After dif-
ferentiating Eq. (H1) with respect to time, we obtain

d〈O(t )〉
dt

= 〈[B(0), Ȧ(t )]〉. (H2)

Let us take the absolute value of Eq. (H2),∣∣∣∣d〈O(t )〉
dt

∣∣∣∣ = |〈[B(0), Ȧ(t )]〉|. (H3)

Now, by using |tr(Aρ)| � ‖A‖op (where ρ is a pure state), we
can obtain the inequality∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � ‖[B(0), Ȧ(t )]‖op. (H4)

Let us use the inequality ‖[O1, O2]‖op � 2‖O1‖op‖O2‖op to
obtain ∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � 2‖B(0)‖op‖Ȧ(t )‖op. (H5)

Equation (H5) can be rewritten as∣∣∣∣d〈O(t )〉
dt

∣∣∣∣ � 2

h̄
‖B(0)‖op‖[H, A(t )]‖op. (H6)

After integrating, we obtain the bound

T � 2

h̄

|〈O(T )〉|
‖B(0)‖op

1
T

∫ T
0 dt‖[H, A(t )]‖op

. (H7)

This completes the proof of Eq. (42).

APPENDIX I: QSL BOUND FOR COMMUTATORS
(OPEN-SYSTEM CASE)

The commutator of operators in two different regions of a
many-body system is defined as

〈O(t )〉 = 〈[B(0), A(t )]〉, (I1)

where A(t ) = eL
†t A(0) and L† is the adjoint of the Lindbla-

dian. After differentiating Eq. (I1)) with respect to time, we
obtain

d〈O(t )〉
dt

= 〈[B(0)Ȧ(t )]〉. (I2)

Let us take the absolute value of Eq. (I2),∣∣∣∣d〈O(t )〉
dt

∣∣∣∣ = |〈[B(0), Ȧ(t )]〉|. (I3)

Now, by using |tr(Aρ)| � ‖A‖op (where ρ is pure state), we
can obtain the inequality∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � ‖[B(0), Ȧ(t )]‖op. (I4)

Let us use the inequality ‖[O1, O2]‖op � 2‖O1‖op‖O2‖op to
obtain ∣∣∣∣d〈O(t )〉

dt

∣∣∣∣ � 2‖B(0)‖op‖Ȧ(t )‖op. (I5)

This equation can be written as∣∣∣∣d〈O(t )〉
dt

∣∣∣∣ � 2

h̄
‖B(0)‖op‖L†[A(t )]‖op. (I6)

After integrating, we obtain the bound

T � 2

h̄

|〈O(T )〉|
‖B(0)‖op

1
T

∫ T
0 dt‖L†[A(t )]‖op

. (I7)

This completes the proof of Eq. (43).
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