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Quantum state tomography is a key technique for quantum information processing but is challenging due to the
exponential growth of its complexity with the system size. In this work we propose an algorithm which iteratively
finds the best non-negative matrix product state approximation based on a set of measurement outcomes whose
size does not necessarily grow exponentially. Compared to the tomography method based on neural network
states, our scheme utilizes a so-called tensor train representation that allows straightforward recovery of the
unknown density matrix in the matrix product operator form. As applications, the effectiveness of our algorithm
is numerically demonstrated to reconstruct the ground state of the XXZ spin chain under depolarizing noise.
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I. INTRODUCTION

Characterizing an unknown quantum state is of central
importance in developing quantum technologies. Standard
quantum state tomography (QST) reconstructs a generic quan-
tum state by performing projective measurements on an
informationally complete basis [1,2]. The number of pro-
jective measurements required grows exponentially with the
system size. In the meanwhile, current quantum technologies
have pushed the number of qubits to close to 100 [3–5],
and scalable quantum state tomography schemes are in great
need. With additional assumptions on the underlying quantum
state, more efficient schemes than the standard QST have been
proposed, for example, QST for a sparse quantum state by
compressive sensing [6–9], QST for quantum states which are
permutationally invariant [10,11], and QST for quantum states
which can be efficiently represented with a low-depth para-
metric quantum circuit [12]. In particular, QST methods based
on tensor network representation [13,14] as well as neural net-
work ansatz [15–19] are promising to extend QST to a much
larger scale, and both approaches have been demonstrated on
several tens of qubits based on synthetic data. We also note
those efficient QST methods in case only partial information
of the unknown quantum state is required [20–22].

For an unknown L-qubit pure state that can be well ap-
proximated by a matrix product state (MPS), it is proved that
a set of O(L) local n-body reduced density matrix tomogra-
phy suffices to reconstruct the unknown state, where n is a
constant and independent of L if the underlying pure state
has bounded entanglement. Thus only O(poly(L)) number of
measurements are required [13,14,23]. It has also been shown
that a similar approach can be applied to reconstructing an
unknown mixed state, with an additional assumption of its
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invertibility [24]. However, such methods based on local den-
sity matrices are not easy to implement in practice, since (1)
exact tomography of a series of local density matrices may
already be hard, and (2) we can only reconstruct approx-
imate density matrices by local tomography using a finite
number of measurements, and the approximation errors could
accumulate and affect the overall tomography performance of
the entire state. Another method based on an MPS ansatz is
proposed using an unsupervised machine learning algorithm,
where only global measurement data on a randomly prepared
basis are required [25]. However, such a method only consid-
ers the reconstruction of pure states. Neural network state–
based algorithms constitute another important class of heuris-
tic approaches for QST with excellent precision and scalabil-
ity in practice. Specifically, neural network states have been
used to model (1) the pure states [15,26] or the density ma-
trices [16] as classical neural networks, and (2) the measured
probability distributions [17] as classical neural networks. In
the latter approach, it will generally be exponentially hard to
further reconstruct the state as a vector or a density matrix
from the probability distribution. In the former approach, one
could efficiently compute amplitudes based on the trained
neural network state, but for other tasks such as computing
expectation values one still needs to perform a sampling pro-
cess based on the trained neural network state, which may not
be as convenient or efficient, if the underlying quantum state
could be well approximated and written as an MPS. Another
possible drawback of the QST methods based on neural net-
work states is, a priori, it is not clear which neural network
representation is suitable for an unknown quantum state.

Inspired by the fact that MPS has been adapted to repre-
sent the multivariate probability distribution function, often
referred to as the tensor train representation [27], we propose
a QST scheme that combines the advantages of both the
tensor network approach and the neural network approach.
Specifically, in the first stage, a tensor train representation of
the multivariate distribution function is constructed based on

2469-9926/2022/106(4)/042435(7) 042435-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3947-3633
https://orcid.org/0000-0002-3411-3076
https://orcid.org/0000-0001-6503-9158
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.042435&domain=pdf&date_stamp=2022-10-21
https://doi.org/10.1103/PhysRevA.106.042435


DONGHONG HAN, CHU GUO, AND XIAOTING WANG PHYSICAL REVIEW A 106, 042435 (2022)

FIG. 1. A flowchart of our non-negative tensor train state tomography algorithm. Given an unknown L-qubit quantum state ρ̂0, an IC-
POVM is performed to obtain a sample of bit strings {a j}, each of which is then encoded into a one hot MPS S j . Based on these S j , an
optimal non-negative MPS P(a) with a fixed bond dimension is found through optimization, satisfying that it is closest to Ps(a), namely, the
superposition of all states S j , by optimizing each site tensor of the randomly initialized MPS ansatz P(a). Then an MPO ρ̂ is reconstructed,
with the same bond dimension as P(a), by applying the inverse of the IC-POVM locally on each site of P(a) using Eq. (8). Simulations in this
work are based on synthetic data.

the quantum measurement data instead of a neural network
representation, and then a density matrix renormalization
group (DMRG)-like algorithm is used to find the optimal
tensor train representation. After that, the tensor train is
transformed back into a matrix product operator (MPO) rep-
resentation of the unknown density matrix. Compared to the
existing QST methods based on tensor network states, our
scheme directly uses a tensor train representation for the
multivariate probability distribution function, instead of the
unknown density matrix. Compared to the existing QST meth-
ods based on neural network states, our scheme could easily
construct the unknown density matrix as an MPO, which
usually allows more convenient and efficient evaluations of
observables. The flowchart of our algorithm is summarized
in Fig. 1. This work is organized as follows: we show the
details of our QST scheme in Sec. II and then numerically
demonstrate our algorithm for the ground state of the XXZ
chain perturbed by depolarizing noise in Sec. III. We conclude
in Sec. IV.

II. METHOD

For QST, we use quantum measurements given by infor-
mationally complete (IC) positive operator-valued measures
(POVMs) [28–30], which describes the most general quantum
measurements allowed by quantum theory [31]. We denote the
single-qubit IC-POVM as {Ms}, where each Ms is a positive
semidefinite matrix satisfying

∑
s Ms = Î , with Î the identity

matrix. For a single qubit, a minimal IC-POVM can be chosen
as Ms = 1

2 |ψ s〉 〈ψ s| with

|ψ0〉 = |0〉 , (1)

|ψ1〉 =
√

1

3
|0〉 +

√
2

3
|1〉 , (2)

|ψ2〉 =
√

1

3
|0〉 +

√
2

3
ei 2π

3 |1〉 , (3)

|ψ3〉 =
√

1

3
|0〉 +

√
2

3
ei 4π

3 |1〉 , (4)

which form the vertices of a regular tetrahedron in the Bloch
sphere [32]. The single-qubit IC-POVM {Ms}s=0,1,2,3 can also
be viewed as a three-dimensional tensor in total, written as
Ms

σ,σ ′ with two physical indices σ, σ ′ of dimension 2 and
another index s of dimension 4 corresponding to different
measurement outcomes. If we group the two physical indices
σ and σ ′ together, then Ms

σ,σ ′ is a 4 × 4 invertible matrix,
representing a one-to-one mapping between the single-qubit
density matrix and the single-qubit probability distribution.

As in [17], for an L-qubit quantum system, we consider the
quantum measurement defined by

M⊗a ≡ Ma1 ⊗ Ma2 ⊗ · · · ⊗ MaL , (5)

where a = (a1, . . . , aL ) represents a string of integers specify-
ing the local projectors, and each integer al ∈ {0, 1, 2, 3}. The
probability distribution P(a) forms an L-variable distribution
function in which each local dimension d is equal to 4, satis-
fying P(a) � 0 and

∑
a P(a) = 1. Interestingly, if we assume

that the unknown quantum state can be efficiently represented
as an MPO,

ρ̂ =
∑

b1,b2,...,bL+1

W
σ1,σ

′
1

b1,b2
W

σ2,σ
′
2

b2,b3
. . .W σL,σ ′

L
bL,bL+1

, (6)

where bl denotes the auxiliary index, then P(a) can be written
as an MPS

P(a) =
∑

b1,b2,...,bL+1

X s1
b1,b2

X s2
b2,b3

. . . X sL
bL,bL+1

, (7)
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with each site tensor X sl
bl ,bl+1

= ∑
σl ,σ

′
l
W

σl ,σ
′
l

bl ,bl+1
Msl

σl ,σ
′
l
. Therefore

the bond dimensions of P(a), which are defined as the dimen-
sions of the auxiliary indices Dl = dim(bl ), are exactly the
same as the bond dimensions of ρ̂. From Eqs. (6) and (7),
we can see that the total number of parameters for both ρ̂

and P(a) are bounded by 4LD2 if we fix the dimension of
all the auxiliary indices to be D, due to the fact that each
local-site tensor has at most 4D2 parameters. Since each Msl

σl ,σ
′
l

is invertible (the two indices σl and σ ′
l are assumed to be

grouped together), we can obtain each W
σl ,σ

′
l

bl ,bl+1
from X sl

bl ,bl+1

by

W
σl ,σ

′
l

bl ,bl+1
=

∑
sl

X sl
bl ,bl+1

(M−1)sl

σl ,σ
′
l
. (8)

Therefore we can efficiently transform back and forth between
the density matrix ρ̂ and the probability distribution P(a). In
this work we will first reconstruct P(a) as an MPS and then
we transform it back into a density matrix in MPO form using
Eq. (8). One advantage of this approach is that as long as
the constructed P(a) is a proper probability distribution, then
the density matrix ρ̂ from this approach will automatically be
Hermitian (which, however, may not be positive if there are
not enough measurement data).

Thus the problem reduces to reconstructing an approximate
probability distribution P(a) closest to the ideal distribu-
tion corresponding to the unknown quantum state, denoted
as Pi(a), based on a set of N samples a1, a2, . . . , aN col-
lected from experiment. We assume that among those samples
there are only Ns different ones, denoted as a1, a2, . . . , aNs ,
where each distinct sample a j has multiplicity n j , namely,
each a j appears with an observed probability Ps(a j ) = n j

N ,
j = 1, . . . , Ns. Ps(a j ) will eventually converge to the exact
distribution Pi(a j ) as N increases. For a limited number of
samples, Ps(a) are only approximately equal to the corre-
sponding entries of Pi(a) for each a. Now the original QST is
reduced to the following mathematical problem: given some
approximated values, namely, Ps(a) of the nonzero elements
for an unknown Pi(a), how can we construct a tensor train
approximation with a minimum bond dimension D, denoted
as P(a), which is closest to Pi(a)?

To this end we note that each sample a j can be encoded as
a one hot MPS S j as

a j �→ S j =
∑

c1,c2,...,cL+1

As1
j,c1,c2

As2
j,c2,c3

. . . AsL
j,cL,cL+1

, (9)

such that dim(cl ) = 1 and dim(sl ) = 4 for all 1 � l � L, and
each tensor Asl

j,cl ,cl+1
satisfies Asl

j,0,0 = 1 iff sl equals al , and
0 otherwise. For example, for a specific a j , if al in a j is 3,
then Asl

j,cl ,cl+1
satisfies A0

j,0,0 = 0, A1
j,0,0 = 0, A2

j,0,0 = 0, and
A3

j,0,0 = 1. With Eq. (9) we can rewrite the probability dis-
tribution formed by N samples as

Ps(a) =
Ns∑
j=1

n j

N
S j, (10)

where Ps(a) can be viewed as a superposition of all observed
one hot states S j , weighted by their multiplicities. Ps(a) can
be directly taken as the best approximation for Pi(a), that

is, setting P(a) = Ps(a), Ps(a) can be directly evaluated from
Eq. (10) using simple MPS arithmetics. However, given a
limited set of samples, the bond dimension of the resulting
MPS could be much larger than that of the target distribution.
Moreover, this might result in an over-fitting problem, since
Ps(a) will be perfect for known samples but will be 0 for
unknown samples. For better efficiency and generalizability,
one can search for P(a), which is approximately equal to
Ps(a), under the condition that the bond dimension is bounded
by a fixed value D. This could be done in two approaches
[33]: (1) evaluating Eq. (10) exactly and then compressing
the resulting MPS using singular value decomposition (SVD),
and (2) iteratively searching for the solution to the following
optimization problem:

Loss (P(a)) ≡
Ns∑
j=1

‖P(a) − Ps(a)‖2, (11)

with a maximal bond dimension D, where ‖P‖ denotes the
Frobenius norm of the tensor P. We will follow the latter
approach which is more precise in practice. One compli-
cation here is that if one directly uses the approaches in
[33,34], where the MPS ansatz is kept in a canonical form
by iteratively using either SVD or QR decomposition, then
the solution generally contains negative values, which is
undesirable for a probability distribution. To ensure the non-
negativity of P(a), one could represent P(a) as a non-negative
MPS instead, that is, each site tensor X sl

bl ,bl+1
in Eq. (7)

is non-negative. Several algorithms have been proposed to
approximate a target probability distribution using a non-
negative MPS with a fixed bond dimension [35–37]. Here we
use a refined approach based on [37], the central idea of which
is to use a non-negative matrix decomposition instead of SVD
or QR decomposition.

Specifically, we first define the following tensors
X >k

bk+1;sk+1,...,sL
and X <k

s1,...,sk−1;bk
:

X >k =
∑

bk+2,...,bL+1

X sk+1

bk+1,bk+2
. . . X sL

bL,bL+1
, (12a)

X <k =
∑

b1,...,bk−1

X s1
b1,b2

. . . X sk−1

bk−1,bk
, (12b)

and G>k
bk+1,b′

k+1
and G<k

bk ,b′
k
:

G>k =
∑

sk+1,...,sL

X >k
bk+1;sk+1,...,sL

X >k
b′

k+1;sk+1,...,sL
, (13a)

G<k =
∑

s1,...,sk−1

X <k
s1,...,sk−1;bk

X <k
s1,...,sk−1;b′

k
. (13b)

With Eqs. (12a) and (12b) we can rewrite P(a) as

P(a) =
∑

bk ,bk+1

X sk
bk ,bk+1

X <k
...,sk−1;bk

X >k
bk+1;sk+1,...

, (14)

for each 1 � k � L. Substituting Eq. (14) into Eq. (11), the
loss function becomes ‖V − W H‖2, with V = Ps(a), W =
X sk

bk ,bk+1
, and H = X <k

...,sk−1;bk
X >k

bk+1;sk+1,...
. Thus the goal is to find

the best non-negative factorization of V . One of the most well-
known approaches for solving this problem is the following
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updating rule:

W ← W ◦ [V Ht ]

[W HHt ]
, (15a)

H ← H ◦ [W tV ]

[W T W H]
, (15b)

where ◦ means Hadamard (element-wise) product, and [A]
[B]

denotes the element-wise division of the matrices A and B
[38]. With Eqs. (15a) and (15b) the loss function is guaranteed
to decrease monotonically. From Eq. (15a), one can update the
tensor X sk

bk ,bk+1
as

X sk
bk ,bk+1

← X sk
bk ,bk+1

◦
[ ∑

sl 
=k
Ps(a)X <kX >k

]
[ ∑

b′
k ,b

′
k+1

X sk

b′
k ,b

′
k+1

G>k
bk+1,b′

k+1
G<k

bk ,b′
k

] . (16)

The denominator on the right-hand side of Eq. (16) can be
efficiently evaluated without computing the summation in
Eq. (10), for which we define two tensors G̃>k

j,bk+1,ck+1
and

G̃<k
j,bk ,ck

:

G̃>k
j =

∑
sk+1,...,sL

X >k
bk+1;sk+1,...,sL

A>k
j,ck+1;sk+1,...,sL

, (17a)

G̃<k
j =

∑
s1,...,sk−1

X <k
s1,...,sk−1;bk

A<k
j,s1,...,sk−1;ck

, (17b)

where A>k and A<k are defined similarly as X >k and X <k in
Eqs. (12a) and (12b). Then we have∑

sl 
=k

Ps(a)X <kX >k

=
∑

j

n j

N

∑
b′

k ,b
′
k+1

Ask
j,ck ,ck+1

G̃>k
j,bk+1,ck+1

G̃<k
j,bk ,ck

. (18)

The complete algorithm to find the optimal P(a) that mini-
mizes Loss (P(a)) in Eq. (11) is summarized in Algorithm 1.
Once P(a) is found, the best MPO ρ̂ can be reconstructed by
applying the inverse of the IC-POVM locally on each site of
P(a), as illustrated in Fig. 1.

III. RESULTS

We demonstrate our algorithm by reconstructing the den-
sity matrix corresponding to the ground state of the XXZ
chain subjecting to depolarizing noise. The Hamiltonian of
the XXZ chain can be written as

Ĥ =
L−1∑
l=1

J
(
σ̂ x

l σ̂ x
l+1 + σ̂

y
l σ̂

y
l+1 + γ σ̂ z

l σ̂ z
l+1

) + h
L∑

l=1

σ̂ z, (19)

where L is the number of the spins, J is the tunneling strength
which we fix to 1, h is the magnetization strength, and γ

is the interaction strength. We choose h = 1 to break the
degeneracy of the ground state due to the spin-flip symmetry.
The depolarizing noise is described by the CPTP map:

ρ̂ → E (ρ̂) = pÎ

d
+ (1 − p)ρ̂, (20)

with d = 2L the dimension of the Hilbert space, ρ̂ the den-
sity matrix corresponding to the exact ground state, and p

Algorithm 1. Non-negative tensor train state tomography.

Input: The set of samples from POVM measurement;
Output: Near-optimal non-negative MPS form of P(a);
1: Encode each a j into Aj according to Eq. (9);
2: Randomly initialize P(a) as in [39];
3: G̃<1

j,b1,c1
= 1, G̃>L

j,bL+1,cL+1
= 1

4: G<1
b1,b′

1
= 1, G>L

bL+1,b′
L+1

= 1

5: for k = 1, 2, . . . , L − 1 do
6: G<k+1

bk+1,b′
k+1

= ∑
sk ,bk ,b′

k
G<k

bk ,b′
k
X sk

bk ,bk+1
X sk

b′
k ,b′

k+1
;

7: for j = 1, 2, . . . , Ns do
8: G̃<k+1

j,bk+1,ck+1
= ∑

sk ,bk ,ck
G̃<k

j,bk ,ck
X sk

bk ,bk+1
Ask

j,ck ,ck+1
;

9: end for
10: end for
11: for k = L − 1, L − 2, . . . , 1 do
12: G>k

bk+1,b′
k+1

= ∑
sk+1,bk+2,b′

k+2
G>k+1

bk+2,b′
k+2

X sk+1
bk+1,bk+2

X sk+1
b′

k+1,b′
k+2

;

13: for j = 1, 2, . . . , Ns do
14: G̃>k

j,bk+1,ck+1
= ∑

sk+1,bk+2,ck+2
G̃>k+1

j,bk+2,ck+2
X sk+1

bk+1,bk+2
Ask+1

j,ck+1,ck+2
;

15: end for
16: end for
17: while true do
18: for k = 1, 2, . . . , L − 1 do
19: update X sk

bk ,bk+1
using Eq. (16);

20: G<k+1
bk+1,b′

k+1
= ∑

sk ,bk ,b′
k

G<k
bk ,b′

k
X sk

bk ,bk+1
X sk

b′
k ,b′

k+1
;

21: for j = 1, 2, . . . , Ns do
22: G̃<k+1

j,bk+1,ck+1
= ∑

sk ,bk ,ck
G̃<k

j,bk ,ck
X sk

bk ,bk+1
Ask

j,ck ,ck+1
;

23: end for
24: end for
25: for k = L − 1, L − 2, . . . , 1 do
26: update X sk+1

bk+1,bk+2
using Eq. (16);

27: G>k
bk+1,b′

k+1
= ∑

sk+1,bk+2,b′
k+2

G>k+1
bk+2,b′

k+2
X sk+1

bk+1,bk+2
X sk+1

b′
k+1,b′

k+2
;

28: for j = 1, 2, . . . , Ns do
29: G̃>k

j,bk+1,ck+1
= ∑

sk+1,bk+2,ck+2
G̃>k+1

j,bk+2,ck+2
X sk+1

bk+1,bk+2
Ask+1

j,ck+1,ck+2
;

30: end for
31: end for
32: if stopping criterion is met, then
33: break;
34: end if
35: end while
36: return P(a)

the strength of the noise. We note that for p = 0, namely,
for pure states, there already exists an efficient MPS-based
tomography algorithm which directly uses MPS as the ansatz
to represent an unknown pure state [13].

Similar to [17], we use both the quantum fidelity and the
classical fidelity to measure the learning accuracy. Specifi-
cally, the quantum fidelity is defined as

Fq = tr2(
√√

ρ̂1ρ̂2

√
ρ̂1), (21)

for two density matrices ρ̂1 and ρ̂2, and the classical fidelity is
defined as

Fc = Ea∼Pi [
√

P(a)/Pi(a)], (22)

where P(a) is the reconstructed probability distribution, and
Pi(a) is the ideal probability distribution. We also define the
quantum and the classical infidelities as Iq = 1 − Fq and
Ic = 1 − Fc, respectively. In our numerical simulations we
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FIG. 2. (a) Iq (red dashed line with squares) and Ic (blue solid
line with circles) as functions of system size L for fixed p = 0.6. The
inset shows Ic as a function of system size for larger system size (Iq

for L > 6 is not shown since it is too expensive to compute). (b) Iq

and Ic as functions of depolarized noise strength p for fixed L = 4.
(c) The minimum number of required training data N as a function
of L such that Ic � 1%, with p = 0.6. (d) The minimum number of
required training data N as a function of p such that Ic � 1%, with
L = 4. The other parameters used in these simulations are γ = 2 and
D = 10.

have generated two independent synthetic datasets for each
parameter setting we have considered, each with 30 000 000
samples. One dataset is used for training (we may only use
part of them as the training data) and the other is used for test-
ing. For the quantum fidelity, we directly compute Fq between
the reconstructed density matrix and the target density matrix.
For the classical fidelity, we use the test dataset to evaluate
Eq. (22).

We first study the final reconstruction quality as a function
of the system size L and the noise strength p. We show Iq

and Ic as functions of L in Fig. 2(a) and of p in Fig. 2(b),
respectively. We can see that the final fidelities (both the quan-
tum and the classical) decrease as L increases and increase
as p increases. We can also see that it is much easier for
a near-perfect reconstruction of the probability distribution
than the reconstruction of the underlying quantum state, as
in the numerical simulation Ic is always at least one order
of magnitude smaller than Iq. In Figs. 2(c) and 2(d) we show
the minimum number N of required training data for Ic � 1%
as a function of L and p, respectively. Since it is numerically
too demanding to compute the quantum fidelity between two
quantum matrices with more than 10 qubits, we only consider
Ic in these two panels. We can see that N increases as L
increases and decreases as p increases.

Then we fix L = 6 and study the convergences of Iq and Ic

as functions of the number of sweeps and for different values

FIG. 3. (a), (c) Iq (a) and Ic (c) as functions of the number of
sweeps for different γ with p = 0.4. (b), (d) Iq (b) and Ic (d) as
functions of the number of sweeps for different γ with p = 0.6. The
inset in (d) shows the tail of the convergence for Ic. In (a), (b), (c), (d)
the gray lines from darker to lighter correspond to γ = 1, 1.2, 1.6, 2,
respectively. We have also chosen the five best results according to
their loss values out of 100 trials and plotted the mean values of them.
(The standard deviations are shown as error bars.) (e) The left and
right axis show the final Iq and Ic as functions of γ with p = 0.4.
(f) The left and right axis show the final Iq and Ic as functions of γ

with p = 0.6. Here we have chosen L = 6. We have also used N =
3 × 107 and D = 10 in these simulations.

of γ , which is shown in Fig. 3. In Figs. 3(a) and 3(c) we show
Iq and Ic as functions of the number of sweeps with p = 0.4
for different values of γ , while in Figs. 3(b) and 3(d) we show
Iq and Ic as functions of the number of sweeps with p = 0.6
for different values of γ . We can see that for all the different
noise strengths, Ic converges in about 1000 sweeps and Iq

does not fully converge after 4000 sweeps. The final values
of Iq and Ic after 4000 sweeps are also shown in Fig. 3(e)
for p = 0.4 and in Fig. 3(f) for p = 0.6. We can see that in
both cases Ic is about two orders of magnitude smaller than
the corresponding Iq and that Iq and Ic for p = 0.6 is smaller
than those for p = 0.4.
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FIG. 4. (a) Iq (red dashed line with squares) and Ic (blue solid
line with circles) as functions of the number of training data N , with
D = 10. (b) Iq (red dashed line with squares) and Ic (blue solid line
with circles) as functions of the bond dimension D, with N = 3 ×
107. The other parameters used are L = 6, p = 0.6, and γ = 2.

In Fig. 3 we have used a large number of training data (N =
3 × 107) as well as a large bond dimension D = 10 to ensure
that we could reach both high quantum and classical fidelities
for different values of γ . This may not be necessary in all
cases [for example, we can see from Fig. 2(c) that one could
already reach classical fidelities higher than 99% for up to 15
qubits with N ≈ 105 only]. In Fig. 4 we plot the dependence
of the fidelities on the number of training data and on the bond
dimension D used in our reconstruction algorithm, where we
have focused on L = 6, p = 0.6, and γ = 2. From Fig. 4(a)
we can see that with N = 106, Fq already reaches 95.5%.
We can also see that the classical fidelity converges much
faster than the quantum fidelity, for example, with N < 104

one could already get Fc > 90%, while for Fq > 90% one
needs N > 105. From Fig. 4(b) we can see that both Fq and
Fc have reached larger than 96% for D = 4 and that Fc also
converges faster than Fq against D.

Due to the variational feature of our algorithm similar to
DMRG, it could be trapped in local minima [also because the
initial MPS P(a) is randomly initialized] [40]. Therefore, in
our numerical results, the same reconstruction algorithm is
run for many trials with random initialization of P(a), and the
one with the lowest loss value is chosen as the final result.
Ideally one hopes to directly choose the trials with the highest
fidelity. However, in real experimentation the target state is
unknown and it is not possible to compute the fidelities. As a
result, it is important that the trials with lower loss values cor-
respond to those with higher fidelities. Such correspondence
between loss values and fidelities is shown in Fig. 5, where we
have repeated the reconstruction algorithm 100 times. We can
see that the loss value indeed has the desired correspondence
with the fidelity.

FIG. 5. The x axis denotes different labels of the 100 numerical
experiments, labeled 1 to 100, sorted by their final loss values from
large to small. In our simulation, we have used P2(a) − 2P(a)Ps(a)
as the loss value, which simply shifts the original loss value in
Eq. (11) by a constant. Here the results are taken from the recon-
struction of P(a) for L = 6, γ = 2.0, and p = 0.6.

IV. CONCLUSION

We have presented an algorithm based on the non-
negative matrix product state for quantum state tomography.
Given a number of experimental measurement outcomes,
our algorithm iteratively finds the optimal non-negative
MPS representation which best approximates the probabil-
ity distribution of these outcomes. Applying simple local
transformations, the reconstructed non-negative MPS can be
converted into a density matrix for the unknown quantum
state. This is in comparison with the QST methods based on
neural network states, for which one generally cannot directly
write down the quantum state but only has indirect access to
it via sampling from the trained neural networks. As appli-
cations, the effectiveness of our algorithm is demonstrated to
reconstruct the ground state of the XXZ chain with depolariz-
ing noise.
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