
PHYSICAL REVIEW A 106, 042432 (2022)

Detection of a quantum phase transition in a spin-1 chain through multipartite
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We design a Bell inequality that is violated by correlations obtained from the ground states of an XXZ spin-1
chain with on-site anisotropies at the region of phase transition. In order to detect such correlations in spin-1
systems we exploit the formalism of the generalized Bell inequality via the use of multipartite and high-order
correlations. We observe a sharp violation in the vicinity of the quantum phase transition between the so-called
large-D and AFM phase. Interestingly, the violation of our Bell inequality is manifested by the change in the
XXZ spin-1 chain ground state to a Greenberger-Horne-Zeilinger-like state in the critical region. Our results
provide a characterization of quantum phase transition via the violation of Bell-type constraint by correlations
in the XXZ spin-1 chain with multibody correlations and high-order measurements.
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I. INTRODUCTION

A set of quantum correlations in a composite quantum sys-
tem can be used to demonstrate nonlocality when it exceeds
the bound imposed by a local hidden-variable model [1,2].
Nonlocality is a feature of quantum systems that has no coun-
terpart in any classical systems. Since the first experimental
confirmation of this property [3], experimental observations
have been challenged rigorously but with the recent advance-
ment of the experiment apparatus, known loopholes have been
closed [4–6]. As its practical use, it is known that nonlocality
is a crucial resource for device-independent quantum informa-
tion processing to achieve security going beyond the classical
limit (e.g., [7–9]).

Recently, investigations of the quantum nonlocality have
been extended to various many-body systems [10–13] fol-
lowing the studies of many-body entanglement a decade ago
[14,15]. These recent studies have revealed the importance of
quantum nonlocality in many-body systems and have reported
that Bell-type correlation can be used to witness many-body
quantum criticality [16]. In particular, Mermin-type multi-
partite correlation [17] has been used to test many spin
systems [18–21]. Alternatively, the ground-state energy has
also been employed to identify nonlocality in various many-
body systems [22]. Similarly, it was demonstrated that the
ground state of the Ising model with infinite-range interac-
tions in the external field can produce nonlocal correlations
at finite temperature [23]. The most recent investigations of
Bell inequalities involving the linear combination of two-
body correlations were extended in various ways [24,25].
Our knowledges about the characterization of non-locality in
many-body systems is “so far” either limited in its analysis
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either by two-level systems or the two-body correlations be-
cause the behavior of the quantum state was observed within
the limit of only the first-order correlations.

Multipartite Bell-type correlations in local composite d-
dimensional systems have not yet been widely studied in
many-body systems. This is mainly because for the complete
characterization of such systems Bell-type correlations are
required to include multibody and high-order correlations,
which can be numerically challenging to do in practice [2].
On the other hand, by exploiting symmetric properties of such
systems, it is possible to be make the correlation analysis
simpler. Thus, we exploit a formalism that was derived under
the generic scenario of Bell inequalities for multipartite and
high-dimensional systems [26]. Using this formalism, we in-
spect the nonlocality in the one-dimensional spin-1 model and
depict it in the phase diagram. As a result of our investigation,
nonlocality is found in the region of large exchanges and
strong on-site anisotropies along the line of quantum phase
transition. The violation provides a quantification of quantum
criticality using the generalized high-order Bell correlation for
the spin-1 system.

II. SPIN-1 XXZ CHAIN WITH ON-SITE ANISOTROPY

We consider the spin-1 XXZ chain model with on-site
anisotropy, which is known to have various nontrivial phases
[27–29]. We are interested in whether such phases could be
characterized through Bell-type nonlocal correlations. The
formal description of the model is

Ĥ =
N∑

l=1

Ŝx
l Ŝx

l+1 + Ŝy
l Ŝy

l+1 + JzŜ
z
l Ŝz

l+1 + D
N∑

l=1

(
Ŝz

l

)2
, (1)

where Ŝa
l , with a ∈ {x, y, z}, denotes the spin-1 operator for the

lth site and Ŝa
N+1 = Ŝa

1 for the periodic boundary conditions.
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The parameters Jz and D signify the coupling strength of
the two-body spin-z interaction and the anisotropy in the z
direction, respectively.

With an appropriate adjustment of the exchange anisotropy
Jz and the on-site anisotropy D, the ground state |ψgs〉
can undergo various phases, one of which is the Haldane
phase, renowned for the symmetry-protected topological or-
der [27–29]. In this investigation, we focus on the region
of non-negative parameters where we found the violation of
the generalized Bell-type inequality [26]. When Jz � 0 and
D � 0, the spin-1 chain in Eq. (1) possesses three differ-
ent phases, and they are the Haldane, the antiferromagnetic
(AFM), and the large-D phases for the different values of
Jz and D [29]. The ground state of this model can be ob-
tained by using the exact diagonalization as well as the
density-matrix renormalization-group (DMRG) method for a
small-scale chain (small N) [30].

III. GENERALIZED BELL INEQUALITY
FOR A MULTIPARTITE SYSTEM

A. Bell correlation

First, let us consider a generic Bell scenario with N parties
that share a many-particle state performing k-local measure-
ments on each particle. Each party exploits the k possible
choices of measurements that yield d different outcomes. The
scenario for the generalized Bell-type inequality is suggested
under general symmetries [26]. This means that the set of
Bell-type correlations that appear in this inequality takes into
account two symmetries for the equal distribution of measure-
ments and the site permutation.

For simplicity, we adopt the case of only two different
measurements for each party. From [26], the generalized Bell
correlation for the scenario (N, d ) is given by the expectation
value of the Bell operator B = 〈ψ |B̂|ψ〉, and the Bell operator
with two local measurements Â and B̂ reads

B̂ =
d−1∑
n=1

[
fn

N⊗
l=1

(
Âcl n

l + ωcl
n
2 B̂cl n

l

)] + H.c., (2)

where ω = exp(2π i/d ) and H.c. denotes the Hermitian con-
jugate. The arbitrary parameter cl for a party l takes a value
of either +1 or −1, and a value of −1 for cl on an operator
implies its conjugate transpose, i.e., Ô−1 = Ô†. The weight
fn, a complex number for an integer n, determines the types
of Bell inequalities. The measurement operators Âl and B̂l are
set to have eigenvalues ωn for the nth outcome. Here, from the
adequate choices of measurement bases of Âl and B̂l [31], we
obtain

ωnνl Ĵn
l ≡ [

Ân
l + ω

n
2 B̂n

l

]
/2, (3)

where

Ĵl ≡
d−1∑
z=1

|z − 1〉〈z|

is a lower shift matrix that is similar to the angular momentum
lowering operator. Furthermore, in order to satisfy the partic-
ular symmetry that will be explained in the next section, we
specify that the constant cl takes values of 1 for odd l and −1
for even l .

B. Local realistic bound

If a set of correlations is allowed by the local-hidden-
variable model, it is possible to establish a Bell-type
inequality B � βLR that has a real-valued upper bound βLR,
often called the classical bound [2]. Through Fourier analy-
sis, it is possible to show that the Bell-type correlation B is
described as a convex sum of the joint probabilities of rele-
vant measurement outcomes [32]. If the set of probabilities is
represented in vector space, then the local realistic bound βLR

can be obtained from the convex properties of the probability
and from the Farkas lemma [26].

Since we are considering spin-1 systems, it is enough to
consider the local realistic bound of the (N, 3) scenario of
Eq. (2), which can be derived as

βLR = max
{αl }

[
2

∑
{ml }

| f1| cos �1 + | f2| cos �2

]
, (4)

where

�n = θn + 2πn

3
�c · �α + πn

3
�c · �m (5)

and fn = | fn|eiθn for 1 � l � N [26]. �m = (m1, . . . , mN ) sig-
nifies the particular choice of measurements for all parties,
�α = (α1(m1), . . . , αN (mN )) indicates the outcome configura-
tion for a measurement choice �m, and �c = (c1, . . . , cN ), with
cl ∈ {1,−1}.

In order to compute the local realistic bound βLR, we
are generally confronted with the strategy of optimized term
counting for all the deterministic vectors �α, i.e., all the
possible outcomes with respect to the possible choices of
measurements. It is notable that Eq. (4) is conventionally
solved via a linear programming instance. However, such an
instance becomes hard to solve as the problem size scales
exponentially with the number of systems [2]. The detailed
numerical methods we here use are addressed in Appendix B.

IV. RESULTS

A. Quantum violation at the phase transition

We analyze the violation of Bell inequalities with N-body
correlations through the (N, 3)-class Bell-type inequalities
B � βLR with the ground state of the one-dimensional spin-
1 chain in Eq. (1). By taking advantage of the different
symmetries that leave the Hamiltonian invariant, the N-body
correlations of the ground states of the Hamiltonian described
in Eq. (2) can be rewritten in a very compact form. The
Hamiltonian of the spin-1 XXZ chain with on-site anisotropy
in Eq. (1) is invariant under the translational symmetry and
conserves the magnetization along the z axis. This implies a
nonzero value of the N-body correlation 〈 ⊗N

l=1 Ĵcl n
l 〉 under

the constraint
∑

l cl = 0 for even N , which is obvious in the
context of the spin-1 basis [33]. Moreover, any ground state
with real coefficients satisfies 〈Ĵn

1 Ĵ−n
2 · · · 〉 = 〈Ĵ−n

1 Ĵn
2 · · · 〉. In

accordance with these properties, the correlation can take the
following simplified form:

B = 2N+1
2∑

n=1

| fn| cos (θn − nθν )

〈
N⊗

l=1

Ĵcl n
l

〉
, (6)
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FIG. 1. In the Jz-D plane the ratio of Bell correlation to the local
realistic bound B/βLR maximized over f̃ for N = 8. Inset: weight
f̃max choices in a specific region. The violation of a Bell inequality
B � βLR arises (in purple). This violation signifies the transition of
quantum phase from the large-D phase to AFM phase.

where θν = 2πνtot/3 and νtot = ∑
l clνl is the accumulation

of local phase shift. In what follows, we consider only spin-1
systems with a small chain size, i.e., N = 4, 6, 8, and 10.

Since the local realistic bound given in Eq. (4) is deter-
mined by the weights f1 and f2, we take the ratio of the Bell
correlation to the local realistic bound B/βLR as a function
of f̃ ≡ | f2|/| f1|, θ1, θ2, and θν . We numerically maximize the
correlation B over these variables (see Appendix C). We find
that the angles θ1,max = (−1)N/2π/2, θ2,max = π and θν,max =
π/2 result in the maximum value of B/βLR. The sign of θ1,max

is flipped by the number of particles due to the negative value
of the first-order correlation 〈Ĵ1Ĵ−1

2 · · · 〉 when N/2 is odd, but
the alternating sign does not affect the value of the classical
bound.

After substituting θ1,max, θ2,max, and θν,max in Eq. (6) the
optimization of B/βLR can be done only over f̃ . We find two
regions with two different weights f̃ that give the maximal
value of B/βLR for varying Jz and D. Figure 1 plots the
maximum value of B/βLR for N = 8 in the Jz-D plane. The
two regions are depicted in the inset of Fig. 1.

Bell nonlocality is then revealed where the ground state
gives the violation of the Bell inequality B/βLR � 1. It is no-
table that the violation of a generalized Bell inequality B/βLR

with f̃ v
max appears only in the vicinity of the criticality between

the large-D and AFM phases. This criticality is known as
the first-order phase transition, where the discontinuity of the
staggered magnetization in large-scale systems appears. As Jz

and D increase, the violation of this Bell inequality increases
and occurs more clearly in Fig. 1. The value of f̃ v

max depends
on the number of spins N , and Table I gives a summary of
all the values of f̃ v

max we found. In Fig. 2, we show that the
region where we observe a violation is located between the
large-D and AFM phases for different values of N . Moreover,
the violation reaches its maximal value along the critical line.

For fixed measurements one can identify a state that can
give the maximal value of B described in Eq. (6). In order to
characterize the source of violation obtained with the ground
state of the XXZ spin-1 chain, we first identify such a state

TABLE I. Numerical results for the weight f̃ v
max from solving

max f̃ B/βLR in the ground state near the criticality. For a given f̃ v
max,

the coefficient b of the state |ψmax〉 and the maximal value of the Bell
correlation 〈ψmax|B̂|ψmax〉 divided by βLR are obtained by solving
max|ψ〉〈ψ |B̂|ψ〉.

N f̃ v
max b in |ψmax〉 〈ψmax|B̂|ψmax〉/βLR

4 1.039 0.5798 1.950
6 0.7423 −0.5599 2.470
8 0.5502 0.5457 3.119
10 0.4114 −0.5348 3.973

for our Bell inequality and then compare it to the ground state
during the quantum phase transition between the large-D and
AFM phases. For the Bell inequality with fixed weight f̃ v

max,
we denote the quantum state which gives the maximum of
Eq. (6) by

|ψmax〉 = b|02 · · · 〉 +
√

1 − 2b2|11 · · · 〉 + b|20 · · · 〉, (7)

where a real b is determined by f̃ v
max in Table I. This

state is the eigenvector with the highest eigenvalue of B̂
using the weight f̃ v

max, where the Bell operator is B̂ =∑2
n=1(−1)nN/2| fn|Ĵn

1 · · · Ĵ−n
N + H.c., with | f1| = 1 and | f2| =

f̃ v
max. Note that for f̃ = 1, the state |ψmax〉 is the generalized

Greenberger-Horne-Zeilinger (GHZ) state.
In order to explain the source of violation we compare the

ground state during the quantum phase transition between the
large-D and AFM phases to the state that maximally violates
our Bell inequality given in Eq. (7). For that purpose, we
compute the quantity F ≡ |〈ψmax|ψgs〉|, which is the fidelity
between the ground state |ψgs〉 and the state |ψmax〉 defined in
Eq. (7). In Fig. 3, the fidelity is shown for N ∈ {4, 6, 8, 10}
and Jz = 12 when D varies between 11.80 and 12. The dif-
ferent points correspond to the evaluation of the fidelity after
the computation of the ground state for each value of Jz and
D. This region is characterized by a quantum phase transition
[29] and the maximum violation of our Bell inequality [see
Fig. 2(b)]. Interestingly, we see that the fidelity is higher
when the ground state is evaluated closer to the criticality. For
instance, for N = 10, we can see in Fig. 3 that for Jz = 12,
when the value of D increases from D ≈ 11.80 (in the AFM
phase), we have F ≈ 0.74, which increases to its maximum

FIG. 2. Value of B/βLR with f v
max for Jz = {6, 12}. The maximum

value of B/βLR occurs at the first-order phase transition for large Jz.
At this criticality, B/βLR increases as N grows large and behaves as
an exponential function of N , B/βLR ∼ γ N .
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FIG. 3. The fidelity F between the ground state and the state
|ψmax〉 defined in Eq. (7) for Jz = 12 near the first-order phase
transitions up to the particle number N � 10. We can see that the
maximum of the fidelity F occurs at the criticality.

value F ≈ 0.95 at the criticality and finally goes down to
F ≈ 0.62 in the large-D phase. This means that, during this
quantum phase transition, the ground state gets closer to the
state that gives the maximum violation of our Bell inequality.
This process is then reflected in the violation because we see
that the fidelity in Fig. 3 and the violation in Fig. 2(b) follow
the same tendency.

For large, positive Jz and D, the ground state undergoes
two different phases, the AFM and large-D phases. In our
numerical analysis, we find that the ground state is |11 · · · 1〉
in the large-D phase and |02 · · · 02〉 + |20 · · · 20〉 in the AFM
phase, which was already characterized in [29]. We also char-
acterize entanglement in the ground state by computing the
bipartite entanglement S(ρ̂N/2) between two halves of the spin
system during the quantum phase transition. In Fig. 4, we
show the value of the bipartite entropy for N ∈ {4, 6, 8, 10}
and Jz = {6, 12} at the quantum phase transition. The bipartite
entanglement follows exactly the same trend as the violations
presented in Fig. 2(a) (Jz = 6) and Fig. 2(b) (Jz = 12) and the
fidelity in Fig. 3 (Jz = 12).

B. Scaling behavior of the Bell correlation divided
by the local realistic bound

The various properties of the spin model (1) arising for
small Jz and D were characterized in [29]. In the region of

FIG. 4. Entanglement entropy S(ρ̂N/2) in the vicinity of the first-
order phase transition for exchange anisotropies Jz = 6 and Jz = 12.

positive parameters, three types of phase exist, the Haldane,
large-D, and AFM phases, and quantum phase transitions
emerge between them. In our investigation, we did not find
a violation of the Bell inequalities B � βLR based on Eqs. (2)
and (4) near Jz = D = 0. A noticeable difference is that the
entanglement entropy S(ρ̂N/2) is dominant for small Jz and
D where the nonviolation of B � βLR is observed in Fig. 1.
We thus focus on the first-order phase transition between
the large-D and AFM phases for the analysis of the scaling
behavior.

It is known that the entanglement entropy manifests a log-
arithmic behavior S(ρ̂N/2) ∼ log N in the gapless systems but
a saturation for the size of the system N in gapped systems
[34]. Since the large-D-to-AFM phase transition is first order,
the entanglement entropy reaches saturation for finite-size N .
However, in Fig. 2, the ratio B/βLR with f̃ v

max becomes higher
and narrower as the number of spin-1 particles increases. We
demonstrate that scaling behavior B/βLR ∼ γ N with a real γ

can be obtained from the exponential fit (see Appendix D).
From this evidence, the genuine multipartite nonlocality from
the violation of Bell inequalities B/βLR exactly matches the
first-order phase transition.

V. CONCLUSION

We investigated the detection of a violation of Bell inequal-
ities with N-body and high-order correlations at the quantum
criticality of the XXZ spin-1 chain with on-site anisotropy by
employing a generalized Bell-type correlation. We applied a
set of specific measurements consisting of Fourier transform
states, which is considered to be optimal for detecting maxi-
mally entangled states. By virtue of this optimal measurement
and the symmetry of the spin-1 chain, a Bell-type correlation
can be modified in a simple way. By maximizing the ratio of
the Bell correlation to the classical bound B/βLR we showed
that the quantum phase transition between the large-D and
AFM phases can be witnessed with N-body and high-order
correlations. The violation of this Bell inequality in the Bell
scenario (N, 3) is then prominently revealed in the vicinity of
the first-order quantum phase transition.

Moreover, we observed a gain of entanglement as shown
by an increase of bipartite entropy at the quantum phase tran-
sition. In multipartite systems various types of entanglement
exist, but interestingly, at the phase transition the ground state
changes toward the state that maximally violates our Bell
inequality, which shows a similarity to the generalized GHZ
state.

While nonlocality is a concept that is closely related to
entanglement and the presence of entanglement indicates the
possibility to detect nonlocality [35], special care is needed in
multipartite and high-dimensional composite systems. In our
investigation we focused specifically on N-body correlations,
but it is still an open question what multipartite Bell-type
inequality using L-body correlations (with L � N) or gener-
alized measurements [36] would provide. Following the same
formalism, this may be left as a direction for further investi-
gations in the future.

Recently, experimental realization of the spin-1 XXZ chain
with on-site anisotropy was proposed in trapped ions [37,38]
and implemented in ultracold atoms [39]. This result thus
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has the potential to be realized in experiments beyond its
theoretical demonstration.
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APPENDIX A: THE LOCAL REALISTIC BOUND βLR

Here, we provide details of the derivation of the local
realistic bound βLR in the case of the generic scenario, N par-
ties, k measurement settings, and d outcomes. In general, the
Bell-type inequality can be constructed from the combination
of the joint probability distribution, which is written as

B =
∑
�α, �m

g�c
�α, �m p(�α| �m) � βLR, (A1)

where g�c
�α, �m is a Bell expression and p(�α| �m) is the joint prob-

ability [2]. The vector �m = (m1, . . . , mN ) is an array of the
choice of measurements ml ∈ {0, 1, . . . , k − 1} for all par-
ties and the vector �α = (α1(m1), . . . , αN (mN )) is an array of
N-party measurement outcomes αl ∈ {0, 1, . . . , d − 1} for a
given �m. In the local-hidden-variable model, the joint proba-
bility can be expressed as the product of the local probabilities
for all parties. Then, the local realistic bound βLR in Eq. (A1)
can be obtained by considering all deterministic values of
local measurements, which is given by

βLR ≡ max
�α

[∑
�m

g�c
�α, �m

]
, (A2)

where the maximization is applied over N-party outcomes
�α( �m) for all possible choices of measurements �m. This max-
imization is required to consider all dNk outcomes for all
measurement settings. The upper bound (A2) of the general-
ized Bell correlation B is derived in the Appendix of Ref. [26].

The generalized Bell correlation B [Eq. (4)] is described
in the form of quantum operators and the complex weight
fn. Since the N-body correlation, the expectation value of
the quantum operators, can be written in terms of the prob-
abilities, a Bell expression g�c

�α, �m can be derived from the
generalized Bell correlation (4). The main idea of this deriva-
tion is that one should take into account the deterministic
values of the measurement in Eq. (4). Then, the Bell expres-
sion g�c

�α, �m in terms of the weight fn is given by

g�c
�α, �m = 2 Re

[
d−1∑
n=1

fnω
n[�c·(�α+ �m

k )]

]
, (A3)

where ω = exp(2π i/d ); the vector �c = (c1, . . . , cN ), with cl

being either +1 or −1 for any party l; and Re z stands for the
real part of the complex number z. By using Eq. (A3), the sum

of the Bell expression g�c
�α, �m over �m, which is denoted by S (�α),

can be simplified as

S (�α) ≡
∑

�m
g�c

�α, �m = 2
∑

�m
Re

[
d−1∑
n=1

fnω
n[�c·(�α+ �m

k )]

]

=
∑

�m

d−1∑
n=1

2| fn| cos

[
θn + 2πn

d
�c ·

(
�α + �m

k

)]
, (A4)

where fn = | fn|eiθn , with 0 � θn � 2π . Therefore, one can
express the local realistic bound that corresponds to Eq. (4)
by applying k = 2 and d = 3 in Eq. (A4). It is noted that the
computational difficulty of maximization rises as the values of
N , k, and d increase. Detailed derivations of Eqs. (A2), (A3),
and (A4) are well explained in Ref. [26].

APPENDIX B: COMPUTING THE LOCAL REALISTIC
BOUND: AN EXAMPLE FOR CHSH AND CGLMP

INEQUALITIES

When N � 10, k = 2, and d = 3, which we use, the cal-
culation of the local realistic bound is rather complicated. For
simplicity, let us first give an example to calculate the local
realistic bound of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [40]. To discuss this Bell inequality, one considers
the scenario that each of two parties performs two different
dichotomic measurements, i.e., N = 2, k = 2, and d = 2. In
this scenario, a Bell expression for the CHSH inequality can
then be written as

gCHSH
�α, �m = (−1)α1(m1 )+α2(m2 )+m1m2 , (B1)

where the vector �c = (1, 1) is chosen [26]. The sum of gCHSH
�α, �m

over the vector �m is then written as
1∑

m1,m2=0

gCHSH
�α, �m = (−1)α1(0)+α2(0) + (−1)α1(0)+α2(1)

+ (−1)α1(1)+α2(0) − (−1)α1(1)+α2(1). (B2)

TABLE II. Sixteen possible measurement outcomes for all
choices of measurements α1(0), α1(1), α2(0), and α2(1) in two-party,
two-outcome systems with two measurement settings.

α1(0) α1(1) α2(0) α2(1) Eq. (B2)

0 0 0 0 2
0 0 0 1 2
0 0 1 0 −2
0 0 1 1 −2
0 1 0 0 2
0 1 0 1 −2
0 1 1 0 2
0 1 1 1 −2
1 0 0 0 −2
1 0 0 1 2
1 0 1 0 −2
1 0 1 1 2
1 1 0 0 −2
1 1 0 1 −2
1 1 1 0 2
1 1 1 1 2
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FIG. 5. Scaling behaviors of the ratio of the Bell correlation to
the local realistic bound B/βLR (left) and the entanglement entropy S
(right) at the quantum criticality. The green line is the exponential
fit B/βLR = aγ N + c, and the red line is the logarithmic fit S =
a log N + c.

In order to maximize Eq. (B2), one should consider all
dNk = 24 outcomes for all measurement choices, which are
organized in Table II. Therefore, one can find that the lo-
cal realistic bound of the CHSH inequality is βCHSH

LR =
maxα1,α2

∑
�m gCHSH

�α, �m = 2.
In this way, the local realistic bound can be found for more

generic cases. Since the generalized Bell correlation is applied
to the spin-1 model (1), we particularly choose two choices of
measurements with three outcomes, i.e., k = 2 and d = 3. The

function S (�α) from Eq. (A4) can then be written as

S (�α) =
2∑

n=1

[
2| fn|

1∑
{ml }=0

cos

(
θn + 2πn

3
Sα + πn

3
Sm

)]
,

(B3)

where Sα = ∑N
l=1 clαl (ml ) and Sm = ∑N

l=1 clml , with cl =
(−1)l−1 for 1 � l � N . As the number of parties N increases,
an exponential number of cosine terms emerge in Eq. (B3).
Furthermore, a dkN number of measurement outcomes should
be considered to evaluate the local realistic bound max�α S (�α).
Due to this computational complexity, we deal with general-
ized Bell inequalities up to N = 10 in this work.

Here, we show an example of the local realistic bound
of the Collins-Gisin-Linden-Masser-Popescu (CGLMP) in-
equality [41]. Equation (B3) for the case of N = 2, k = 2, and
d = 3 is described as

S (�α) =
2∑

n=1

2| fn|
{

cos

(
θn + 2πn

3
[α1(0) − α2(0)]

)

+ cos

(
θn + 2πn

3
[α1(0) − α2(1)] − πn

3

)

+ cos

(
θn + 2πn

3
[α1(1) − α2(0)] + πn

3

)

+ cos

(
θn + 2πn

3
[α1(1) − α2(1)]

)}
, (B4)

where the weights fn for the CGLMP inequality are given by
f CGLMP
1 = ω1/4/2

√
3 and f CGLMP

2 = ω1/2/2 for d = 3 [26].
There are 34 possible outcomes for all choices of measure-
ments α1(0), α1(1), α2(0), and α2(1), similar to Table II. So
if we calculate S in Eq. (B4) for the CGLMP case, we can
then find S (�α) ∈ {−4, 1, 2} for all possible outcomes �α, and
the local realistic bound of the CGLMP inequality becomes
βCGLMP

LR = max�α S (�α) = 2.

APPENDIX C: MAXIMIZATION OF B/βLR OVER f1 AND f2

From Eq. (6), the Bell correlation B for a ground state is
described as a real-valued function of variables f1, f2, and
θν . The local realistic bound βLR can also be considered as
a function of f1 and f2. By using Eqs. (2) and (4), the ratio of
the Bell correlation to the local realistic bound can be written
as a real-valued function of f̃ , θ1, θ2, and θν ,

F ( f̃ , θ1, θ2, θν ) ≡ B( f1, f2, θν )

βLR( f1, f2)

= 2N cos(θ1 − θν )
〈
Ĵ1Ĵ−1

2 · · · Ĵ−1
N

〉 + f̃ cos(θ2 − 2θν )
〈
Ĵ2

1 Ĵ−2
2 · · · Ĵ−2

N

〉
max{αl }l�N

[∑
{ml }l�N

cos
(
θ1 + 2π

3 �c · �α + π
3 �c · �m

) + f̃ cos
(
θ1 + 2π

3 �c · �α + π
3 �c · �m

)] , (C1)

where fn = | fn|eiθn and f̃ ≡ | f2|/| f1|. The values of first-order
and second-order N-body correlations in Eq. (C1) are deter-
mined by the ground states depending on Jz and D. Here,
we obtain N-body correlations with N � 8 for the ground
states obtained from the exact diagonalization method. For

N = 10, we evaluate correlations based on the tensor network
representation, and the ground states are obtained using the
DMRG method.

In order to find the maximum F ( f̃ , θ1, θ2, θν ) in Eq. (C1)
for a given ground state, we exploit the brute-force method,
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one of the global optimization tools in the SCIPY library
(SCIPY.OPTIMIZE.BRUTE) [42]. This numerical evaluation re-
sults in finding the maximal values of F and corresponding
variables f̃max, θ1,max, θ2,max, and θν,max. These specific data
are described in Sec. IV A as tuning the parameters Jz and D.

APPENDIX D: SCALING BEHAVIORS OF BELL
CORRELATIONS DIVIDED BY THE LOCAL

REALISTIC BOUND

At this criticality, the Bell correlation divided by the lo-
cal realistic bound B/βLR tends to increase as the number
of particles N increases. At the first-order phase transition
between the large-D and antiferromagnetic phases, we expect
that B/βLR with f̃ v

max behaves as an exponential function of
N , i.e., B/βLR ∼ γ N with a real γ , which is plotted in Fig. 5.
For the exponential fit aγ N + c, the variances of a, γ , and c
are smaller than 10−4 for Jz = 4, 10−5 for Jz = 5, and 10−6

for Jz = 6.
So that we can make a comparison to the many-

body entanglement and understand the many-body features,

let us introduce the entanglement entropy, which indi-
cate the amount of entanglement for bipartite pure states.
For a given pure state |ψ〉AB in the composite system
AB, the mathematical definition of entanglement entropy is
given by

S ≡ Tr[ρA log ρA] = Tr[ρB log ρB], (D1)

where ρA (ρB) stands for the reduced density matrix of the
state |ψ〉 in subsystem A (B). It is known that in one-
dimensional systems the entanglement entropy for large N
converges to a constant in gapped systems and diverges log-
arithmically in the gapless ones [34]. This feature also holds
for quantum criticalities in the one-dimensional spin-1 XXZ
model with on-site anisotropy. In this work, the reduced den-
sity matrices ρ̂N/2 for a subsystem of size N/2 are chosen
to investigate the entanglement. At the criticality between
the large-D and antiferromagnetic phases, the entanglement
entropy for even N � 10 is plotted in Fig. 5. For small N ,
the fitting curve behaves as S(N ) ∼ log N , but its accuracy is
not exact. As the particle number N grows, the entanglement
entropy is expected to attain a saturation value.
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