
PHYSICAL REVIEW A 106, 042431 (2022)

Training quantum embedding kernels on near-term quantum computers

Thomas Hubregtsen ,1,* David Wierichs ,2 Elies Gil-Fuster ,1 Peter-Jan H. S. Derks ,1

Paul K. Faehrmann,1 and Johannes Jakob Meyer 1,3

1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
2Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany

3QMATH, Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark

(Received 25 May 2021; accepted 12 September 2022; published 20 October 2022)

Kernel methods are a cornerstone of classical machine learning. The idea of using quantum computers to
compute kernels has recently attracted attention. Quantum embedding kernels (QEKs), constructed by embedding
data into the Hilbert space of a quantum computer, are a particular quantum kernel technique that is particularly
suitable for noisy intermediate-scale quantum devices. Unfortunately, kernel methods face three major problems:
Constructing the kernel matrix has quadratic computational complexity in the number of training samples,
choosing the right kernel function is nontrivial, and the effects of noise are unknown. In this work, we addressed
the latter two. In particular, we introduced the notion of trainable QEKs, based on the idea of classical model
optimization methods. To train the parameters of the QEK, we proposed the use of kernel-target alignment.
We verified the feasibility of this method, and showed that for our experimental setup we could reduce the
training error significantly. Furthermore, we investigated the effects of device and finite sampling noise, and we
evaluated various mitigation techniques numerically on classical hardware. We took the best performing strategy
and evaluated it on data from a real quantum processing unit. We found that using this mitigation strategy
demonstrated an increased kernel matrix quality.

DOI: 10.1103/PhysRevA.106.042431

I. INTRODUCTION

Over the past decade, machine learning (ML) has taken
great steps in tackling some of the world’s most important
challenges across industries and organizations. Neural net-
works are at the forefront of this development, being the
state-of-the-art solution in fields such as image recognition,
speech-to-text, and self-driving cars. They have also shown to
achieve impressing feats that were hard to imagine years ago
[1–3]. These advancements overshadow the fact that, for many
use-cases found in industries as diverse as finance, biology
or genetics, other ML methods, such as Bayesian methods or
kernel methods, are still the go-to solution.

Classical computers are hitting fundamental limits in their
scaling and manufacturing. This fact urged many researchers
to explore alternative ways of computing. The intricate con-
trol of physical systems at their smallest scales allows the
exploitation of the peculiarities of quantum mechanics to per-
form computations. Quantum computing promises to harness
these effects to solve problems that are currently intractable
for classical computers. While long considered more a dream
than a reality, recent efforts have succeeded in constructing
quantum devices able to perform computations intractable for
classical computers [4]. This generation of quantum devices
is referred to as noisy intermediate-scale quantum (NISQ)
devices. Exploiting the nonclassical capabilities of NISQ

*thubregtsen@zedat.fu-berlin.de

devices to solve practically relevant problems is a rapidly
growing field of research [5,6].

Because of the importance of both fields, the application
of quantum computing to machine learning has received a lot
of attention recently, resulting in many research activities in
the field dubbed quantum machine learning (QML). The most
prominent approach to construct learning models using NISQ
devices relies on the use of parametrized quantum circuits
(PQCs) [7–10]. Many works have likened the properties of
PQCs to those of properties of PQCs to those of (NNs), even
calling these quantum neural networks (QNNs). However,
also in QML, kernel methods remain prominent, and received
a significant deal of attention [11–17]. Furthermore, it was re-
cently shown that other types of variational quantum learning
models are fundamentally related to quantum kernel methods
[18,19] and that quantum kernels enable the construction of
learning problems that prove a separation between classical
and quantum machine learning [16,20].

To perform prediction, one would map datapoints in a
nonlinear fashion from the input space to a feature space,
where a linear separation assigns the output label. Kernel
methods, thanks to the kernel trick, can bypass this, allow-
ing for efficient computation. However, they come with three
major causes of concern. The first concern is that constructing
the kernel matrix has quadratic computational complexity in
the number of training samples. Second, choosing the right
kernel function is nontrivial. Finally, the effects of noise, in-
herently present in NISQ device, are unknown, as are potential
mitigation strategies. We discuss kernel methods and their
disadvantages in more detail in Sec. II.

2469-9926/2022/106(4)/042431(18) 042431-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4376-8568
https://orcid.org/0000-0002-0983-7136
https://orcid.org/0000-0003-0411-9757
https://orcid.org/0000-0002-9197-1309
https://orcid.org/0000-0003-1533-8015
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.042431&domain=pdf&date_stamp=2022-10-20
https://doi.org/10.1103/PhysRevA.106.042431

THOMAS HUBREGTSEN et al. PHYSICAL REVIEW A 106, 042431 (2022)

FIG. 1. Quantum embedding kernels allow for classification of
datasets through the use of a support vector machine. The quality
of classification can be significantly improved by optimizing the
parameters of the quantum embedding to increase the kernel-target
alignment introduced in Sec. III.

To combat the issue of choosing the right kernel function,
we port the notion of model optimization from the classical
world to the quantum world in the form of trainable quantum
embedding kernels (QEKs). To train the parameters of the
QEKs, we propose the use of kernel-target alignment, another
method ported from the classical domain. We verify the fea-
sibility to our proposed technique by means of a numerical
experiment, that is tailored to evaluate the trainability of train-
able QEKs. We illustrated the effects of training a QEKs using
kernel-target alignment in Fig. 1. We formally introduce and
discuss the trainable QEK in Sec. III

Finally, we discuss the different types of noise in Sec. IV.
Here, we look into device noise and finite sampling noise,
as well as mitigation strategies. We simulate our proposed
strategies on classical hardware. We will then evaluate the best
performing strategy on data from a real quantum processing
unit (QPU). We finish this paper with a summary and outlook
in Sec. V

II. KERNEL METHODS

In this section, we will revisit classical kernel methods,
quantum embedding kernels, and the associated disadvan-
tages.

A. What are kernel methods

To understand what a kernel method does, let us first revisit
one of the simplest methods to assign binary labels to data-
points: linear classification. Imagine a set of points that lie in
different parts of a plane. We want to construct a classifier
that successfully predicts the classes of the datapoints. A
linear classifier corresponds to drawing a line and assigning
different labels y = ±1 representing the two classes to the
opposing sides of the line. Mathematically, this notion can be
formalized by introducing a vector w orthogonal to the line,
thus determining its direction. We can then assign the class

FIG. 2. A nonlinear embedding can be used to enhance the ca-
pabilities of a linear classifier. Linear classification in the embedding
space can realize nonlinear decision boundaries in the original space.

label y to a datapoint x via

y(x) = sgn(〈w, x〉 + b), (1)

where the intercept term b specifies the position of the line
in the plane. The same works for higher dimensional spaces
too, where the vector w does not just define a line, but a
hyperplane. It is immediately clear that this method is not very
powerful, as datasets that are not separable by a hyperplane
cannot be classified with high accuracy using this scheme.

There is, however, an ingenious way to enhance the capa-
bilities of a linear classifier: One can specify a feature map
φ(x) that takes datapoints and embeds them into a larger
feature space and then perform linear classification in this
feature space. In doing so, we can actually realize nonlinear
classification in the original space of our datapoints. This
strategy is visualized in Fig. 2. We can modify the linear
classifier of Eq. (1) to include the feature map:

y(x) = sgn(〈w′, φ(x)〉 + b), (2)

where w′ lives in the feature space corresponding to the fea-
ture map φ.

A major result in kernel theory is the representer theorem
[21]. It states that one can write the vector w′ that defines
an optimal decision boundary as a sum of the embedded
datapoints with real coefficients: w′ = ∑

i αiφ(xi).1 Inserting
this into Eq. (2) yields

y(x) = sgn

[∑
i

αi〈φ(xi), φ(x)〉 + b

]
. (3)

While this might not seem useful at first, notice that the above
formula only contains inner products between vectors in the
embedding space,

k(x, x′) = 〈φ(x), φ(x′)〉. (4)

We call the function k the kernel associated to the feature map
φ. But why do kernels deserve all the attention they get?

The relevant insight is that we can often find a formula for
the kernel k without explicitly performing the feature map φ.
Consider, for example, the embedding

φ : (x1, x2) �→ (
x2

1,
√

2x1x2, x2
2

)
, (5)

1The representer theorem makes mild assumptions about the way
we measure “optimal,” but for our applications these are always
fulfilled.

042431-2

TRAINING QUANTUM EMBEDDING KERNELS … PHYSICAL REVIEW A 106, 042431 (2022)

whose associated kernel can be explicitly calculated:

k(x, x′) = 〈φ(x1, x2), φ(x′
1, x′

2) (6)

= x2
1x′2

1 + 2x1x2x′
1x′

2 + x2
2x′2

2 (7)

= (x1x′
1 + x2x′

2)2 (8)

= 〈x, x′〉2. (9)

We find that it can be obtained by simply computing the inner
product of two vectors in the initial space and squaring it. Im-
plicitly, we are however computing the inner product relative
to the embedding φ, i.e., in feature space! This is the central
property of kernel-based methods. In many relevant cases the
embedding will require a much higher cost to compute than
the kernel, while one still gains access to the larger feature
space through the kernel. This implicit use of the embedding
through its associated kernel is known as the kernel trick.

If we do not need the embedding at all, then how can
we determine if a given function k is actually a kernel for
some feature map? This question is answered by checking the
Mercer condition, which states that any function fulfilling∑

i, j

cic jk(xi, x j) � 0 (10)

for all possible sets of real coefficients {ci} and sets of dat-
apoints {xi} is a kernel. Alternatively, we can check whether
the kernel matrix K with entries

Ki j = k(xi, x j) (11)

associated with any dataset {xi} is always positive semidefi-
nite.

If we now come back to the example of linear classification
in a feature space that motivated our introduction to kernel
methods, then it is natural to ask how we can best choose
the separating hyperplane. The most common strategy and
application for kernel methods is the support vector machine
support vector machine (SVM). The idea behind SVMs is to
find the hyperplane with the maximal margin. The margin
describes the distance of the dataset on either side of the
hyperplane. Intuitively, a larger margin is better, as less am-
biguity exists for borderline cases. As input, the SVM takes
the kernel matrix from Eq. (11) and delivers the values αi and
b for Eq. (3) that correspond to the decision boundary with the
maximal margin.

To predict a class label for a new datapoint, we need to
calculate the kernel with respect to the training datapoints and
decide on a class label, as shown in Eq. (3). A strong advan-
tage of SVMs is that usually only few weights {αi} contribute
significantly to the sum in Eq. (3). We can thus make a predic-
tion by calculating the kernel with respect to these datapoints
from the training dataset. The corresponding datapoints are
the eponymous support vectors—as they support the decision
boundary. Intuitively, we can imagine that comparing a new
datapoint only to points close to the decision boundary will
give important information about the class label.

Kernel methods are not limited to classification. In fact,
one can take any ML technique that can be reformulated in
terms of inner products and replace the inner products by
kernel functions to get a “kernelized” variant. This leads to

interesting applications such as kernel principal component
analysis [22] or kernel ridge regression [23].

B. Quantum embedding kernels

On NISQ hardware, we make use of quantum gates, like
Pauli rotations, to load data onto the quantum computer. This
constitutes a quantum circuit that is represented by a unitary
operation dependent on the specific datapoint, U (x). As soon
as the data is loaded, the quantum system is in a state that
depends on the datapoint in question,

|φ(x)〉 = U (x)|0〉. (12)

This approach is also known as a quantum feature map [12]
because we are effectively embedding the datapoint in the
Hilbert space of quantum states. As we learned in Sec. II, it is
no large step from a feature map to a kernel function. We only
need to take the inner product between quantum states, which
is given by the overlap

k(x, x′) = |〈φ(x′)|φ(x)〉|2. (13)

This is the QEK associated to the quantum feature map |φ(x)〉.
In general, we are not able to avoid noise, which means that

we cannot assume that the embedded quantum state is pure.
In this case, the quantum embedding is realized by a data-
dependent density matrix ρ(x), which for a pure state reduces
to ρ(x) = |φ(x)〉〈φ(x)|. The inner product is given by

k(x, x′) = Tr{ρ(x)ρ(x′)}. (14)

This inner product is also known as the Hilbert-Schmidt inner
product for matrices. For pure quantum states, this reduces to
Eq. (13).

In summary, any quantum feature map induces a QEK.
We can use this kernel as a subroutine in a classical ker-
nel method, for example, the SVM, which yields a hybrid
quantum-classical approach. In this case, the separating hy-
perplane is constructed in a purely classical manner, only the
kernel function between the training datapoints is evaluated
on the quantum computer.

To be able to use QEKs in this way, we need to evaluate the
overlap of two quantum states on near-term hardware. There
are a number of advanced algorithms to estimate the overlap
of two quantum states [24–28]. All these algorithms work for
arbitrary states, and so they are agnostic to how the states
were obtained by necessity. By exploiting the structure and
specifics of QEKs, though, we can do better.

For unitary quantum embeddings, i.e., embeddings result-
ing in a pure quantum state, this is straightforward if we can
construct the adjoint of the data-encoding circuit, U †(x). In
this case, we can rewrite the overlap as

|〈φ(x′)|φ(x)〉|2 = |〈0|U †(x′)U (x)|0〉|2. (15)

This is nothing but the probability of observing the |0〉 state
when measuring the state U †(x′)U (x)|0〉 in the computational
basis. To obtain an estimate, we can therefore initialize the
quantum system in the |0〉 state, apply the unitary operation
U (x) followed by U †(x′), and finally measure in the computa-
tional basis. From there, we only need to record the frequency
with which the prepared state is found in the |0〉 state to obtain
our estimate. The circuit diagram for this adjoint approach

042431-3

THOMAS HUBREGTSEN et al. PHYSICAL REVIEW A 106, 042431 (2022)

FIG. 3. There are two principal ways to compute the overlap be-
tween embedded states. On the left, we see the adjoint approach valid
for pure states. This approach results in a doubled circuit depth but
does not need auxiliary qubits. The overlap between the embedded
states can also be computed via the SWAP test which is depicted
on the right. This approach results in a doubled circuit width and
requires one additional qubit and controlled SWAP operations but it
also works mixed states.

can be found on the left of Fig. 3. This scheme does not
need auxiliary qubits, yet it applies the data-encoding circuit
twice (or the adjoint thereof). This way, while the width of
the circuit for the adjoint approach does not increase from the
data-encoding one, the depth is doubled.

Another alternative approach to estimate the overlap be-
tween two quantum states is the SWAP test. The SWAP test is
based on the SWAP trick, a mathematical gimmick that allows
us to transform the product of the density matrices in Eq. (14)
into a tensor product:

k(x, x′) = Tr{ρ(x)ρ(x′)} (16)

= Tr{(ρ(x) ⊗ ρ(x′))S}, (17)

where S denotes the SWAP operation between the two quan-
tum systems in the states ρ(x) and ρ(x′). To extract this
quantity, the SWAP test makes use of an auxiliary qubit that
controls the SWAP operation. The exact circuit is depicted
on the right of Fig. 3. While this approach needs auxiliary
qubits and a quantum computer roughly twice as wide, its
depth increases only ever so slightly, and it also works for
mixed quantum states. If the deeper requirements of the ad-
joint approach were too limiting, then the SWAP test would
be a natural alternative.

As quantum feature maps occur in many applications of
NISQ computing, it is no surprise that QEKs are instrumental
beyond their use as subroutines for classical machine learning
methods. In Ref. [18] it was shown that most variational quan-
tum learning methods boil down to kernel methods, providing
an opening for kernel theory to explore the properties of these
learning models.

C. Shortcoming of current kernel methods

While we have now seen that kernel methods can enhance
the power of many ML techniques, kernel methods have three
downsides.

The first downside stems from computational complex-
ity theory. For the application of kernel methods, the kernel
matrix with respect to the input data needs to be constructed—

which has quadratic complexity in the number of datapoints.
This can already constitute a substantial impediment in the
world of big data where the number of datapoints can be in
the millions.

A second downside is that the selection of a suitable ker-
nel for a given problem is a nontrivial task. For any given
task, different kernel functions yield varying performance.
The kernel function ought to be a measure of similarity, so
a wrong choice can mark similar points as nonsimilar, or the
other way around. Errors at this level will invariably translate
into poorer classification. Two extreme examples for such
under-performing kernel functions would be

k1(x, x′) = 1, (18)

kδ (x, x′) = δx,x′ , (19)

here δ is Kronecker’s δ, which is 1 when both arguments are
equal, and 0 otherwise. The first kernel k1 will mark every
pair of points as similar. The second one kδ will mark them
all as nonsimilar. The radial basis function (RBF) kernel also
known as Gaussian kernel given by

kRBF(x, x′) = exp

(
− ‖x − x′‖2

2σ 2

)
(20)

is often a generally accepted starting point, but even there the
parameter σ that quantifies how close datapoints need to be
considered similar needs to be fine-tuned. In the next sections,
we will introduce trainable QEKs, a notion that is known as
model optimization in the classical world, but has not yet been
applied in the quantum domain. It is our hope that training the
kernel on specific data will improve the modeling capabilities
of the algorithm.

The third downside stems from the need of a kernel matrix
to remain positive semidefinite, something that is hard to
guarantee under the presence of noise from NISQ devices.
In following sections, we will investigate noise mitigation
strategies to address this issue.

III. TRAINABLE QUANTUM EMBEDDING KERNELS

In the previous section we discussed QEKs. To address the
difficulty of finding the right kernel, we propose the use of
trainable QEKs, a concept known as model optimization in
the classical world. In this section, we discuss how to adjust
these parameters to improve the classification capabilities of
quantum embedding kernels.

Adjusting the variational parameters of a quantum feature
map—and therefore of its associated QEK—can be seen as a
particular instance of model selection. This process consists
of two steps, kernel selection and kernel optimization. Kernel
selection is choosing a particular quantum circuit layout, or
ansatz, with certain variational parameters. Here, we refer to
a variational family of kernels, much like the family of RBF
kernels defined in Eq. (20) where the standard deviation σ is
varied. Kernel optimization corresponds to the process of fix-
ing the variational parameters to ensure a good classification
performance on our target data.

Because of the unfavorable scaling, exhaustive parameter
search procedures are only suitable for optimizing few param-
eters. It is therefore sensible to resort to a proxy quantity that

042431-4

TRAINING QUANTUM EMBEDDING KERNELS … PHYSICAL REVIEW A 106, 042431 (2022)

is easier to compute but still acts as a predictor for classifi-
cation accuracy. Reference [29] provides an overview of such
measures as provided in Refs. [30–35], using the kernel-target
alignment from Ref. [36] as central building block. We pro-
pose to use kernel-target alignment for optimizing the QEK.

A. Kernel-target alignment

We will first explain this procedure for balanced datasets,
i.e., datasets that have an equal number of elements in each
class. At the end of this section, we will generalize to un-
balanced datasets. The central idea behind the kernel-target
alignment is that the labels for the training set can be seen as
an instance of a very particular kernel, which acts as an oracle
that always outputs the correct similarity for two datapoints:

k∗(x, x′) =
{

1 if x and x′ in same class,
−1 if x and x′ in different classes. (21)

Of course, in general we do not have access to this ideal
kernel, but on the training data it is given by the training labels
and the kernel matrix predicted by this ideal kernel has entries

K∗
i j = yiy j . (22)

This means that if we place the labels into a vector y, we can
express the ideal kernel matrix as the outer product of that
vector with itself:

K∗ = yyT . (23)

To get to a measure of how well a kernel captures the nature
of the training dataset we need a way to compare the kernel
matrix with the ideal one. To obtain the kernel-target align-
ment we will make use of geometric reasoning. Remember
that we can measure the alignment of two vectors a and b by
evaluating and normalizing the inner product:

A(a, b) = 〈a, b〉√〈a, a〉〈b, b〉 . (24)

The alignment is related to the angle �(a, b) between the
vectors as cos�(a, b) = A(a, b), which means that the align-
ment is a quantity that ranges from −1 for vectors pointing
in exactly opposite directions to +1 for vectors pointing in
exactly the same direction.

We can apply the same reasoning to kernel matrices. To do
so, we need to define an inner product between two matrices.
For the definition of the kernel-target alignment we will use
the Frobenius inner product. For that, we simply treat the
matrices as if they were column vectors, with every entry of
the matrix being a separate entry of the vector. This means
that the inner product is just

〈A, B〉F =
∑

i j

Ai jBi j = Tr{AT B}, (25)

from where one defines the alignment of two matrices B and
B′ as

A(B, B′) = 〈B, B′〉F√〈B, B〉F 〈B′, B′〉F

. (26)

FIG. 4. The kernel-target alignment is high if the feature vectors
corresponding to datapoints in the same class cluster together and the
feature vectors of points in the opposite class lie exactly opposite to
them. This illustrates that a high kernel-target alignment allows for
easier linear separability.

Now we have all the ingredients to define the kernel-target
alignment:

TA(K) = A(K, K∗) = 〈K, K∗〉F√〈K, K〉F 〈K∗, K∗〉F
. (27)

We can equivalently express this in terms of the kernel func-
tion and the training dataset:

TA(k) =
∑

i j yiy jk(xi, x j)√(∑
i j k(xi, x j)2

)(∑
i j y2

i y2
j

) (28)

=
∑

i j yiy jk(xi, x j)

n
√∑

i j k(xi, x j)2
, (29)

where we used the fact that for all labels y2
i = 1 and n denotes

the number of points in the training set. Note that TA(k) � 0
because of the positive semidefinite nature of the kernel func-
tion.

At the beginning of this section we assumed that the train-
ing set was balanced, i.e., that it contains the same number of
datapoints for each class. If this were not the case, then the
approach we just outlined would run into problems, because
the contributions from one class would dominate the kernel-
target alignment. We could however mitigate this by simply
rescaling the labels, dividing them by the number of samples
available in their class. In this case, we cannot use Eq. (29)
but have to stay with Eq. (28).

We can gather further intuition why the kernel-target align-
ment is a meaningful measure by looking at the numerator
of Eq. (28),

∑
i j yiy j k(xi, x j). This quantity is also known as

the kernel polarity. Each term yiy j k(xi, x j) in the sum is a
product of the kernel function of two points and their labels.
If both points belong to the same class, yiy j = +1, then the
kernel value increases the kernel-target alignment, whereas if
the labels are different yiy j = −1, then the term decreases it.
Increasing the kernel-target alignment therefore means both
increasing the kernel values for datapoints from the same
class and decreasing them for datapoints in different classes.
Figure 4 visually illustrates how a large kernel-target align-
ment allows for easier linear classification of the training data.
Beyond this intuition, the kernel-target alignment profits from
theoretical guarantees regarding both its high concentration

042431-5

THOMAS HUBREGTSEN et al. PHYSICAL REVIEW A 106, 042431 (2022)

about the expected value and its good generalization behavior
in labeling previously unseen data [35–37].

With the kernel-target alignment we now have a measure
that we can use as a cost function to maximize through a
hybrid quantum-classical optimization loop [38]. At every
iteration, the QPU is used to evaluate the kernel matrix K ,
recall constructing K has quadratic complexity in the number
of datapoints.

It turns out that optimizing the kernel-target alignment is
closely related to the “quantum metric learning” approach
put forward in Ref. [39] that analyzed different strategies to
optimize quantum feature maps. Indeed, the Hilbert-Schmidt
distance-based method is the same as optimizing the unnor-
malized kernel-target alignment, the polarity. We detail the
connection in Appendix A.

B. Trainability

To verify the feasibility of our proposed setup, and to
perform a numerical analysis of the trainability of a trainable
QEK, we have run a set of experiments. In these experiments,
we look at two scenarios. First, we look at the error percentage
of an optimized SVM on a QEK with random parameter
values. We will refer to this as the untrained QEK. Second,
we look at the error percentage of an optimized SVM on a
trained QEK. We will refer to this as the trained QEK. From
this, we expect to see that a trained QEK is able to better fit the
training data compared to an untrained QEK. Below, we give
details on the particular numerical experiments conducted.

1. Dataset

For our dataset, we have used the “Bank Marketing Data
Set” [40]. We preprocess the data in various steps. We first
convert all nonnumerical columns by assigning an increasing
integer value to every new label, e.g., a column containing
{“yes,” “no,” “maybe,” “yes”} is converted to {0, 1, 2, 0}. We
then normalize all columns to the range [−1, 1]. To reduce
dimensionality, we then perform Principal Component Anal-
ysis to reduce the dataset to 12 features. This is the minimal
amount of features that still ensures no two entries are reduced
to a single sample. Finally, we sample 30 datapoints in a
balanced way, both for our training and validation set.

2. Ansatz

As explained above, a QEK is specified by a PQC that em-
beds one input datapoint. The PQCs we use are organized in
layers with fixed gate layout, which are implemented sequen-
tially. Each layer starts with a block of Hadamard gates; then,
a block of Pauli-Z rotations whose rotation angles are the data
coordinates; next, one block of trainable Pauli-Y rotations;
and finally, one ring of controlled Pauli-Z rotations. A sketch
of one such layer can be seen in Fig. 5. This ansatz can be used
for arbitrary number of qubits and layers. We use this layout
following the data re-uploading ideas from Ref. [41], which
shows that ansätze of this type form rich function families. It
is important to use expressive enough designs so that we can
potentially achieve the linear separability of the data.

We select an ansatz to solve both: kernel selection and
kernel optimization. Kernel selection is addressed by having

FIG. 5. Circuit diagram of the elementary building layer used in
the QEK ansatz for N = 5 qubits and m = 2 features. The trainable
parameters of the ansatz are denotes as {θ j}s=10

j=1 and x1,2 are the data
features.

chosen a parametrized kernel that can be scaled up both in
number of qubits and number of layers. Then, maximizing the
target-kernel alignment corresponds to kernel optimization.
The flexibility in the number of qubits and layers allows us
to increase the model expressivity in a controlled way. That
is, we are more interested in making sure the models are
expressive enough than in encoding a specific inductive bias.

3. Hyperparameters

In every of our 51 runs, we use a different seed to sample
30 datapoints in a balanced fashion. We embed the data in
an ansatz consisting of five qubits and six layers. To train
the QEK, we use 2000 optimization iterations, in which we
optimize using six samples. We report the error percentage,
defined as 1 − misclassifications

total samples .

4. Results

The raw data and code used to run the experiment can be
found on GitHub [42]. The untrained QEK has an error per-
centage of 18.8%. The trained QEK has an error percentage of
13.3%. This is a reduction in error percentage of 29.3%. Both
experiments had a variance of 0.003.

5. Discussion and conclusion

To evaluate the trainability of a trainable QEK, we per-
formed the experiment discussed above. This experiment
serves as a first proof of concept. As with all numerical ex-
periments, changes to the ansatz used, hyperparameters set,
and data selected, caution needs to be taken in interpreting the
outcome. However, for our specific setting, we can conclude
that the performance significantly improved.

As a side remark, we also wanted to express our intent to
evaluate generalization capability. However, the 30 samples of
training data that our computational resources could process,
proved not to be sufficient to learn any meaningful informa-
tion regarding validation data. When sanity checked with a
classical linear, RBF and sigmoid kernel, all performing close
to random guessing.

IV. THE EFFECTS OF NOISE

Noise is one of the namesakes of NISQ devices and consid-
ering the effects of noise is therefore of utmost importance. In
this section, we discuss how both noise arising from imperfect

042431-6

TRAINING QUANTUM EMBEDDING KERNELS … PHYSICAL REVIEW A 106, 042431 (2022)

quantum operations—device noise—and noise arising from
finite sampling of expectation values affects QEKs and how it
can be mitigated. We then proceed with a series of simulations
that predict the performance of our proposed noise mitigation
techniques. Last, we use the best noise mitigation technique,
as found in our experiments, and evaluate it on data from a
real QPU. The code for these experiments can be found on
GitHub [42].

A. Device noise

NISQ devices suffer from unavoidable noise caused by
unintentional interactions with the environment or imperfect
control. It is thus not possible to prepare pure quantum states
with an embedding circuit. This fact has multiple implications
for QEKs and their realization.

Noise can be modeled by quantum channels. Formally, any
map that takes valid quantum states to valid quantum states
can be seen as a quantum channel. An example is depolarizing
noise, which corresponds to a complete loss of information
about the underlying quantum state with a certain probability
1 − λ. We formally realize it by replacing the system’s quan-
tum state with the maximally mixed state with probability
1 − λ:

Dλ[ρ] = λρ + (1 − λ)
I

2N
. (30)

Depolarizing noise is a popular model for noise in quantum
systems, as it is simple and subsumes other, more nuanced
noise models.

As we have seen in Sec. II B, a QEK can also be defined
for mixed states for which its output corresponds to the state
overlap. The SWAP test can be directly employed to com-
pute the overlap of mixed states, but often we would like to
use the adjoint method due to its lower qubit requirements
(see Fig. 3). The adjoint method, however, needs more con-
sideration, because the implementation of the adjoint noisy
embedding circuit itself is not straightforward. But if we fail
to implement the correct adjoint operation, we are no longer
computing the overlap of the quantum embedding states and
therefore also do not compute a valid kernel!

In the noiseless embedding circuit, all operations are uni-
tary and typically the adjoint of every elementary operation
is available. This becomes apparent when we consider that
any quantum circuit can be constructed from controlled NOT
gates, which are self-adjoint, and single-qubit Pauli rotations,
whose adjoint is obtained by performing the same rotation
with negated angle.

The device noise, however, can in principle prevent us from
implementing the adjoint embedding. As an example, con-
sider a quantum channel that represents a noisy Pauli rotation
gate, V (θ). We model it by the original rotation gate R(θ) that
is followed by a noise channel N . The channel N could model
imprecision in the control of the rotation angle, unwanted
interactions with the environment or other noise processes, but
we will leave it arbitrary for this example. The noisy gate is
then given by

V (θ)[ρ] = N [R(θ)ρR†(θ)], (31)

and its adjoint reads

V (θ)†[ρ] = R(−θ)N †[ρ]R†(−θ). (32)

But how would we implement V (θ)†? The very nature of a
noise channel implies that we cannot control it or choose at
which time the noise occurs. Instead, we have to work with
the noisy quantum gates at our disposal, which means that we
can only approximate V (θ)† by V (−θ):

V (−θ)[ρ] = N [R(−θ)ρR†(−θ)]. (33)

In general, this approximation is not equal to the adjoint of
the noisy unitary. This only happens to be the case if the noise
channel N both is self-adjoint and commutes with the unitary
operation R(θ). Both conditions hold for the depolarizing
noise introduced in Eq. (30).

Let us now take a step back and look at actual NISQ de-
vices. They are usually programed at the gate-level, assuming
perfect unitaries. The adjoint of a perfect unitary circuit is
readily available, but only if the behavior of the available
NISQ device is well-modeled by depolarizing noise can we
expect this “naive” adjoining of the unitary gates to still com-
pute the overlap of embedded states for the QEK.

B. Mitigating device noise

Mitigating the effects of device noise is very important to
make NISQ computers useful in practice. It is therefore no
surprise that the topic has gained a lot of attention and that
many techniques have been developed to mitigate device noise
[43–49]. In the following, we will complement these with
an approach that exploits the very definition of the quantum
embedding kernel and that can be freely combined with other
mitigation approaches.

We have introduced depolarizing noise as a rather general
approach to model the noise in quantum devices. We will
model the noise with Dλ as in Eq. (30), where the depolarizing
channel is assumed to act homogeneously on the whole sys-
tem. We will refer to λ—the probability that the depolarizing
channel does not cause a loss of information about the under-
lying state—as survival probability. Note that it may well be
possible that the probabilities λi differ for distinct embedded
datapoints xi, as one might need longer pulse sequences to be
embedded than the other, causing more noise.

We now assume that the embedding is composed of this
noise channel and the noiseless unitary embedding:

ρλ(x) = Dλ[|φ(x)〉〈φ(x)|]. (34)

We can then explicitly compute the impact of the depolarizing
noise on a kernel matrix entry:

K (dev)
i j = Tr

{
ρλi (xi)ρλ j (x j)

}
(35)

= Tr

{
λiρ(xi)λ jρ(x j) + (1 − λi)λ j

ρ(x j)

2N

+λi(1 − λ j)
ρ(xi)

2N
+ (1 − λi)(1 − λ j)

I

22N

}
(36)

= λiλ jKi j + (1 − λiλ j)
1

2N
. (37)

Here we used Tr{ρ(x)} = 1 and Tr{I} = 2N .

042431-7

THOMAS HUBREGTSEN et al. PHYSICAL REVIEW A 106, 042431 (2022)

We can exploit the fact that all diagonal entries of the
noiseless kernel matrix K are known to be 1. While we could
use this knowledge to save quantum computational cost, we
propose to instead use it to gather information about the device
noise. We can use Eq. (37) to infer the survival probability λi

from the diagonal element of the noisy kernel matrix K (dev)
ii :

λi =
√

K (dev)
ii − 2−N

1 − 2−N
. (38)

With those values at hand we can recover the noiseless kernel
matrix entries

Ki j = K (dev)
i j − 2−N (1 − λiλ j)

λiλ j
. (39)

We denote this mitigation strategy as M-SPLIT. We can
distill two even simpler mitigation strategies from this ap-
proach by assuming that all λi have the same value. This
value can then be estimated by averaging multiple of the
λi obtained from Eq. (38), a strategy which we denote as
M-MEAN and which requires fewer diagonal elements to
be measured. Alternatively, we can choose to further save
resources and only measure one diagonal entry to estimate the
survival probability, which we denote as M-SINGLE. There
are a number of options for which entry to use, for the sake of
simplicity and reproducibility we always use the first entry.

More details on the presented mitigation strategies can be
found in Appendix C 1.

C. Finite sampling noise

Recall Eq. (13), where we first introduced the definition of
QEKs. And, critically, notice from Eq. (15) that we proposed
the so-called adjoint method for estimating the overlap: a
frequentist way of approximating the kernel function from
quantum circuit evaluations. Measuring such kernel func-
tions results in independent and identically distributed (i.i.d)
Bernoulli random variables k̂i j , since each circuit evaluation
outputs either a 1, in case the observed state is |0〉, or a 0
otherwise. By construction, the theoretical kernel value Ki j is
the true mean of this random variable, i.e., E(k̂i j) = Ki j . Since
it follows from Born’s rule that an infinite number of circuit
evaluations would be required to pin down the exact kernel
value, there exists a second source of noise originating from
using a finite number of samples.

In reality, we can only estimate the kernel function from a
finite number of experimental runs. How many runs we can
afford is limited by our experimental resources. This incurs
uncertainty beyond the device noise, especially if the number
of runs is small.

Going one step further, notice that the pipeline involves
estimating the entire kernel matrix, comprising n(n − 1)/2 =
O(n2) independent entries. To gauge the number of required
circuit evaluations Mtot to reach a desired error ε in operator
distance of an estimator to the target kernel matrix, we can use
results from random matrix theory.

The difference between an estimator constructed using M
circuit evaluations per entry, (K̄M)i j = ∑M

s=1 k̂(s)
i j /M, and the

target kernel matrix K is given by

(ĒM)i j = (K̄M)i j − (K)i j = 1

M

M∑
s=1

k̂(s)
i j − Ki j . (40)

Remembering that

E{(ĒM)i j} = 0, (41)

E{[(ĒM)i j]
2} = O

(
1

M

)
, (42)

E{[(ĒM)i j]
4} = O

(
1

M2

)
(43)

allows us to make use of the following result:
Theorem 1 (Latala’s theorem [50,51]). Let A be a random

matrix whose entries ai j are independent centered random
variables with finite fourth moment. Then, for C > 0,2

E{‖A‖} �C

[
max

i

(∑
j

E
{
a2

i j

})1/2

+ max
j

(∑
i

E
{
a2

i j

})1/2

+
(∑

i j

E
{
a4

i j

})1/4]
. (44)

For the n × n-dimensional error matrix ĒM with moments
as in Eqs. (41)–(43), this leads to

E{‖ĒM‖} = O

(√
n√
M

)
. (45)

Consequently, M = O(n/ε2) measurements per kernel matrix
entry are required to ensure an error of ε in operator distance.
As a result, since we need to estimate O(n2) entries of the
kernel matrix, we require a total of

Mtot = O

(
n3

ε2

)
(46)

circuit evaluations to reach the desired accuracy. A short cal-
culation for Gaussian variables using Bai-Yin’s law [51,52]
verifies that this scaling is indeed asymptotically optimal,
since the error of kernel matrix entries converges to the Gaus-
sian distribution according to the central limit theorem.

The corresponding constant prefactors can be obtained via
involved methods using results from random matrix theory for
matrices with sub-Gaussian rows [51]

Although having results for the required number of circuit
evaluations to ensure a desired error of the kernel matrix is
sufficient for the presented scheme to work, another important
quantity we need to estimate for quantum embedding kernels
is the kernel target alignment introduced in Eq. (28), which
we use as loss function in the training phase of our algorithm.

Allowing for an error of at most ε in the kernel target
alignment, propagation of uncertainty via partial derivatives
suggests that O(1/ε2) measurements per kernel entry are re-
quired, leading to O(n2/ε2) circuit evaluations in total (see

2C is a constant depending only on the sub-Gaussian norm of the
entries.

042431-8

TRAINING QUANTUM EMBEDDING KERNELS … PHYSICAL REVIEW A 106, 042431 (2022)

Appendix E. This is a direct consequence of the fact that
kernel matrix entries enter the definition of the kernel target
alignment both in the nominator and denominator.

D. Mitigating finite sampling noise

Due to the imperfect sampling outcome for the kernel ma-
trix and the device noise mitigation techniques introduced in
Sec. IV B, the obtained matrix might not be positive semidefi-
nite. However, we know the exact kernel matrix to be positive
semidefinite and this property is a requirement for the matrix
to be used in a classification task. We may therefore regularize
the obtained matrix, validating it as kernel matrix and bringing
it closer to the perfect outcome.

We discuss three methods to find a positive semidefinite
matrix close to a symmetric matrix A: In the first method
called Tikhonov regularization, we displace the spectrum of A
by its smallest eigenvalue σmin if it is negative, by subtracting
it from all eigenvalues or equivalently from the diagonal [53]:

R-TIK(A) =
{

A − σminI if σmin < 0
A else , (47)

which yields a positive semidefinite matrix. While being for-
mally the same as the original method by Tikhonov [54],
we use it here to assure positive semidefiniteness instead of
nonsingularity of the matrix.

The second method called thresholding only changes the
negative eigenvalues of A by setting them to zero [55]. This
is done via a full eigenvalue decomposition, adjustment of the
negative eigenvalues and composition of the adjusted spec-
trum and the original eigenvectors:

D = V T AV, (48)

D′
i j = max{Di j, 0}, (49)

R-THR(A) = V D′V T . (50)

This approach is equivalent to finding the positive semidefinite
matrix closest to A in any unitarily invariant norm. It is also
equivalent to finding the positive semidefinite matrix which
has the largest alignment [see Eq. (27)] with A.

The third method extends this reasoning by searching the
closest matrix in Frobenius norm, but with the additional re-
quirement that the diagonal elements of the regularized matrix
need be one, incorporating our knowledge about the exact
kernel as a constraint. This approach constitutes a semidefinite
program (SDP) and is therefore efficiently computable:

R-SDP(A) = argmin{‖A′ − A‖F : A′ � 0, A′
ii = 1}. (51)

For further details on the computational cost and properties
of the regularized matrices please refer to Appendix C 1.

We note that other mitigation techniques proposed in the
literature may be combined with the ones discussed here, as
they function on different levels of abstraction. An established
method to reduce the impact of noise is zero noise interpola-
tion to first order [11,43,56], which makes use of additional
circuit evaluations at increased noise rates. Furthermore, tech-
niques to suppress errors by duplicating the circuit have been
proposed recently [48,49]. Both of these methods may be used

to greatly reduce the noise on the kernel matrix before treating
it with regularization and mitigation techniques.

It has been shown that regularization techniques such as
those presented here can change some properties of the reg-
ularized matrix; see, for example, Ref. [57]. If the matrices
underwent very dramatic changes, for example, in regimes of
very large noise, then the optimization cycle for the kernel
alignment could be disrupted. The study of these effects and
when they start to appear lays beyond the scope of this paper.
Along the same lines, there are a few different ways in which
our error mitigation techniques could be used to label new data
after training. In this work, regarding corrections due to noise,
we do not tread further than the SVM step of the pipeline.

During the preparation of this work, Wang et al. [58]
demonstrated that regularization methods can improve the
classification accuracy of noisy circuits significantly, more
concretely R-TIK, R-THR and flipping the negative eigenval-
ues of the kernel matrix were covered.

E. Evaluating noise mitigation techniques through simulation

We now investigate the effect of the regularization and
device noise mitigation techniques introduced in Secs. IV B
and IV D. To this end, we simulate device noise with a model
based on gate-level, local depolarizing noise (see Appendix D
for details) and test the post-processing performance on the
checkerboard dataset (see Appendix B 2).

For a range of base survival probabilities λ0 and measure-
ments M per kernel matrix entry, we first compute 100 noisy,
sampled kernel matrices {K̄M,
}100

=1. We then consider any
combination of up to three methods with the order regularize-
mitigate-regularize, including combinations that skip one or
two of these steps, to post-process each K̄M,
 into K (post)

 . The
quality of each post-processing strategy is finally assessed via
the average change in the alignment with K [see Eq. (26)],
relative to the distance of K̄M from perfect alignment:

q =
100∑

=1

A
(
K (post)

) − A(K̄M,
)

1 − A(K̄M,
)
, (52)

where in a slight abuse of notation we abbreviated A(K
) :=
A(K
, K), i.e., we skipped the dependence on the exact kernel
matrix K .

The best-performing technique per base survival proba-
bility λ0 and number of measurements M is shown together
with the achieved improvement q in Fig. 6. For large base
survival probabilities λ0 (low device noise), the combination
of M-MEAN and R-SDP consistently is the best approach3

and yields significantly improved alignments by up to 82.8%
in the domain marked in Fig. 6. For smaller λ0 (higher de-
vice noise), however, other post-processing methods become
favourable and M-MEAN, R-SDP results in reduced align-
ments (negative q).

The trivial combination that only uses R-THR performed
best for low M (high shot noise) and simultaneously smaller

3A minimal manual filter was applied to the results to improve
readability, for details please refer to Appendix C 2.

042431-9

THOMAS HUBREGTSEN et al. PHYSICAL REVIEW A 106, 042431 (2022)

FIG. 6. Relative improvement q in alignment [see Eq. (52)] for various base survival probabilities λ0 and numbers of circuit evaluations
per matrix entry M under a noise model based on local depolarizing noise (see Appendix D). For each λ0 and M, and for each investigated
post-processing combination, we sample 100 kernel matrices, perform the post-processing and compute the average improvement q across the
100 samples (see Appendix C). The labels indicate the best-performing combination for each areab and the color map shows the corresponding
best average improvement q.

λ0 (high device noise). It achieved improvements in align-
ment of up to 38.0% and never decreased the quality of the
kernel matrix, that is q � 0 for all tested noise parameters.
When increasing M (lower shot noise) while keeping λ0 small,
Tikhonov regularization R-TIK performed better, with the
caveat that it decreased the alignment for high λ0 (low device
noise). For the analytic case without shot noise, a combination
of either M-SINGLE or M-SPLIT with R-TIK performs best,
with q ranging from 54.6% to 90.2%. We include additional
details on the performance of all 42 combinations of mitiga-
tion and regularization strategies to Appendix C 2.

We observe that post-processing can systematically and
significantly enhance the quality of the obtained kernel ma-
trix, in addition to other possible mitigation techniques that
may reduce the effective sampling and device noise strengths
[11,43,56] or even at the hardware level [48,49].

At the same time, it is important to choose the mitigation
and regularization technique adequately as is apparent from
the different best post-processing approaches per noise regime
in Fig. 6 and the fact that the methods are not guaranteed
to not decrease the alignment with the noiseless matrix K .
In this regard, R-THR has the advantage of changing the
spectrum of K̄M as little as possible while ensuring positive
semidefiniteness.

For NISQ applications we find M-MEAN, R-SDP to be the
best choice, assuming that the device noise is not too large. In
the following, we will confirm that the above post-processing
approach deals well with experimental data from a QPU.

F. Evaluating the proposed noise mitigation technique on a QPU

So far, all experiments in this section were run on classical
simulators. We will now proceed to evaluate the post-
processing techniques in real-world conditions. To this end,
we have computed the kernel matrix for the symmetric donuts
dataset (see Appendix B 1) using three qubits on an ion trap
QPU by IonQ.

For the computation we have used M = 175 circuit evalu-
ations per kernel matrix entry and because we measured the
diagonal entries for mitigation purposes, the total number of
circuit evaluations sums up to about 3.2 × 105. In addition,
we sampled kernel matrices for several smaller M from the
measured distribution.4

Figure 7 shows the alignment A(K̄M) between the obtained
kernel matrix K̄M and the noiseless matrix K , as well as
the alignment A(K (post)) between the post-processed matrix
K (post) and K . For each number of circuit evaluations M, we
plot the two best out of the 42 post-processing combinations.
Note that various of these combinations yield a quality similar
to the best choice. As expected, the quality of the kernel
matrix improves with the number of circuit evaluations and as
predicted by our simulation results (see Appendix IV E), the

4Note that this is not the same as a proper computation on the
quantum device with decreased M because we sample from a sample
and not from the true distribution directly.

042431-10

TRAINING QUANTUM EMBEDDING KERNELS … PHYSICAL REVIEW A 106, 042431 (2022)

15 25 50 75 100 125 150 175

Measurements M

0.91

0.92

0.93

0.94

A
li
g
n
m

en
t

A
(K

M
,K

)

No post-processing

M−MEAN, R−SDP

M−SPLIT, R−SDP

FIG. 7. Alignment A of the kernel matrix measured on the ion
trap QPU with the simulated, noiseless kernel matrix K for various
numbers of circuit evaluations per matrix entry M, with and without
the two best post-processing strategies. Applying our device noise
mitigation techniques M-MEAN/M-SPLIT (see Sec. IV B), which
assume a simple, global depolarizing noise model, followed by ma-
trix regularization R-SDP results in the highest improvement of the
alignment. Here, M-MEAN, R-SDP is the strategy that performed
best in the numerical simulations for low device noise rates (see
Fig. 6)

post-processing methods increase the alignment significantly.
The achieved values for the relative improvement q range
between 10.1% and 25.4% with a mean of 14.9%.

We observe that the combination M-MEAN, R-SDP, which
is either best or second best by a small margin, was correctly
predicted for small device noise levels by our simulations
of depolarizing noise. This is remarkable as the simulations
were performed on a different dataset, with different circuit
depth and width (see Appendix C) and using a different el-
ementary gate set. This indicates that the depolarizing noise
model captures properties of the noise in the QPU that are
significant for the kernel matrix computation, and suggests
that these post-processing methods show robust performance
across different circuit depths, qubit numbers and datasets.

In contrast to the above, the method M-SPLIT, R-SDP
yields better results than expected for the hardware results,
as it showed significantly worse performance than M-MEAN,
R-SDP in the simulated experiments for similar numbers of
shots (see Appendix C 2 for details). However, we stress that
this does not refute the prediction of the latter method as
strongest post-processing strategy.

In conclusion, our results on the actual quantum device
demonstrate an increased kernel matrix quality when using
post-processing, which may allow for improved classification
accuracy (also see [58]) or alternatively for a reduced num-
ber of circuit evaluations while maintaining a given level of
classification performance.

V. SUMMARY AND OUTLOOK

In this work, we have studied the concept of quantum em-
bedding kernel (QEK). To address the difficulty of choosing
the right kernel, we transferred the concept of model optimiza-

tion from the classical world, and introduced trainable QEKs.
To optimize variational parameters of the QEKs, we trans-
ferred the concept of kernel target alignment to the quantum
setting.

To summarize this concept, we summarize our work into a
holistic pipeline for working with quantum embedding kernels
as depicted in Fig. 8. We start from a parameterized quantum
circuit that represents a quantum feature map with variational
parameters set to some initial values. To adjust the parameters
for a specific dataset, a training loop is run: First, a kernel
matrix is obtained from the underlying NISQ device. As an
alternative next step, a mitigation and regularization strategy
can be applied to improve the quality of the kernel matrix.
The kernel matrix is then used to calculate the kernel-target
alignment and its gradient with respect to the variational
parameters of the parameterized quantum circuit. Gradient
descent is then used to update the variational parameters and
hence the quantum embedding kernel. This process is repeated
until the desired kernel-target alignment is reached.

To perform a classification of new data, a support vector
machine is trained using the post-processed kernel matrix
of the optimized quantum embedding kernel. The support
vectors of the SVM are then extracted and can be used in a
support vector classifier to predict labels for new datapoints.
To this end, the quantum embedding kernel between the new
datapoints and the support vectors have to be computed, but
the training of the SVM itself is purely classical.

As QEKs run on noisy quantum devices, they are nec-
essarily affected by two sources of noise—device noise and
statistical fluctuations. Using a simple, global depolarizing
noise model we proposed device noise mitigation techniques
specific for kernel matrices and combined them with matrix
regularization methods that exploit positive semidefiniteness
of the exact kernel matrix. We tested a total of 42 combina-
tions both on kernel matrices computed with a mixed-state
simulator with a gate-based noise model and on matrices
measured on quantum hardware. The former provides sys-
tematic insights into the performance of the mitigation and
regularization techniques for a large range of device noise
levels and statistical noise strengths, and indeed shows that
the optimal choice varies with these experimental parameters.
For low device noise levels, the combination of mitigating
via M-MEAN and regularizing with R-SDP is predicted as
best choice, using a simple estimate for global depolarizing
noise in the circuit and an advanced thresholding of the kernel
matrix spectrum. This prediction is confirmed using the ma-
trices measured on a quantum processing unit, demonstrating
that post-processing methods can partly recover the noiseless
kernel matrix to improve its accuracy or reducing the required
number of measurements.

There are two immediate challenges remaining when ap-
plying post-processing methods. On the one hand, access to
the noiseless matrix is required to rate the methods, requiring
us to extrapolate their performance from small to large sys-
tems. On the other hand, the impact of the methods on the
classification accuracy remains to be investigated.

In the design and training of QEKs, one could explore
various aspects. A clear question would be the choice of
ansatz families. Some key objects of study for this would
be the expressivity of different circuits, the dependence

042431-11

THOMAS HUBREGTSEN et al. PHYSICAL REVIEW A 106, 042431 (2022)

FIG. 8. Schematic of the pipeline used in this work. Green boxes indicate data, purple boxes indicate process steps that are executed on
quantum hardware. The pipeline used in this work can be split into three separate parts. In the model selection part, depicted on the left, the
parameters of the feature map are adjusted to increase the kernel-target alignment. To calculate the alignment, the kernel matrix is computed
and may afterwards be post-processed to mitigate sampling and device noise. After a sufficient target-alignment is reached, the kernel is used
to train a support vector machine. The resulting support vector classifier is used in the prediction step to predict labels of new datapoints.

on the dataset, the optimal choice of hyperparameters (or,
alternatively, how one could perform empirical risk min-
imization successfully), or how one would build gauge
invariant kernel functions [59]. Another major topic is in-
vestigating the effect of the barren plateau phenomenon
[60–62] in the kernel setting, and subsequently the study
of (quantum-aware) cost function alternatives to the target
alignment.

Finally, one could explore whether the proposed model
generalizes well to unseen data, and if the model can be
transferred to more general tasks such as unbalanced binary
classification, multiclass classification, or regression.

ACKNOWLEDGMENTS

The authors thank Xanadu for organizing QHack 2021,
where the foundations of this work were laid as part of the
Open Hackathon Challenge and the resulting funding. We
further thank the AWS team for their support and funding
that provided us access to the Rigetti and IonQ devices,
as well as Sandbox@Alphabet for alpha access to the Floq
cloud service, yielding access to the TPU-based quantum
simulator. Additionally, we thank Richard Kueng for valuable
input on bounds, as well as Jens Eisert and Maria Schuld for
valuable feedback. We endorse Scientific CO2nduct [63] and
provide a CO2 emission Table I in Appendix F. This work
was supported by the BMWi under the PlanQK initiative,
the BMBF under the RealistiQ initiative, the Cluster of Ex-
cellence MATH+ Project No. EF1-7, the European Flagship
project PasQuanS and the DFG under Germany’s Excellence
Strategy Cluster of Excellence Matter and Light for Quantum

Computing (ML4Q) Grant No. EXC2004/1 390534769 and
the CRC 183 Project No. B01.

T.H., J.J.M., E.G.F., and P.K.F. worked on trainable QEKs.
D.W., P.K.F., and J.J.M. built the theory on noise mitigation.
D.W. and P.J.H.S.D. ran the numerics for noise mitigation.
J.J.M. supervised the project. All authors contributed to the
discussions and to writing the manuscript.

APPENDIX A: CONNECTION TO QUANTUM FEATURE
MAP OPTIMIZATION

Optimizing kernels using the kernel-target alignment as
a cost function is closely related to the “metric learning”
approach put forward for the training of quantum feature
embeddings in Ref. [39].

To understand this approach, we first introduce some no-
tation. We consider a dataset S = {(xi, yi)} that we split in
two parts corresponding to the two classes labeled as ±1.
We denote these subsets as S+ and S−, respectively. For a
given embedding |φθ (x)〉, we can identify both classes with
quantum states—we will refer to them as class states—simply
by averaging the embedded quantum states

ρ±(θ) = 1

|S±|
∑
x∈S±

|φθ (x)〉〈φθ (x)| (A1)

= 1

|S±|
∑
x∈S±

φθ (x). (A2)

Here, we denoted the density matrix of the embedding as
φθ (x) = |φθ (x)〉〈φθ (x)|. The state ρ± models an approach

042431-12

TRAINING QUANTUM EMBEDDING KERNELS … PHYSICAL REVIEW A 106, 042431 (2022)

where the the encoded datapoint x is uniformly sampled from
S±.

Reference [39] suggests to optimize the embedding |φθ (x)〉
by maximizing the Hilbert-Schmidt distance of the class
states, i.e.,

P(θ) = Tr{[ρ+(θ) − ρ−(θ)]2}. (A3)

Its relation to kernel-target alignment becomes apparent if
we rewrite the numerator of the kernel-target alignment—the
polarity—in terms of these density matrices. We therefore
consider the polarity for imbalanced datasets, where we
rescale the labels with the number of datapoints in the class.
The rescaled labels are denoted as ŷ j :

N∑
i, j=1

ŷiŷ jkθ (xi, x j) =
N∑

i, j=1

ŷiŷ j〈φθ (xi), φθ (x j)〉 (A4)

=
〈∑

i=1

ŷiφθ (xi),
∑
i=1

ŷiφθ (xi)

〉
(A5)

=
∥∥∥∥∥∑

i=1

ŷiφθ (xi)

∥∥∥∥∥
2

. (A6)

The polarity is therefore nothing else but the squared norm
of

∑
i=1 ŷiφθ (xi), which is a weighted sum of the embedded

datapoints. For QEKs, this is equal to the difference of the
two class matrices introduced above:∑

i=1

ŷiφθ (xi) =
∑

x+∈S+

φθ (x+)

|S+| −
∑

x−∈S−

φθ (x−)

|S−| (A7)

= ρ+(θ) − ρ−(θ). (A8)

This means that the polarity is equal to the Hilbert-Schmidt
distance introduced in Ref. [39], as found in Eq. (A3)

As already noted in Ref. [39], the polarity can be rewritten
as

P(θ) = Tr{ρ+(θ)2 + ρ−(θ)2 − 2ρ+(θ)ρ−(θ)}. (A9)

Consequently, increasing the polarity translates to an increase
in the purity of the class states Tr{ρ±(θ)}2, thereby encourag-
ing points in the dataset to cluster closer together in feature
space. At the same time, this cost function decreases the
overlap of the two data embedding states, thereby encouraging
them to reside in different corners of the Hilbert space.

However, we are of the opinion that the kernel-target
alignment—representing the normalized polarity—is a mea-
sure that is easier to interpret and more accessible to numerical
optimization than the pure polarity. Reference [39] proposes
a classifier where the overlap of the embedded datapoint with
the two class states is computed. The label of the class state
with the larger overlap is then assigned to the new datapoint.
This corresponds to a kernelized nearest-centroid classifica-
tion. We conclude that the use of the embedding in a support
vector machine allows for more sophisticated decision bound-
aries than the method proposed in Ref. [39].

APPENDIX B: DATASET DETAILS

In this Appendix, we will discuss the details of the datasets
used.

1. Donut dataset

The symmetric donuts dataset is an artificial dataset that
has 60 training and 60 test datapoints. The datapoints are
generated by sampling points uniformly at random from a
circle of radius

√
2/2 and then labeling them according to

whether they fall within an inner circle of radius 1/2 or
without. We do this one time centering the circles on the x
axis, on the point (1,0), giving the inner points label 1 and
the outer ones label −1. Next, we repeat the process for cir-
cles centered about the point (−1, 0) and this time exchange
the labels: the inner point class is now −1 and the outer
+1. This way we obtain a dataset contained in the domain
[−(3 + √

2)/2, (3 + √
2)/2] × [−√

2/2,
√

2/2].

2. Checkerboard dataset

The checkerboard dataset contains 30 train and and 30 test
datapoints, and represents a 4 × 4 grid of alternating classes,
where the elements of the checkerboard are drawn from a
continuous uniform distribution centered in the tiles of the
checkerboard. In particular, we defined a 4 × 4 grid in the
domain [0, 1]2 with sites i, j at coordinates [(2i + 1)/8, (2 j +
1)/8] to prevent overlap between centroids and spilling out
of the fixed domain. Next, we sampled points uniformly cen-
tered about each grid site. At the end, we assigned alternating
classes to each of the sites, and finished by assigning all
swarms of points the class corresponding to their centroid.

APPENDIX C: DETAILS ON POST-PROCESSING
METHODS

1. Runtimes and output properties

The post-processing methods we introduced in Secs. IV D
and IV B differ in their classical and quantum computational
cost and in the properties of the output matrix.

The regularization methods R-TIK and R-THR require
the computation of the smallest eigenvalue and of the full
eigenvalue decomposition respectively, which has classical
complexity O(n3) with naive methods but more realisti-
cally scales like matrix multiplication for relevant sizes with
O(n2.8) (Strassen algorithm [64]).5 The worst case scaling
for R-SDP is O(n3.8), again assuming the Strassen algorithm
for matrix multiplication and considering that we use n con-
straints to fix the diagonal entries [64,65]. In our experiments
on datasets with 60 datapoints, the former two methods had
negligible computational cost, whereas R-SDP took 0.5 s on
average for this rather small matrix. In addition to this large
difference for the used matrix size, some additional tests for
larger random matrices confirmed a significantly worse scal-
ing of the cost for R-SDP compared to R-TIK and R-THR.

As they only act on the spectrum of the kernel matrix, R-
TIK and R-THR preserve its eigenbasis, a potentially relevant
property for the classification task. On the contrary, R-SDP
does not preserve the eigenbasis but ensures that the output
kernel matrix has the correct diagonal entries.

5If this was to be a bottle neck, then the full matrix multiplication
may be skipped when multiplying the kernel matrix with vectors
only.

042431-13

THOMAS HUBREGTSEN et al. PHYSICAL REVIEW A 106, 042431 (2022)

For the proposed mitigation methods, additional quantum
computation is required to determine the diagonal entries,
which in turn are used to estimate the depolarizing survival
probabilities. The number of required entries is 1, nmean ∈
[1, n], and n for M-SINGLE, M-MEAN, and M-SPLIT, re-
spectively, which then should be measured as often as the
other matrix entries. While estimating the probabilities has
negligible cost, the modification of the matrix requires O(n2)
classical computation resources.6

Considering Eq. (38), we see that our mitigation methods
estimate the survival probability λi to be larger than 1 for
K (dev)

ii > 1 and to be imaginary if K (dev)
ii < 2−N , both being

unreasonable estimates. The first will only ever occur if a pre-
vious post-processing method increased the diagonal element
K (dev)

ii too far, as a QPU itself will not output measurement
probabilities above 1. The second may occur in the presence
of very strong noise that suppresses the exact value of 1 to
2−N , which would presumably imply the QPU output to be
impracticably flawed anyways. For M-SINGLE (M-MEAN),
the same reasoning holds for the single measured entry (for
the average of the considered diagonal entries), i.e., in partic-
ular for M-MEAN we are unlikely to run into either of the
above problems.

Even if the estimated survival probabilities λi lie in the
physically meaningful range [0,1], the mitigation might still
produce kernel matrix entries that are not valid probabilities
and thus can impossibly be the result of a real QEK evaluation.
For a given noisy matrix entry K (dev)

i j , this happens if

K (dev)
i j �∈ [ε, λiλ j + ε], (C1)

where we abbreviated ε = 2−N (1 − λiλ j) and the estimated
probabilities fulfill λi = λ j for M-SINGLE and M-MEAN.
Note that λi ≈ 1 and ε � 1 for reasonable survival rates.

In conclusion, even though there are extreme cases in
which our methods might transform the noisy matrix into an
invalid kernel matrix, we do not expect these problems to
play any role because such extreme noise levels likely would
render the QPU output useless.

Note that the error bound in operator distance derived in
Sec. IV C is valid for the deviation of the statistical estimator
from the noiseless kernel matrix K or from the device-noisy
kernel matrix K (dev). When applying post-processing methods
however, this bound may not transfer to the output K (post) in
general. Consequently, while being designed to counter device
and finite sampling noise, the analytic error bound might
become worse.

For R-THR, however, this bound is provably maintained
[66]: Splitting the indefinite matrix K̄M into the difference of
two positive semidefinite matrices K+ and K− with disjoint
support, identifying R-THR(K̄M) = K+ and calculating the

6This may again be improved if we are not interested in the fully
computed matrix but, e.g., in multiplying it with vectors, should it
ever become a relevant resource requirement.

distance between the approximand7 and K̄M yields

K̄M =: K+ − K−, (C2)

‖K − K̄M‖∞ = ‖K − K+ + K−‖∞ (C3)

= max
‖x‖2=1

[xT (K − K+)2x

+xT (KK− + K−K + K2
−)x︸ ︷︷ ︸

�0

] (C4)

� max
‖x‖2=1

xT (K − K+)2x (C5)

= ‖K − K+‖∞ (C6)

= ‖K − R-THR(K̄M)‖∞, (C7)

where we used the positive semidefiniteness of K− and that
K±K∓ = 0 due to the disjoint support.

2. Comparison of post-processing strategies

There are many combinations of the discussed post-
processing techniques to choose from to counter both device
noise and finite sampling noise. We will consider the follow-
ing subset of combinations:

First, we apply a regularization R1, second, we perform
device noise mitigation M and third, we regularize again with
R2. For each step we include the option to not modify K (dev)

at all (Id).
For the two regularization steps R1,2, we may apply

Tikhonov regularization (R-TIK), thresholding (R-THR) or
the semidefinite program (SDP) that fixes the diagonal while
thresholding (R-SDP), see Sec. IV D. For the mitigation step,
we choose from estimating a single survival probability based
on a single (M-SINGLE) or the mean (M-MEAN) diagonal
entry of K̄M , or estimating survival probabilities per feature
embedding (M-SPLIT), see Sec. IV B.

Naively, this yields 43 = 64 combinations when including
the trivial transformation Id, out of which some are identi-
cal, e.g., Id, Id, R and R, Id, Id. In addition, there are special
combinations in which methods effectively act like Id: First,
combinations of the form SDP, M, R2 for which M already
receives a positive semidefinite input matrix with correct diag-
onal entries and thus will estimate the survival probability to
be 1. Second, some combinations without mitigation (namely,
TIK/THR, Id, TIK/THR) in which R2 would be redundant.
Here we already excluded the combinations obeying the first
pattern. Excluding duplicates and these “reducible” combina-
tions, we obtain 42 reasonable, distinct strategies (including
Id, Id, Id) and for each of the outcomes K (post) we compute the
kernel alignment [see Eq. (27)] with the noiseless matrix K .

In Fig. 6 in the main text we showed the best of the 42
combinations for each pair of noise parameters M and λ0.
However, to obtain a clear analysis, we reduced the set of
combinations to the ones that performed best in a wide range
of noise parameters. This manual filtering step changed the
optimal post-processing method for 22 configurations, but

7We here show the calculation when approximating K . It has to be
replaced by K (dev) accordingly when approximating the device-noisy
matrix by sampling.

042431-14

TRAINING QUANTUM EMBEDDING KERNELS … PHYSICAL REVIEW A 106, 042431 (2022)

(a)

(b)

(c)

FIG. 9. Comparison of the relative improvement q for all reg-
ularization methods that are best for at least ten configurations of
shots M and base survival probabilities λ0, shown for three different
shot numbers and averaged over 100 kernel matrix samples. Note
the differing q axes and that missing post-processing methods either
performed poorly or did not converge at all due to large noise.
We include the strategy M-SPLIT, R-SDP in addition to allow the
comparison to the hardware results. The transition to negative q for a
variety of methods is shifted to stronger device noise when increasing
M, as also is visible in Fig. 6 in the main text. For M → ∞, the
transition is no longer within the range of investigated λ0.

only reduced the attained performance by 0.76% on average
and at most 0.94%. 19 of these changes exchanged the slightly
more complex combination R-THR, M-MEAN, R-SDP at
M = 3000 for the combination M-MEAN, R-SDP.

The behavior of the regularization methods is shown in
more detail for M = 100, M = 3000, and M → ∞ in Fig. 9.
We observe that while M-MEAN, R-SDP, which was iden-
tified as best approach for low device noise, outperforms all
other methods for M = 100, there are several equally per-
forming methods for M = 3000. This justifies the reduction of
the best-performing methods discussed above. For the analytic
case M → ∞, we observe different methods to perform best,
as seen in the first row of Fig. 6 in the main text. However,
even in this case, the combination M-MEAN, R-SDP per-
forms almost as well as these methods, making it a strong
candidate for a wide range of noise scenarios.

To allow for comparison to the hardware results in
Sec. IV F, we included the strategy M-SPLIT, R-SDP in
Fig. 9. We observe that it does not perform as well as M-
MEAN, R-SDP and does not even yield valid kernel matrices

for large device noise, with both effects being more severe for
small shot numbers. This is in contrast to the hardware results,
for which this method performs very well for shot numbers up
to 175.

APPENDIX D: SIMULATING DEVICE NOISE
BY DEPOLARIZATION

For the simulation of device noise in Sec. IV E we use
the following noise model: After each unitary gate we apply
single-qubit depolarizing noise channels Dλ to each qubit the
gate acted on [see Eq. (30) with N = 1].

Recalling the discussion in Sec. IV A, we remark that the
qubitwise depolarizing channel does commute with single-
qubit but not with multiqubit gates like the ring of controlled
gates in our embedding circuit. In this sense our model
properly captures the case in which the device noise invali-
dates the adjoint approach, potentially destroying the positive
semidefiniteness of the kernel matrix, and our post-processing
strategies are challenged to correct this deviation.

The base survival probability λ0 quantifies the overall noise
strength. However, it is reasonable to expect that the noise
strength for a specific gate on a QPU depends on the duration
of the pulses that implement the gate, leading to different
effective noise levels for different embedded datapoints. To
capture this dependence, we rescale the base survival proba-
bility λ0 for a rotation gate about the angle θ according to

λ =
(

1 − θ

2π

)
+ λ0

θ

2π
(D1)

and fix the survival probability of the Hadamard and idling
gate to (1 + λ0)/2 and (1 + 3λ0)/4, respectively.

We do not simulate any device readout error explicitly but
assume the presented implementation of depolarizing noise to
represent the full device noise closely enough. This assump-
tion seems to be valid considering our results in Secs. IV E
and IV F and the accordance between them.

APPENDIX E: MEASUREMENT PRECISION OF KERNEL
TARGET ALIGNMENT

In this section we calculate the scaling of the number of
measurements required to obtain the kernel target alignment to
a given precision ε, complementing the analysis in Sec. IV C.

First, compute the partial derivative

∂TA(K)

∂Kkl
= ykyl

n‖K‖F
− 〈K, K∗〉F Kkl

n‖K‖3
F

, (E1)

which squares to(
∂TA(K)

∂Kkl

)2

= 1

n2‖K‖2
F

+ TA(K)2

‖K‖4
F

K2
kl (E2)

−2
TA(K)

n‖K‖3
F

ykylKkl . (E3)

Note that the norm of K is bounded from below via

‖K‖2
F =

∑
i j

K2
i j =

∑
i

K2
ii +

∑
i �= j

K2
i j � n. (E4)

We furthermore know that yk ∈ {1,−1}, Kkl ∈ [0, 1] as well
as TA(K) ∈ [0, 1], and hence we may bound the above

042431-15

THOMAS HUBREGTSEN et al. PHYSICAL REVIEW A 106, 042431 (2022)

expression by [
∂TA(K)

∂Kkl

]2

� 1

n3
+ 1

n2
+ 2

n5/2
. (E5)

The statistical variance of TA(K) hence is

σ 2
TA =

∑
kl

[
∂TA(K)

∂Kkl

]2

σ 2
kl (E6)

�
(

1

n2
+ 2

n5/2
+ 1

n3

) ∑
kl

σ 2
kl (E7)

= O

(
1

M

)
, (E8)

where we used that the statistical variance of each kernel
entry is O(1/M). Note that we only kept the leading order
contribution in n, in accordance with the asymptotic analysis
in Sec. IV C. In conclusion, the required number of shots per
kernel entry scales as O(1/ε2), the total number of shots as
O(n2/ε2).

TABLE I. Overview of the kernel hours required by our numeri-
cal simulations and their corresponding estimated CO2 emissions.

Numerical simulations

Total kernel hours [h] 7250
Thermal design power per kernel [W] 4.6
Total energy consumption simulations [kWh] 32.8
Average emission of CO2 in Germany/USA [kg/kWh] 0.47
Total CO2-emission for numerical simulations [kg] 15.5
Estimated CO2-emission for QPU usage [kg] 21.4
Were the emissions offset? Yes
Total CO2-emission [kg] 36.9

APPENDIX F: CO2 EMISSION TABLE

We endorse the scientific CO2nduct initiative [63] and
have listed all carbon costs resulting from this work in
Table I.

[1] O. Vinyals et al., Grandmaster level in StarCraft II using multi-
agent reinforcement learning, Nature 575, 350 (2019).

[2] T. B. Brown et al., Language models are few-shot learners,
arXiv:2005.14165.

[3] A. W. Senior et al., Improved protein structure prediction using
potentials from deep learning, Nature 577, 706 (2020).

[4] F. Arute et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[5] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J.
Coles, Variational quantum algorithms, Nat. Rev. Phys. 3, 625
(2021).

[6] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann,
T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-
Guzik, Noisy intermediate-scale quantum (NISQ) algorithms,
Rev. Mod. Phys. 94, 015004 (2022).

[7] M. Schuld and F. Petruccione, Supervised Learning with Quan-
tum Computers, Quantum Science and Technology (Springer
International Publishing, Cham, 2018).

[8] P. Wittek, Quantum Machine Learning: What Quantum Comput-
ing Means to Data Mining, Elsevier Insights (Elsevier Science,
Amsterdam, 2014).

[9] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum principal
component analysis, Nat. Phys. 10, 631 (2014).

[10] M. Schuld, R. Sweke, and J. J. Meyer, Effect of data encoding
on the expressive power of variational quantum-machine-
learning models, Phys. Rev. A 103, 032430 (2021).

[11] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning
with quantum enhanced feature spaces, Nature 567, 209 (2019).

[12] M. Schuld and N. Killoran, Quantum Machine Learning in
Feature Hilbert Spaces, Phys. Rev. Lett. 122, 040504 (2019).

[13] T. Kusumoto, K. Mitarai, K. Fujii, M. Kitagawa, and M.
Negoro, Experimental quantum kernel machine learning with
nuclear spins in a solid, npj Quantum Inf. 7, 94 (2021).

[14] K. Bartkiewicz, C. Gneiting, A. Cernoch, K. Jiráková, K.
Lemr, and F. Nori, Experimental kernel-based quantum ma-
chine learning in finite feature space, Sci. Rep. 10, 12356
(2020).

[15] C. Blank, D. K. Park, J.-K. K. Rhee, and F. Petruccione, Quan-
tum classifier with tailored quantum kernel, npj Quantum Inf.
6, 41 (2020).

[16] H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S.
Boixo, H. Neven, and J. R. McClean, Power of data in quantum
machine learning, Nat. Commun. 12, 2631 (2021).

[17] E. Peters, J. Caldeira, A. Ho, S. Leichenauer, M. Mohseni, H.
Neven, P. Spentzouris, D. Strain, and G. N. Perdue, Machine
learning of high dimensional data on a noisy quantum proces-
sor, arXiv:2101.09581.

[18] M. Schuld, Quantum machine learning models are kernel meth-
ods, arXiv:2101.11020.

[19] S. Jerbi, L. J. Fiderer, H. P. Nautrup, J. M. Kubler, H. J. Briegel,
and V. Dunjko, Quantum machine learning beyond kernel meth-
ods, arXiv:2110.13162.

[20] Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust
quantum speed-up in supervised machine learning, Nat. Phys.
17, 1013 (2021).

[21] B. Schölkopf and A. J. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond,
Adaptive Computation and Machine Learning (MIT Press,
Cambridge, MA, 2002).

[22] B. Schölkopf, A. Smola, and K.-R. Müller, Kernel principal
component analysis, in Proceedings of the International Con-
ference on Artificial Neural Networks (ICANN’97), Vol. 1327,
edited by W. Gerstner, A. Germond, M. Hasler, and J.-D.
Nicoud (Springer, Berlin, 1997), pp. 583–588.

[23] C. Saunders, A. Gammerman, and V. Vovk, Ridge regres-
sion learning algorithm in dual variables, in Proceedings
of the 15th International Conference on Machine Learn-
ing(ICML’98) (Morgan Kaufmann, San Francisco, CA, 1998),
pp. 515–521.

042431-16

https://doi.org/10.1038/s41586-019-1724-z
http://arxiv.org/abs/arXiv:2005.14165
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1038/nphys3029
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1038/s41534-021-00423-0
https://doi.org/10.1038/s41598-020-68911-5
https://doi.org/10.1038/s41534-020-0272-6
https://doi.org/10.1038/s41467-021-22539-9
http://arxiv.org/abs/arXiv:2101.09581
http://arxiv.org/abs/arXiv:2101.11020
http://arxiv.org/abs/arXiv:2110.13162
https://doi.org/10.1038/s41567-021-01287-z

TRAINING QUANTUM EMBEDDING KERNELS … PHYSICAL REVIEW A 106, 042431 (2022)

[24] M. Fanizza, M. Rosati, M. Skotiniotis, J. Calsamiglia, and
V. Giovannetti, Beyond the Swap Test: Optimal Estimation
of Quantum State Overlap, Phys. Rev. Lett. 124, 060503
(2020).

[25] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum
Fingerprinting, Phys. Rev. Lett. 87, 167902 (2001).

[26] L. Cincio, Y. Subaşı, A. T. Sornborger, and P. J. Coles, Learn-
ing the quantum algorithm for state overlap, New J. Phys. 20,
113022 (2018).

[27] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many prop-
erties of a quantum system from very few measurements, Nat.
Phys. 16, 1050 (2020).

[28] S. T. Flammia and Y.-K. Liu, Direct Fidelity Estimation from
Few Pauli Measurements, Phys. Rev. Lett. 106, 230501 (2011).

[29] T. Wang, D. Zhao, and S. Tian, An overview of kernel alignment
and its applications, Artific. Intell. Rev. 43, 179 (2015).

[30] C. Cortes, M. Mohri, and A. Rostamizadeh, Algorithms for
learning kernels based on centered alignment, J. Mach. Learn.
Res. 13, 795 (2012).

[31] Y. Baram, Learning by kernel polarization, Neural Comput. 17,
1264 (2005).

[32] T. Wang, S. Tian, H. Huang, and D. Deng, Learning by local
kernel polarization, Neurocomputing 72, 3077 (2009).

[33] L. Wang, Feature selection with kernel class separability, IEEE
Trans. Pattern Anal. Mach. Intell. 30, 1534 (2008).

[34] Huilin Xiong, M. N. S. Swamy, and M. O. Ahmad, Optimizing
the kernel in the empirical feature space, IEEE Trans. Neural
Netw. 16, 460 (2005).

[35] C. H. Nguyen and T. B. Ho, An efficient kernel matrix evalua-
tion measure, Pattern Recogn. 41, 3366 (2008).

[36] N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor, On
Kernel Target Alignment, in Innovations in Machine Learning:
Theory and Applications, Studies in Fuzziness and Soft Com-
puting, edited by D. E. Holmes and L. C. Jain (Springer, Berlin,
2006).

[37] J. Kandola, J. Shawe-Taylor, and N. Cristianini, Optimizing
Kernel Alignment over Combinations of Kernels, Tech. Rep.
121, Electronics & Computer Science (2002), https://eprints.
soton.ac.uk/259746/.

[38] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New J. Phys. 18, 023023 (2016).

[39] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran,
Quantum embeddings for machine learning, arXiv:2001.03622
(2020).

[40] S. Moro, P. Cortez, and P. Rita, A data-driven approach to
predict the success of bank telemarketing, Decis. Supp. Syst.
62, 22 (2014).

[41] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I.
Latorre, Data re-uploading for a universal quantum classifier,
Quantum 4, 226 (2020).

[42] Github code repository, https://github.com/thubregtsen/qhack
(2021).

[43] K. Temme, S. Bravyi, and J. M. Gambetta, Error Mitigation for
Short-Depth Quantum Circuits, Phys. Rev. Lett. 119, 180509
(2017).

[44] S. Endo, S. C. Benjamin, and Y. Li, Practical Quantum Er-
ror Mitigation for Near-Future Applications, Phys. Rev. X 8,
031027 (2018).

[45] A. Lowe, M. H. Gordon, P. Czarnik, A. Arrasmith, P. J. Coles,
and L. Cincio, Unified approach to data-driven quantum error
mitigation, Phys. Rev. Res. 3, 033098 (2021).

[46] T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, and W. J.
Zeng, Digital zero noise extrapolation for quantum error
mitigation, in Proceedings of the IEEE International Conference
on Quantum Computing and Engineering (QCE’20) (IEEE,
Piscataway, NJ, 2020), pp. 306–316.

[47] A. Strikis, D. Qin, Y. Chen, S. C. Benjamin, and Y. Li, Learning-
based quantum error mitigation, PRX Quantum 2, 040330
(2021).

[48] B. Koczor, Exponential Error Suppression for Near-Term Quan-
tum Devices, Phys. Rev. X 11, 031057 (2021).

[49] W. J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N. C. Rubin,
S. Boixo, K. B. Whaley, R. Babbush, and J. R. McClean, Virtual
Distillation for Quantum Error Mitigation, Phys. Rev. X 11,
041036 (2021).

[50] R. Latala, Some estimates of norms of random matrices, Proc.
Am. Math. Soc. 133, 1273 (2005).

[51] R. Vershynin, Introduction to the nonasymptotic analysis of
random matrices, arXiv:1011.3027.

[52] Z. D. Bai and Y. Q. Yin, Limit of the smallest eigenvalue of a
large dimensional sample covariance matrix, Ann. Probab. 21,
1275 (1993).

[53] V. Roth, J. Laub, M. Kawanabe, and J. Buhmann, Optimal clus-
ter preserving embedding of nonmetric proximity data, IEEE
Trans. Pattern Anal. Mach. Intell. 25, 1540 (2004).

[54] A. N. Tikhonov, On the stability of inverse problems, Proc.
USSR Acad. Sci. 39, 195 (1943).

[55] T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K.
Obermayer, Classification on pairwise proximity data, in Pro-
ceedings of the 1998 Conference on Advances in Neural
Information Processing Systems II (MIT Press, Cambridge, MA,
1999), pp. 438–444.

[56] A. Kandala, K. Temme, A. D. Corcoles, A. Mezzacapo, J. M.
Chow, and J. M. Gambetta, Extending the computational reach
of a noisy superconducting quantum processor, Nature 567, 491
(2019).

[57] C. Schwemmer, L. Knips, D. Richart, H. Weinfurter, T.
Moroder, M. Kleinmann, and O. Gühne, Systematic Errors in
Current Quantum State Tomography Tools, Phys. Rev. Lett.
114, 080403 (2015).

[58] X. Wang, Y. Du, Y. Luo, and D. Tao, Towards understanding
the power of quantum kernels in the NISQ era, Quantum 5, 531
(2021).

[59] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, Ge-
ometric deep learning: Grids, groups, graphs, geodesics, and
gauges, arXiv:2104.13478.

[60] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[61] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Cost
function dependent barren plateaus in shallow parametrized
quantum circuits, Nat. Commun. 12, 1791 (2021).

[62] A. Uvarov and J. Biamonte, On barren plateaus and cost
function locality in variational quantum algorithms, J. Phys. A:
Math. Theor. 54, 245301 (2021).

[63] R. Sweke, P. Boes, N. Ng, C. Sparaciari, J. Eisert, and M.
Goihl, Transparent reporting of research-related greenhouse gas

042431-17

https://doi.org/10.1103/PhysRevLett.124.060503
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1088/1367-2630/aae94a
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/PhysRevLett.106.230501
https://doi.org/10.1007/s10462-012-9369-4
https://doi.org/10.1162/0899766053630341
https://doi.org/10.1016/j.neucom.2009.03.014
https://doi.org/10.1109/TPAMI.2007.70799
https://doi.org/10.1109/TNN.2004.841784
https://doi.org/10.1016/j.patcog.2008.04.005
https://eprints.soton.ac.uk/259746/
https://doi.org/10.1088/1367-2630/18/2/023023
http://arxiv.org/abs/arXiv:2001.03622
https://doi.org/10.1016/j.dss.2014.03.001
https://doi.org/10.22331/q-2020-02-06-226
https://github.com/thubregtsen/qhack
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevResearch.3.033098
https://doi.org/10.1103/PRXQuantum.2.040330
https://doi.org/10.1103/PhysRevX.11.031057
https://doi.org/10.1103/PhysRevX.11.041036
https://doi.org/10.2307/4097777
http://arxiv.org/abs/arXiv:1011.3027
https://doi.org/10.1214/aop/1176989118
https://doi.org/10.1109/TPAMI.2003.1251147
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1103/PhysRevLett.114.080403
https://doi.org/10.22331/q-2021-08-30-531
http://arxiv.org/abs/arXiv:2104.13478
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1088/1751-8121/abfac7

THOMAS HUBREGTSEN et al. PHYSICAL REVIEW A 106, 042431 (2022)

emissions through the scientific CO2nduct initiative, Commun.
Phys. 5, 150 (2022).

[64] V. Strassen, Gaussian elimination is not optimal, Numer. Math.
13, 354 (1969).

[65] Y. T. Lee, A. Sidford, and S. C.-w. Wong, A faster cutting
plane method and its implications for combinatorial and convex

optimization, in Proceedings of the IEEE 56th Annual Sympo-
sium on Foundations of Computer Science (IEEE, Piscataway,
NJ, 2015), pp. 1049–1065.

[66] M. Guţă, J. Kahn, R. Kueng, and J. A. Tropp, Fast state tomog-
raphy with optimal error bounds, J. Phys. A: Math. Theor. 53,
204001 (2020).

042431-18

https://doi.org/10.1038/s42005-022-00930-2
https://doi.org/10.1007/BF02165411
https://doi.org/10.1088/1751-8121/ab8111

