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Generation of cat states by a weak parametric drive and a transitionless tracking algorithm
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In this paper, we present an experimentally feasible protocol to generate the cat states in the microwave
resonator coupled to a superconducting qubit. The setup employs a detuned, time-dependent parametric drive to
squeeze the resonator mode so that an adjustable qubit-resonator coupling strength can be obtained. Therefore,
based on the transitionless tracking algorithm, we can design control pulses to generate the qubit-resonator en-
tangled states with high fidelity in the laboratory frame. Then, the even and odd cat states can be further obtained
by performing measurement on the superconducting qubit. Compared to the scheme [Chen et al., Phys. Rev.
Lett. 126, 023602 (2021)], the present protocol is realized in the regime of weak parametric drive. In the case,
squeezing-induced noise can be reduced so that the fidelity of the generated state can be improved. Numerical
simulations indicate that the present protocol is well executed under experimentally available parameters. Thus,
the protocol is feasible with the present state of the art in microwave superconducting circuits.
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I. INTRODUCTION

Superconducting quantum circuits, providing an ideal
platform in the fields of quantum information, quantum
computation, and quantum simulation [1–17], have received
extensive attention. These solid-state circuits show excellent
properties for realizing quantum coherent interactions with
high sufficiently controllability and scalability [18,19]. To
date, remarkable progress has been made towards improving
the qubit coherence and circuit complexity [20–24]. In addi-
tion, the long coherence time of superconducting resonators
has been demonstrated in recent experiments [25,26]. Due to
these advantages, many schemes have been proposed to gener-
ate kinds of nonclassical states of superconducting resonators
[9], for instance, Fock states [27,28], cat states [29–31], and
arbitrary quantum superposition states [32].

Among the above nonclassical states [27–32], cat states
[33] formed by the superpositions of two coherent states
with the same amplitudes but opposite phases, are one of
important nonclassical states. In general, cat states with large
sizes not only provide the test of the fundamentals of quan-
tum physics [34,35], but also have extensive applications in
modern quantum technologies, such as quantum information
processing and quantum metrology [36–42]. For example, cat
states with large sizes can be utilized as qubits against photon
dephasing [43]. Therefore, they are very promising for the
fault-tolerant quantum computation [44–46]. However, high-
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fidelity preparation of cat states is still challenging because of
their sensitivity to photon loss. For example, Leroux et al. adi-
abatically prepared the cat states in the squeezed-light frame
[31]. In the scheme, the change in control parameters must be
slow to meet the adiabatic limit in the adiabatic control, which
usually leads to a long-time evolution. Such a long-evolution
time inevitably aggravates the effect of dissipation on the
fidelity of target state because decoherences, noises, or losses
would spoil the intended dynamics. Therefore, shortening the
evolution time by accelerating the system dynamics towards
the target states can reduce the influence of the decoherences,
noises, or losses on the fidelity of the final cat states [47].

To realize the fast, robust, high fidelity, and reliable gen-
eration of the cat states, some researchers have suggested
using the shortcuts-to-adiabatic (STA) methods [48–56] to
speed up the evolution process. The basic idea of the STA
method is mimicking adiabatic dynamics beyond the adiabatic
limit to achieve rapid system evolution [57–71]. Until now,
several protocols have been proposed for the generation of
cat states by STA methods [72–74]. For example, following
the proposal by Leroux et al. [31], Chen et al. exploited a
parametric amplification to generate the cat states via STA
dynamics [74]. In the scheme, the strong light squeezing is
necessary to generate the cat states. However, it is still a
challenge to generate strong parametric drives with current
experimental technology. Besides, the strong squeezing of
the resonator mode can excite the squeezing-resonator mode
and cause significant squeezing-induced noise [75–80]. Such
noise will reduce the fidelity of the generated cat states.

In this paper, to overcome the flaw of the scheme in
Ref. [74], we propose a protocol to generate the cat states

2469-9926/2022/106(4)/042430(11) 042430-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4973-3278
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.042430&domain=pdf&date_stamp=2022-10-20
https://doi.org/10.1103/PhysRevLett.126.023602
https://doi.org/10.1103/PhysRevA.106.042430


SHUAI LIU et al. PHYSICAL REVIEW A 106, 042430 (2022)

using a weak parametric drive inside a resonator. In the proto-
col, the effective Rabi Hamiltonian is obtained by suppressing
the undesired interaction terms using the external classical
driving field on the qubit. Then, by constructing a STA pas-
sage with a transitionless tracking algorithm [49], the cat
states can be accurately generated along the instantaneous
eigenstate of the Rabi Hamiltonian. By performing measure-
ment on the superconducting qubit, the microwave resonator
collapses to the even or odd cat states. Note that the idea of
adding external classical driving field on the qubit originates
from the paper [74]. However, we present an extensive the-
oretical analysis of this idea and propose an experimentally
feasible protocol to generate the cat states in the microwave
resonator in the regime of weak parametric drive. Compared
to the scheme in Ref. [74], the required squeezing intensity
in the current protocol is significantly decreased at the ex-
pense of an increased physical coupling strength between the
qubit and the resonator. As is well known, it is easier for
experiments to realize a strong classical drive than a strong
parametric drive. Therefore, the current protocol can be easier
realized compared to the one in Ref. [74]. Moreover, because
a strong squeezing of the resonator mode causes significant
noise to the system [74,76–80] to suppress the influence of
such noise, it usually needs to couple the system to squeezing-
vacuum reservoirs in the previous schemes [74,76–80]. In the
present paper, the squeezing-induced noise is negligible due
to the weak parametric drive. Thus, compared to the previ-
ous schemes in Refs. [74,76–80], the present protocol does
not require a squeezing-vacuum reservoir, which reduces the
experimental complexity. Additionally, numerical simulations
indicate that the present protocol is well executed under exper-
imentally available parameters.

The outline of the paper is as follows. In Sec. II, we present
the physical model of the system and derive the effective
Hamiltonian. In Sec. III, we show the generation of the cat
states in the regime of weak parametric drive by transitionless
tracking algorithm. In Sec. IV, we analyze the influence of
single-photon loss and leakage to the excited state on the
present protocol by numerical simulations. Finally, the dis-
cussions and conclusions are presented in Sec. V.

II. PHYSICAL MODEL AND HAMILTONIAN

As illustrated in Fig. 1(a), we consider a superconducting
qubit-resonator coupled system. The corresponding level con-
figuration of the superconducting qubit is shown in Fig. 1(b).
The superconducting resonator can be a transmission line
resonator or a coplanar waveguide resonator; and the super-
conducting qubit can be a transmon or flux qubits [6,7]. The
free Hamiltonian describing the superconducting qubit and
the resonator mode is given by (h̄=1, hereafter)

Hq = ωq

2
σz + ωca†a, (1)

where σz = |e〉〈e| − |g〉〈g|, ωq is the energy gap between the
ground-state |g〉 and the excited state |e〉 of the superconduct-
ing qubit, a (a†) is the annihilation (creation) operator of the
resonator mode, and ωc is the associated resonance frequency
of the fundamental mode of the resonator.

a

b
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FIG. 1. Schematic illustration of the protocol. (a) A super-
conducting resonator embedded with a superconducting quantum
interference device (SQUID) loop is coupled to a superconduct-
ing qubit. The parametric drive of the resonators �1(t ) and �2(t )
can be realized by modulating an external magnetic flux �ext (t ) =
�ext1(t ) + �ext2(t ), where �ext1(t ) and �ext2(t ) are the components
of the flux �ext (t ) and have a phase difference of π/2. (b) The level
configuration of superconducting qubit. Here, the superconducting
qubit is coupled to the resonator with coupling strength λ and detun-
ing � and is driven by the classical field with Rabi frequency �c.

The bare interaction of the qubit-resonator system can be
described by

HI = λ(a + a†)σx, (2)

where σx = |e〉〈g| + |g〉〈e|, and λ denotes the coupling
strength between the superconducting qubit and the resonator.
When λ/ωq � 1 and λ/ωc � 1, under the rotating-wave ap-
proximation, the Hamiltonian in Eq. (2) is reduced to the
extensively studied Jaynes-Cummings model by neglecting
the fast-oscillating terms,

HJC = λa|e〉〈g| + H.c. (3)

In addition, the superconducting resonator is subjected
to two time-dependent parametric drives with the same fre-
quency ωp and different real amplitudes �1(t ) and �2(t ). It
is worth emphasizing that the two drives �1(t ) and �2(t )
have a phase difference of π/2. As shown in Fig. 1(a), the
parametric drive of the resonator can be implemented by
modulating the flux �ext (t ) = �ext1(t ) + �ext2(t ) threading
the resonator-embedded SQUID loop in the middle of the
transmission line [81–85], where �ext1(t ) and �ext2(t ) are the
components of the flux �ext (t ) and have a phase difference of
π/2. Additionally, a classical driving field with amplitude �c

and frequency ωl is imposed on the superconducting qubit to
drive the transition between |e〉 and |g〉.

A direct result of parametric drives for the superconducting
resonator is that it will lead to an exponentially enhanced
qubit-resonator interaction [31,74–80]. A possible physical
implementation of parametric drives is also shown in the
Appendix. To be more specific, the whole Hamiltonian of the
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model is represented as

H (t ) = ωca†a + ωq

2
σz +

[
�c

2
e−iωl t |e〉〈g| + λa†|g〉〈e|

− �1(t ) + i�2(t )

2
a2eiωpt + H.c.

]
. (4)

To work out the effective Hamiltonian, in a proper observation
frame at ωp/2, the Hamiltonian H (t ) in Eq. (4) reads

Hr (t ) = �a†a + �c

2
σx +

[
λa†|g〉〈e|

− �1(t ) + i�2(t )

2
a2 + H.c.

]
, (5)

where � = ωc − ωp/2, and we have assumed ωq = ωl =
ωp/2. Then, we further perform a squeezing transformation
S(t ) = exp[r(t )(a2 − a†2)/2] on the Hamiltonian Hr (t ) in
Eq. (5), where r(t ) is a real squeezing parameter satisfying
tanh[2r(t )] = �1(t )/�. In the squeezing frame determined
by S(t ), the Hamiltonian Hr (t ) in Eq. (5) is derived into the
following terms in the squeezed frame,

Hs(t ) = S†(t )Hr (t )S(t ) + iṠ†(t )S(t )

= HRabi(t ) + H�c + Herr1(t ) + Herr2(t ),

HRabi(t ) = � sech[2r(t )]a†a + λer(t )σx(a† + a)/2,

H�c = �c

2
σx,

Herr1(t ) = − iλe−r(t )σy(a† − a)/2,

Herr2(t ) = [�2(t ) − iṙ(t )](a†2 − a2)/2, (6)

with σy = i(|g〉〈e| − |e〉〈g|). The term HRabi(t ) represents the
Rabi interaction between the superconducting qubit and the
resonator. The term H�c describes a σx driving interaction on
the qubit. The remaining terms Herr1(t ) and Herr2(t ) describe
undesired corrections for the ideal Rabi Hamiltonian HRabi(t ),
which need to be suppressed or eliminated. Obviously, the
term Herr2(t ) can be naturally eliminated by choosing �2(t ) =
iṙ(t ). The term Herr1(t ) can be suppressed by the additional
classical driving field �c. It is worth noting that the additional
classical driving field �c on the qubit is important in the
present protocol, which is different from the scheme [74].
Without the classical drive �c, the term Herr1(t ) needs to
be canceled by using a large �1(t ). To illustrate the rea-
son, we move to the rotating frame with respect to Ux(t ) =
exp(−iH�c t ) so that the Hamiltonian Hs(t ) is transformed to

H ′
s (t ) = HRabi(t ) + H ′

err1(t ),

H ′
err1(t ) = i

λe−r(t )

2
[cos(�ct )σy − sin(�ct )σz](a − a†)

= λe−r(t )

4
[i(ei�ct + e−i�ct )σy − (ei�ct

− e−i�ct )σz](a − a†). (7)

When �c � λe−r(t )/4, the Hamiltonian H ′
err1(t ) can be ne-

glected as a fast-oscillating term. Therefore, the effective
Hamiltonian of the system becomes

Heff (t ) ≈ H ′
s (t ) ≈ � sech[2r(t )]a†a + λs(t )σx(a† + a)/2, (8)

with an exponentially enhanced interaction strength λs(t ) =
λer(t )/2.

III. GENERATING THE CAT STATES IN THE REGIME
OF THE WEAK PARAMETRIC DRIVE

In this section, we focus on the generation of a large-size
cat state in the regime of a weak parametric drive by the
shortcuts-to-adiabatic (STA) method.

A. The ground state of the effective Hamiltonian

For the effective Hamiltonian Heff (t ) in Eq. (8), the qubit-
resonator interaction acts as a time-dependent σx-dependent
linear force on the resonator. This force drives the res-
onator into one of two coherent states | ± α(t )〉 {α(t ) =
λs(t )/� sech[2r(t )]}, conditioned on the state of the qubit in
the σx basis [86]. In this case, the effective Hamiltonian Heff (t )
in Eq. (8) can be diagonalized by the unitary operator [87,88],

U (t ) = | + x〉〈+x|D[−α(t )] + | − x〉〈−x|D[α(t )], (9)

where | ± x〉 are the eigenstates (|g〉 ± |e〉)/
√

2 of Pauli ma-
trix σx and D[α(t )] = eα(t )a†−α∗(t )a is the usual displacement
operator. Therefore, the eigenstates of the effective Hamilto-
nian Heff (t ) in Eq. (8) can be described as a qubit-resonator
entangled state,

|
m(t )〉 = 1
2 (| + x〉D[−α(t )]|m〉 + | − x〉D[α(t )]|m〉), (10)

where m represents the photon number. When the resonator
is initially in the vacuum state, the ground state of Heff (t ) in
Eq. (8) can be further represented as

|
0(t )〉 = 1
2 [| + x〉| − α(t )〉 + | − x〉| + α(t )〉]

= 1
2 [N+|g〉|cat+(t )〉 − N−|e〉|cat−(t )〉]. (11)

Here, N± = √
2 ± 2 exp[−2|α(t )|2] describe the probability

amplitudes of the even cat states |cat+(t )〉 = [| + α(t )〉 +
| − α(t )〉]/N+ and odd cat states |cat−(t )〉 = [| + α(t )〉 − | −
α(t )〉]/N−, respectively.

B. Generating the cat states by the STA method

To generate the cat states, we utilize the STA methods to
fast generate the cat states in the subsection. It should be
emphasized that the realization of the time-dependent cou-
pling strength λs(t ) in Eq. (8) is needed to construct the STA
passage by the transitionless tracking algorithm [49]. The cou-
pling strength λs(t ) in Eq. (8) between the resonator and the
qubit can be adjusted by the time variation of the squeezing
parameter of r(t ) in the squeezing frame.

According to the theory of the transitionless tracking algo-
rithm [49], a counterdiabatic (CD)-driving Hamiltonian,

HCD(t ) = iU̇ (t )U †(t ) = iσx[α̇∗(t )a − α̇(t )a†] (12)

should be added to the effective Hamiltonian Heff (t ) in Eq. (8)
to avoid nonadiabatic transitions between the instantaneous
eigenstates |
m(t )〉 with eigenvalues ξm(t ) of Heff (t ). Hence,
the CD-driving Hamiltonian HCD(t ) can accurately drive the
system to evolve along the eigenstates |
m(t )〉 of Heff (t ). It is
interesting to find that adding the CD-driving Hamiltonian to
the effective Hamiltonian Heff (t ) in Eq. (8) does not change
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the form of the system Hamiltonian, but only changes the
effective qubit-resonator coupling strength. In this case, in-
stead of adding the CD-driving Hamiltonian to the system, we
divide the effective Hamiltonian Heff (t ) in Eq. (8) into two
parts to construct an STA passage [74],

Heff (t ) = H ′
0(t ) + H ′

CD(t ),

H ′
0(t ) = � sech[2r(t )]a†a + σx[�(t )a† + �∗(t )a],

H ′
CD(t ) = λs(t )σx(a† + a) − σx[�(t )a† + �∗(t )a], (13)

where the Hamiltonian H ′
0(t ) is considered as the refer-

ence Hamiltonian with an undetermined parameter �(t ) and
H ′

CD(t ) is considered as the auxiliary Hamiltonian. When the
coherent amplitude α′(t ) satisfies the conditions

α′(t ) = �(t )

� sech[2r(t )]
,

α̇′(t ) = i[λs(t ) − �(t )], (14)

the Hamiltonian H ′
CD(t ) in Eq. (13) can drive the system to

evolve along the eigenstates |
 ′
m(t )〉 of Hamiltonian H ′

0(t ) in
Eq. (13). By eliminating the undetermined parameter �(t )
in Eq. (14), we can obtain the equation of motion for the
coherent-state amplitude α′(t ),

α̇′(t ) = i{λs(t ) − α′(t )� sech[2r(t )]}, (15)

which indicates that the amplitude α′(t ) of coherent state is
determined by the time integration of the squeezing param-
eter r(t ), the coupling strength λs(t ), and the detuning �.
Assuming the initial state of system to be |
 ′

0(0)〉 = |g〉|0〉,
the evolution path along the ground state of the Hamiltonian
H ′

0(t ) in Eq. (13) is (in the squeezed frame)

|
 ′
0(t )〉 = 1

2 [| + x〉| − α′(t )〉 + | − x〉| + α′(t )〉]
= 1

2 [N ′+|g〉|cat′+(t )〉 − N ′−|e〉|cat′−(t )〉], (16)

where N ′± = √
2 ± 2 exp[−2|α′(t )|2] and |cat′±(t )〉 = [| +

α′(t )〉 ± | − α′(t )〉]/N ′±. In the laboratory frame, the evolu-
tion state of the system is

|
 lab
0 (t )〉 = Ux(t )S(t )|
 ′

0(t )〉. (17)

To obtain the target state |
 ′
0(t f )〉 in the laboratory frame,

Ux(t f )S(t f ) = 1 should be chosen, where t f is the final time.
This can be satisfied by choosing r(t f ) = 0 and �ct f =
4kπ (k = 1, 2, 3 . . .). Thus, the final state at the time t f is
|
 lab

0 (t f )〉 = |
 ′
0(t f )〉. Note that the choice of r(t f ) does not

affect the amplitude of coherent state α′(t f ) because α′(t f )
relies on the time integration of r(t ) according to Eq. (15).
By measuring the qubit in the states |g〉 and |e〉, the even and
odd cat states can be further predicted by the corresponding
measurement outcomes.

C. The choice of the optimized squeezing parameter

In the process of generating the target state, the choice of
the time variation of the squeezing parameter r(t ) is crucial,
which directly determines the waveforms of amplitudes �1(t )
and �2(t ) according to Eq. (6). On the one hand, for the con-
venience of experimental implementations, we assume that
the resonator mode is initially in the vacuum state in the labo-
ratory frame. Therefore, the initial value of parameter α′(t )

FIG. 2. The coherent-state amplitude |α′| versus λ/� and rmax.
The parameters are chosen as α′(0) = 0 and t f = 20/�.

will be α′(0) = 0 and r(0) = 0 according to Eqs. (15) and
(17). On the other hand, to obtain cat states in the laboratory
frame, one needs to turn off the parametric drive according to
Eq. (17), i.e., r(t f ) = 0. We should note that it is also challeng-
ing for the current technique to keep strongly squeezing a light
field because the photon loss of the resonator, which is always
present, destroys the essence of squeezing, i.e., two-photon
correlations. Therefore, to reduce such an influence, it is better
to remove the squeezing field as soon as the preparation of cat
states is completed. The present method enables one to freely
design the parametric drive so that the target state can be gen-
erated in the laboratory frame. In addition, pulses with finite
durations are easier to realize in experiments than without. For
the drivings �1(t ) and �2(t ) to have finite durations, we need
the conditions r(0) = r(t f ) = 0 and ṙ(0) = ṙ(t f ) = 0.

To smoothly turn on/off the parametric drive, we choose
a function r(t ) = rmax/{1 + exp[r0 cos(2πt/t f )]} to meet the
requirements of drivings �1(t ) and �2(t ). The waveform
of r(t ) = rmax/{1 + exp[r0 cos(2πt/t f )]} is approximately a
square wave in the center of the operation time and smoothly
vanishes at the boundary. The value of r0 can be adjusted
to make the initial and final values of the squeezing pa-
rameter r(t ) satisfy r(0) = r(t f ) 
 0 and ṙ(0) = ṙ(t f ) 
 0.
Moreover, the parameter rmax controls the maximum value of
the squeezing parameter r(t ). According to Eq. (15), we plot
the coherent amplitude |α′| versus rmax and λ/� by choosing
the parameters r0 = 10 and t f = 20/� in Fig. 2. Correspond-
ingly, the amplitude of classical driving field may be chosen
as �c = π� (k = 5).

In order to produce large-size cat states (|α′| > 2), one can
choose a large squeezing parameter r(t ) and a small coupling
strength to eliminate the undesired term Herr1(t ) in Eq. (6)
[74]. However, choosing a large squeezing parameter may
lead to significant squeezing-induced noise in the presence of
resonator loss. Therefore, it is promising to choose a small
squeezing parameter r(t ) to generate the cat state. The detailed
comparative results of squeezed-induced noise with small and
large squeezing parameters are shown in Sec. IV B. Alter-
natively, a small squeezing parameter r(t ) is allowed in the
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FIG. 3. (a) The final fidelity F (t f ) versus λ/� and squeezing
parameters rmax without a classical driving field, i.e., �c = 0. (b) The
final fidelity F (t f ) versus λ/� and squeezing parameters rmax with
the classical driving field �c = π�.

present protocol because the classical driving field �c is ap-
plied to the superconducting qubit to eliminate the undesired
term Herr1(t ) in Eq. (6). However, when rmax is too small, gen-
erating the same amplitude |α′| > 2 requires a strong coupling
strength λ according to Fig. 2. A larger coupling strength λ

increases the influence of the error term Herr1(t ). According to
Eq. (7), a stronger classical drive field �c is needed to elim-
inate the term Herr1(t ). In order to balance the requirements
of small r(t ) and strong drive field �c, we selected the proper
range of rmax in Fig. 3. To show the effect of the classical
driving field �c, we plot the fidelities F (t f ) of the target state
versus λ/� and rmax with the σx (�c = π�) drive and without
the σx drive (�c = 0) in Fig. 3, where F (t f ) is defined as
F (t f ) = Tr[ρ(t f )|
 ′

0(t f )〉〈
 ′
0(t f )|]. Here, ρ(t f ) represents the

density operator of the system at the time t f . As shown in
Fig. 3, the fidelities F (t f ) are obviously improved by adding
the classical driving field on the qubit, which demonstrates
that the undesired term Herr1(t ) can be effectively suppressed
by the classical driving field �c. In order to compare the
present protocol with the scheme in Ref. [74] more clearly,
we show the final fidelities F (t f ) of generating the target
state with the same coherent amplitude |α′| = 2 versus the
squeezing parameter rmax for different amplitude of classical
driving field �c in Fig. 4. As shown in Fig. 4, the generation of

FIG. 4. The fidelities F (t f ) of generating the target states with
coherent amplitude |α′| = 2 versus the squeezing parameter rmax for
different amplitudes of the classical driving field �c.

high-fidelity cat states can occur in the wide range for rmax in
the present protocol (�c �= 0). However, the scheme (�c = 0)
in Ref. [74] for generating high-fidelity cat states can be
generated only when the value of rmax is large (rmax � 2.3).
Moreover, the required squeezing parameter rmax for the high-
fidelity cat state can be reduced with the increase in amplitude
of classical driving field �c. This is because the undesired
term Herr1(t ) in Eq. (6) is suppressed by adding the classical
driving field �c instead of increasing the maximum value of
squeezing parameter rmax.

Next, how to choose a relatively optimized maximum value
of the squeezing parameter rmax is an important problem. To
date, the reported amplitude of parametric drive is about 0
∼6 MHz in experiment [89]. In view of the experimental
feasibility, we now study the choice of squeezing parameter
rmax. We plot the maximum of amplitudes max[�1(t )] and
max[�2(t )] versus rmax in Fig. 5. We can see that with the
increase in rmax, max[�1(t )] gradually equals to �, shown
in Fig. 5. Compared with max[�1(t )], max[�2(t )] increases
linearly with the increase in rmax. This indicates that a small
squeezing parameter rmax can reduce the required amplitude
of parametric drive. On one hand, when max[�2(t )] is smaller

FIG. 5. The maximum amplitudes max[�1(t )] and max[�2(t )]
versus rmax. We choose the intersection as the optimal point {rmax =
1.26, max[�1(t )] = max[�2(t )] = 0.9871�} .
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FIG. 6. The corresponding squeezing parameter r(t ), Rabi fre-
quencies �1(t ), and �2(t ) versus �t . The parameters rmax = 1.26,
λ = 0.143�, t f = 20/�, and �c = π� are chosen.

than max[�1(t )], the required amplitude can be represented
as max[�1(t )] = m1� (m1 < 1). On the other hand, when
max[�2(t )] is larger than �, the required amplitude can be
represented as max[�2(t )] = m2� (m2 > 1). Under the lim-
itation of amplitude of parametric drive in experiment, the
system evolution time is shorter when max[�2(t )] is smaller
than max[�1(t )]; and a faster evolution can alleviate the in-
fluence of dissipation on the fidelity of target state. Because
the evolution time is represented as t f = 20/�, the evolution
time t f is shorter when the detuning � is larger. However, a
larger � corresponds to a smaller rmax, which requires more
strong classical driving field �c to suppress the term Herr1(t )
in Eq. (6). This may be a challenge in experiments due to
the finite intensities of classical driving fields. Therefore, we
choose an optimal squeezing parameter rmax = 1.26 (the in-
tersection point) as shown Fig. 5. The corresponding control
pulses �1(t ) and �2(t ) and the squeezing parameter r(t )
versus �t are shown in Fig. 6.

IV. NUMERICAL SIMULATIONS

In experiments, there exist some errors affecting the fidelity
of the generation of the cat states. The effects of these disturb-
ing factors are analyzed in the following.

A. Master equation

In practice, the system is inevitably coupled with the envi-
ronment. Therefore, the (environment-induced) decoherence
should be taken into account. The dynamics of the system is
governed by the master equation [90],

ρ̇(t ) = i[ρ(t ), H (t )] + Loρ(t ),

Loρ(t ) = oρ(t )o† − 1
2 [o†oρ(t ) + ρ(t )o†o], (18)

where ρ(t ) is the density operator of the system and o denotes
the Lindblad operator. In the system considered in this paper,
there are three Lindblad operators: the spontaneous emis-
sion operator Lγ = √

γ |g〉〈e|, the dephasing operator Lγ φ =√
γ φ (|e〉〈e| − |g〉〈g|), and the resonator decay operator Lκ =√
κa.
When we map the system dynamics into the time-

dependent squeezed-light frame, the master equation in

TABLE I. The corresponding physical parameters in experiment.

Physical parameters Quantity (units of ωq)

ωl 1
ωp 2
ωc 1.001
max[�1(t )] 1×10−3

max[�2(t )] 1×10−3

� 1.013×10−3

�c 3.183×10−3

λ 1.5×10−4

Eq. (18) becomes

ρ̇s(t ) = i[ρs(t ), Hs(t )] + Lqρs(t ) + Lcρs(t ),

Lqρs(t ) =L(Lγ )ρs(t ) + L(Lγ φ )ρs(t ),

Lcρs(t ) = (Ns + 1)L(Lκ )ρs(t ) + NsL(L†
κ )ρs(t )

− MsL′(Lκ )ρs(t ) − M∗
s L′(L†

κ )ρs(t ), (19)

where the expressions for L(o)ρs and L′(o)ρs are

L(o)ρs(t ) = oρs(t )o† − 1
2 [o†oρs(t ) + ρs(t )o†o],

L′(o)ρs(t ) = oρs(t )o − 1
2 [ooρs(t ) + ρs(t )oo]. (20)

Here, ρs(t ) = S†(t )ρ(t )S(t ) is the density operator of the
system in the squeezing frame, Ns = sinh2[r(t )] character-
izes equivalent thermal noise, and Ms = sinh[r(t )] cosh[r(t )]
characterizes equivalent two-photon correlation noise in the
squeezing frame.

B. Influence of the single-photon loss

When considering the single-photon loss, the coherence of
the cat states may be destroyed, which leads to a statistical
mixture of | + α〉 and | − α〉 [91]. Generally, the relaxation
time and the dephasing time of the superconducting qubit
are about 20–60 μs [92–94]. Here, we choose the relaxation
time of the qubit as γ −1 = 40 μs, and the dephasing time of
the qubit as γ −1

φ = 40 μs. By solving the master equation in
Eq. (19), we study the influence of the single-photon loss in
the resonator on the fidelity of the present protocol (rmax =
1.26) and the protocol without adding classical driving field
�c (rmax = 2.30) in Fig. 7(a). In order to compare with the
case in the presence of loss, we have also shown the fidelities
of the target state in the absence of loss in Fig. 7(a). We can
see from Fig. 7(a) that the present protocol has higher fidelity
of the target state. Considering the decay time of the resonator
κ−1 = 100 μs, the fidelity of target state F (t f ) is 0.9539. Even
when κ−1 = 30 μs, the fidelity F (t f ) still reaches 0.9. To
show the mechanism behind, we plot the parameters Ns and
Ms versus �t in the squeezed frame in Figs. 7(b) and 7(c),
respectively. As shown in Figs. 7(b) and 7(c), the values of
the parameters Ns and Ms (pink-shaded area) in the present
protocol is reduced by about eight times. Thus, it is not needed
for the present protocol to add a squeezing-vacuum reservoir
to eliminate the influence of squeezing-induced noise, which
reduces the experimental complexity. In the above numerical
simulation, we have truncated the photon number m = 60
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FIG. 7. (a) The fidelities F (t f ) of generating the target states with
coherent amplitude |α′| = 2 versus the resonator coherent time κ−1.
The parameters (b) Ns and (c) Ms versus �t in the squeezed frame.
The red-solid lines represent the present protocol (rmax = 1.26) and
the blue-dashed lines represent the scheme (rmax = 2.30) without
adding the classical driving field �c. The maximum amplitude of
max[�1(t )] is chosen as 2π×6 MHz, and other parameters are the
same as that in Fig. 6.

of the superconducting resonator and chosen corresponding
physical parameters (ωq/2π = 6 GHz) in experiment shown
in Table I. To make sure that truncating the Hilbert space of
the superconducting resonator is safe, we show the probability
P = Tr[ρs(t )Iq ⊗ |m〉〈m|] (Iq is identity operator of qubit) of
the Fock state |m〉 in the whole evolution. As shown in Fig. 8,
the Fock state |m > 16〉 is mostly never excited in the evolu-
tion, indicating that truncating the photon number at m = 60
is safe for numerical simulations.

FIG. 8. The probability P = Tr[ρs(t )Iq ⊗ |m〉〈m|] (Iq is identity
operator of qubit) of Fock state |m〉 in the whole evolution.

To further show the quantum character of the target state,
we calculate the Wigner function of the resulting cat state,

W (η) = 2

π
〈DηPD−η〉. (21)

Here, Dη = eηa†−ηa is the displacement operator, P = eiπa†a is
the parity operator, and 〈· · · 〉 represents the expectation value
with respect to the final cat states. By detecting the state of the
superconducting qubit, the even cat state or odd cat state can
be generated depended on the superconducting qubit in states
|e〉 and |g〉. Here, we define the success probabilities of mea-
suring the qubit in states |g〉 and |e〉 as Pg = Tr[Pgρ(t f )] and
Pe = Tr[Peρ(t f )] with Pg = |g〉〈g| ⊗ Ir and Pe = |e〉〈e| ⊗
Ir (Ir is identity operator of resonator), respectively. Fur-
thermore, the fidelity of the resulting even and odd cat
states can be defined as Feven(t f ) = Tr[Pgρ(t f )Pgρ

′(t f )]/Pg

and Fodd(t f ) = Tr[Peρ(t f )Peρ
′(t f )]/Pe, respectively, where

ρ ′(t f ) = |
 ′
0(t f )〉〈
 ′

0(t f )|. Here, we consider the case that the
decay time of the resonator κ−1 = 100 μs. By solving numer-
ically the master equation in Eq. (19), the density operator
ρs(t f ) = ρ(t f ) of the system at the time t f is obtained. Thus,
the success probability of getting the result |g〉 and |e〉 is
Pg = 0.5030 and Pe = 0.4970, respectively. Furthermore, the
corresponding fidelities of even cat states and odd cat states
are Feven(t f ) = 0.96 and Fodd(t f ) = 0.9535, respectively. As
shown in Figs. 9(a) and 9(b), the negative quasiprobability
distribution clearly displays the nonclassical quantum features
of the even and odd cat states, respectively.

C. Leakage to the excited state

Up to now, we have limited the discussion to the two-level
approximation of the superconducting qubit. In a realistic
experiment, excitation to higher levels should be considered.
The present protocol can be applied to superconducting sys-
tem with different types of qubits, including transmon qubits
and flux qubits [94–101]. For a superconducting transmon
qubit, the typical transition frequency between neighboring
levels is only 3–10 GHz. Moreover, the anharmonicity of
the level spacings for a superconducting transmon qubit can
be made with 100–300 MHz [96–98]. Thus, the population
excited to the third level | f 〉 should be considered as shown in
Fig. 10(a). To illustrate this point, we investigate the fidelity
of the target state by choosing the anharmonicity of the level
spacings δ/2π from 100–1000 MHz for the present protocol,
where δ = ωeg − ωe f . As can be seen in Fig. 10(b), the fidelity
F (t f ) is 0.9216 when the value of anharmonicity of the level
spacings is 300 MHz. Moreover, the typical anharmonicity of
the transmon qubit is experimentally about 200 MHz. In this
case, the fidelity of the target state is only 0.7716. Therefore,
the transmon qubit is not the best choice to realize the present
protocol. However, as shown in Refs. [99–101], the anhar-
monicity of a flux qubit can reach the order of gigahertz. In
this case, the leakage influence of higher levels of flux qubits
can be almost neglected because of its large anharmonicity.
Therefore, compared with transmon qubits, flux qubits may be
more efficient to implement the present protocol. The above
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FIG. 9. (a) Wigner function of the generated even cat state at the
time t f = 20/� when the auxiliary qubit is in state |g〉. (b) Wigner
function of the generated odd cat state at the time t f = 20/� when
the auxiliary qubit is in state |e〉. Considering that the relaxation time
of the qubit is γ −1 = 40 μs, the dephasing time of the qubit is γ −1

φ =
40 μs, and the decay time κ−1 = 100 μs. The value of max[�1(t )]
is chosen as 2π×6 MHz, and other parameters are the same as that
in Fig. 6.

theoretical analysis provides potential help for experimental
researchers.

V. DISCUSSIONS AND CONCLUSIONS

We briefly discuss the possible extension of the protocol.
As shown in Fig. 11, the superconducting qubit (circle) can be
coupled to multiresonators with the capacitance or inductance.
Using the same method as above in Sec. II, the effective
Hamiltonian of the multiresonator system can be represented
as

Hh
eff (t ) =

N∑
h=1

� sech[2r(t )]a†
hah + λh

s (t )σx(a†
h + ah)/2,

(22)

with an exponentially enhanced interaction strength λh
s (t ) =

λher(t )/2. Here, ah (a†
h) is the annihilation (creation) operator

of the hth superconducting resonator mode and λh denotes
the coupling strength between the qubit and the hth resonator.

FIG. 10. (a) The level configuration of the transmon qubit. The
anharmoncity of the level spacing δ can be represented as δ =
ωeg − ωe f , where ωeg is transition frequency between levels |e〉 and
|g〉 and ωe f is the transition frequency between levels |e〉 and level
| f 〉. (b) The fidelity F (t f ) versus the level spacings δ/2π . The value
of max[�1(t )] is chosen as 2π×6 MHz, and the other parameters are
the same as that in Fig. 6.

Similarly, according to Eqs. (9) and (10), the entangled states
of qubit and resonators can be generated as

|
0(t )〉h = 1

2
[| + x〉| − α1(t ),−α2(t ), . . . ,−αN(t )〉

+ | − x〉| + α1(t ),+α2(t ), . . . ,+αN(t )〉]

= 1

2
[N h

+|g〉|cath
+(t )〉 − N h

−|e〉|cath
−(t )〉], (23)

where (N h
±)−1 are the normalization factors of the multimode

entangled cat states,

|cath
±(t )〉 = [| + α1(t ),+α2(t ), . . . ,+αN(t )〉,

± | − α1(t ),−α2(t ), . . . ,−αN(t )〉]/N h
±. (24)

FIG. 11. Diagrammatic sketch of a possible structure for realiz-
ing the multimode cat states.
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The multimode entangled cat states exhibit a great manifesta-
tion of mesoscopic superposition and entanglement, and have
very wide applications in the field of quantum information and
quantum communication, such as quantum metrology [40],
quantum network [102], and quantum teleportation [103].

In conclusion, we have proposed an experimentally feasi-
ble protocol for generating large-size cat states of a microwave
field in a weakly and parametrically driven resonator. The
time-dependent parametric drive can induce adjustable cou-
pling strength between the qubit and the resonator. By
utilizing the transitionless tracking algorithm, we can design
the control pulses to generate the qubit-resonator entangled
states with high fidelity in the laboratory frame. Then, the
even and odd cat states are predicted by the corresponding
measurement outcomes of the superconducting qubit. The
present protocol has several advantages as follows. First, com-
pared with the schemes based on adiabatic and dissipation
dynamics in Refs. [30,31], the present protocol by the STA
method is helpful to restrain the influence of single-photon
loss on the system by accelerating the evolution. Second,
compared with strong squeezing scheme in Ref. [74], the
present protocol assisted by an external classical driving field
on the qubit can exponentially suppress the squeezing-induced
noise and improve the fidelity of the generated cat states.
Moreover, numerical simulations confirm the validity of the
proposed protocol under experimentally available parameters.
Therefore, the present protocol may provide an alternative
idea for generating large-size cat states with high fidelity in
superconducting quantum circuits.
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APPENDIX: POSSIBLE PHYSICAL IMPLEMENTATION
OF PARAMETRIC DRIVES

As shown in Fig. 1, we consider a superconducting res-
onator composed of a SQUID. The Hamiltonian of the

parametric-driven resonator reads [9,17]

Hp = 4ECn2 − EJ [�ext (t )] cos(φ), (A1)

where n is the number of Cooper pairs and φ is the phase
across the junction. Here, EC is the resonator charging energy
and EJ is the Josephson energy of the SQUID. The Joseph-
son energy is modulated (with frequency ωp) by the external
magnetic flux �ext (t ), leading to

EJ [�ext1(t ) + �ext2(t )] = EJ + ẼJ1(t ) cos(ωpt + ϕ1)

+ ẼJ2(t ) cos(ωpt + ϕ2), (A2)

where �ext1(t ) and �ext2(t ) are the components of the flux
�ext (t ), i.e., �ext (t ) = �ext1(t ) + �ext2(t ). After the Taylor
expansion of cos(φ) to fourth order, we obtain

Hp ≈ 4ECn2−EJ (a−X+X 2/6)−ẼJ1(t )(1−X ) cos(ωpt+ϕ1)

− ẼJ2(t )(1 − X ) cos(ωpt + ϕ2), (A3)

where X = (φ)2/2.
By defining

n = −in0(a − a†), φ = φ0(a + a†), (A4)

the quadratic time-independent part of the Hamiltonian Hp can
be diagonalized, where n0 = [EJ/(32EC )]1/4 and φ0 = 1/2n0

are the zero point fluctuations. After dropping the constant
terms, the Hamiltonian Hp becomes

Hp =ωca†a−EC

12
(a+a†)4+ ẼJ1(t )ωc

4EJ
(a+a†)2 cos(ωpt+ϕ1)

+ ẼJ2(t )ωc

4EJ
(a + a†)2 cos(ωpt + ϕ2), (A5)

where ωc = √
8EcEJ . When EC � EJ , the term EC

12 (a + a†)4

can be neglected. The whole Hamiltonian Hp can be rewritten
as

Hp = ωca†a − ẼJ1(t )ωc

8EJ
(a + a†)2(eiωpt + e−iωpt )

− ẼJ2(t )ωc

8EJ
(a + a†)2i(eiωpt − e−iωpt ), (A6)

where we have chosen ϕ1 = π and ϕ2 = 3π/2. Then, moving
into a rotating frame at frequency ωp/2 and neglecting all of
the fast-oscillating terms, the approximate Hamiltonian under
the rotating-wave approximation can be written as

Hp = �a†a − �1(t ) + i�2(t )

2
a2 + H.c., (A7)

where � = ωc − ωp/2, �1(t ) = ẼJ1(t )ωc

4EJ
, and �2(t ) = ẼJ2(t )ωc

4EJ
.
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