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Coherence is a defining property of quantum theory that accounts for quantum advantage in many quantum
information tasks. Although many coherence quantifiers were introduced in various contexts, the lack of efficient
methods to estimate them restricts their applications. In this paper, we tackle this problem by proposing one
universal method to provide measurable bounds for most current coherence quantifiers. Our method is motivated
by the observation that the distance between the state of interest and its diagonal parts in the reference basis,
which lies at the heart of the coherence quantifications, can be readily estimated by the disturbance effect and
uncertainty of the reference measurement. Thus, our method of bounding coherence provides a feasible and
broadly applicable avenue for detecting coherence, facilitating its further practical applications.
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I. INTRODUCTION

Coherence, captured by the superposition principle, is a
defining property of quantum theory. It underscores almost
all the quantum features, such as symmetry [1], entanglement
[2–4], and quantum correlation [5,6]. Coherence also accounts
for quantum advantages in various quantum information pro-
cessing tasks, such as quantum metrology [7–9] and quantum
cryptography [10,11]. Within a strictly mathematical frame-
work of resource theory, the significance of coherence as a
resource has been fully appreciated in recent years. Many
aspects of it, ranging from characterization [12], distillation,
and catalytic [13–16], were investigated, along with an intense
analysis of how coherence plays a role in fundamental physics
(see [17] for a review).

Quantifying coherence lies in the heart of coherence re-
source theory [12,18–23]. Recently, many methods were
proposed. The most compelling method was based on state
distance, for example, quantifying coherence with the min-
imal distance between the state of interest and the closest
coherence free state. Typical examples are the relative entropy
of coherence and the l1 norm of coherence [20]. Coherence
may also be quantified with the distance between the con-
cerned state and its diagonal parts in the reference basis [24].
One example is the coherence of the trace norm [25,26].
Another method is via the convex-roof measure. That is, pro-
vided a quantifier for the pure state, a general mixed state’s
quantifier is constructed via a roof construction; this method
leads to the formation of coherence [27] and the infidelity
coherence measure [23]. There are also other quantifiers such
as the robustness of coherence [28] and the Wigner-Yanase
skew information of coherence [22].

While many theoretical works were devoted to a systemat-
ical research of coherence [12,17,29,30], it remains a difficult
problem to efficiently estimate coherence in experiments,
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which limits the applications of the quantifications as common
tools for quantum information processing. Clearly, one can
perform state tomography and then calculate quantifiers with
the derived quantum density matrix or estimate coherence
by employing normal witness technique [31–33] or with nu-
merical optimizations [34]. These methods suffer from the
complexities of mathematics and the experiment setup, thus
lacking efficiency. Another method is based on spectrum esti-
mation [35], which commonly needs a few test measurements
to obtain a nontrivial estimation. These methods, unfortu-
nately, are commonly restricted for estimating the convex-roof
quantifiers, such as the coherence of formation, the convex
roof of infidelity, and the convex roof of the Wigner-Yanase
skew information.

To improve the evaluation of coherence in experiments,
we report one simple and feasible detection method, which
provides both the upper and the lower bounds in terms
of the reference measurement’s uncertainty and disturbance
effect, respectively. We find that coherence quantifiers are
closely related to the distance between the state of interest
and its diagonal parts (written in the reference basis). The
distance can be upper-bounded in terms of uncertainty accord-
ing to recent uncertainty-disturbance relations (UDR) [36,37]
and lower-bounded according to data processing inequality.
These bounds are formulated with statistics from a universal
experimental scheme. By this method, almost all the cur-
rent coherence quantifiers of great interest are immediately
bounded as long as one universal experiment setup outputs
statistics. The quantifiers include the relative entropy of the
coherence measure, the coherence of formation, the l1,2 norm
of coherence, the trace norm of coherence, the convex roof
of the infidelity coherence, the Wigner-Yanase skew informa-
tion of coherence and the convex-roof construction, and the
robustness of coherence. Thus the method exhibits merits of
simplicity and broad applicability.

The rest of the paper is structured as follows. In Sec. I, we
briefly review state-distance-based coherence quantifiers, then
provide a framework for upper bounding and lower bounding
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them. In Sec. II, we provide measurable bounds for most
current coherence quantifiers, including the distance-based
quantifiers and some other quantifiers of general interest. In
Sec. III, we compare our method with the one based on spec-
trum estimation, showing that our method is experimentally
less demanding and more efficient.

II. FRAMEWORK OF DETECTING COHERENCE

A. Distance-based quantifications of coherence

Coherence is a quantity characterized with respect to one
prefixed reference basis denoted by {| j〉} with the relevant
measurement being referred to as the reference measurement.
The free states are the ones of the form σ = ∑

j p j | j〉〈 j|. Oth-
erwise, a nondiagonal state contains coherence. Coherence is
commonly quantified with state distance, for example, with
the minimal distance between the state of interest and the
closest incoherent one [15]

C(ρ) := min
σ∈I

D(ρ, σ ), (1)

where I denotes the set of coherence free states and D(ρ, σ )
specifies the state distance. Appling Eq. (1) to the state dis-
tances of relative entropy, the l1 norm, and the Tsallis relative
α entropies, one can define quantifiers meeting all the criteria
of the coherence resource theory [12]. They are referred to
as coherence measures. If the chosen distance measures are
the trace norm and fidelity [38,39], then Eq. (1) defines the
coherence monotones that meet a specific subset of the criteria
of the coherence resource theory.

The computability of quantifier C(ρ) is generally hard ex-
cept for the state distance, for which C(ρ) = D(ρ, ρd ), where
ρd specifies the diagonal parts of ρ in the reference basis.
One may simply define an easily computable quantifier as the
distance between ρ and ρd [24]:

C̃(ρ) := D(ρ, ρd ), (2)

which can be understood as the disturbance caused by the
reference measurement in ρ as ρd is just the postmeasurement
state. For some distance measures, Eq. (2) defines a better
monotone than the one defined by Eq. (1). One example is
the trace norm [25], for which Eq. (2) defines a quantifier that
can satisfy more criteria [than that defined by Eq. (1)] and
also allows a physically well-motivated interpretation as the
capability to exhibit interference visibility [26]. C̃(ρ) does not
involve a minimization process. Therefore,

C̃(ρ) � C(ρ).

One may also define the coherence quantifier via a convex-
roof technique [27]. That is, provided a quantifier for the pure
state, one can define a mixed state’s quantifier via a convex-
roof construction. For example, one may define the pure state
coherence via Eq. (1), then the convex-roof construction is

C ′(ρ) := min{ fi,|φi〉}
∑

i
fi · C(φi ), (3)

where the minimization is taken over all possible pure-state
decompositions of ρ = ∑

fi|φi〉〈φi|. This definition has its
advantage, e.g., when applied to infidelity, Eq. (3) can define
a measure [23] for coherence while Eq. (1) defines only a
monotone.

(a)

(b)

FIG. 1. Two-slit experiment and coherence detection protocol.
Particles with and without coherence lead to different statistics when
subjected to a test measurement.

The above definitions led to many quantifiers and also in-
duced the bounds for the quantifiers defined in other ways. In
the following, we introduce a framework for bounding them.

B. Framework of detecting coherence

Detecting the nonclassical properties, such as entangle-
ment, coherence, and randomness, is to lower-bound them
using the statistics coming from experiments. For coherence,
it is instructive to recall its early illustration based on the
two-slit experiment, which is shown in Fig. 1(a), where the
reference measurement is the path detectors that erases the
coherence between paths and the screen is an incompati-
ble measurement that verifies the coherence in terms of the
change of interference fringes due to the destruction of co-
herence. Here, we would like to exploit how this idea applies
to many other coherence quantifiers. We consider a similar
measurement setting as shown in Fig. 1(b). It consists of one
reference measurement R and one following test measure-
ment B. The reference measurement updates an input state
ρ into an incoherent state, i.e., its diagonal parts ρd . It then is
subject to the following measurement B = {|bj〉〈b j |}, giving
rise to a distribution q′ = {q′

j = tr(ρd · |b j〉〈b j |)}. This is a
typical sequential measurement scheme that can be readily
realized with off-the-shelf instruments [40–43]. If without
the measurement R, directly performing B on ρ yields a
distribution q = {q j = tr(ρ · |b j〉〈b j |)}. The distance between
q and q′ can be understood as the disturbance introduced by
the reference measurement in B. One may choose B as the
one maximally incompatible with the reference measurement,
i.e., ∀i, j, |〈i|b j〉|2 = 1

d with d specifying the dimension of the
relevant Hilbert’s space. This setting commonly can ensure
a significant distance between q and q′, which is in favor
of coherence estimation. We also note that q′ actually does
not require performing a real test measurement after the ref-
erence measurement. As ρd is determined by the reference
measurement’s distribution as ρd = ∑

i pi|i〉〈i| and p = {pi =
tr(ρ · |i〉〈i|)}, one can directly calculate q′ via Born’s rule. For
example, the probability when B := {|b j〉〈b j |} is q′

i = tr(ρd ·
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|bi〉〈b j |) = ∑
i ci j pi is given by p, where ci j = |〈i|b j〉|2. In

this way, only two independent measurements, namely, R
and B, are sufficient for giving the statistics p, q, and q′. In
the following, the estimation of coherence quantifiers only
involves these distributions.

1. Lower-bounding coherence

First, the coherence quantifiers of the form of Eq. (2)
can be estimated according to the data processing inequality,
which states that the distance between states, say ρ and ρd ,
are no less than the corresponding classical distance between
the statistics coming from another measurement, say, B, per-
formed on them

D(ρ, ρd ) � D[q, q′].

Immediately, we obtain a lower bound for the coherence mea-
sure

C̃(ρ) � D[q, q′]. (4)

We highlight a useful property of the classical distance,
namely, the convexity of classical distance D,

∑
i

fi · D[qi, q′
i] � D

[∑
i

fi · qi,
∑

i

fi · q′
i

]
,

which will be used for bounding C ′(ρ).
Second, we consider the convex-roof-based coherence

quantifier. We note that for the pure state a coherence quan-
tifier C ′(φ) is always a function of distribution pφ . This is
because the diagonal elements of a pure state are sufficient
to determine the coherence quantifier as they determine a
pure state up to some relative phases. These phases are
inessential in quantifying coherence as they can be modified
freely with a reversible incoherent operation of phase shifting.
Note that the maximum coherent state |φ〉 = 1

d

∑
i |i〉 and the

zero-coherence pure state |i〉〈i| exhibit the maximum and the
minimum, respectively, of the uncertainty of the reference
measurement in a given basis. It is therefore reasonable to
assume that the coherence quantifier C ′(φ) for the pure state
is positively related to the uncertainty δD(p) (the subscript
means that uncertainty can be related to the state distance
D) and may be lower-bounded with uncertainty or a function
of it (whose definition is left to the next section). We find
that, if a pure-state coherence C ′(φ) allows a lower bound in
terms of a convex and monotonically increasing function of
δD(pφ ) specified by g(δD ), the constructed convex-roof-based
coherence quantifier C ′(ρ) can be lower-bounded as

C ′(ρ) � g(D(q, q′)). (5)

It needs to be stressed that C ′(ρ) � g(δD(p)) generally does
not hold for a mixed state ρ due to the concavity of δD,
namely, C ′(ρ) � ∑

i fi · g(δD(pi )) � g(
∑

i fi · δD(pi )) while
g(

∑
i fi · δD(pi )) � g( δD(p)), where

∑
i pi = p and

∑
i fi ·

pi = p. The key idea behind Eq. (5) is to relax a concave
uncertainty measure δD into a convex disturbance measure
D(q, q′) using UDRs [37], stating that one measurement’s
uncertainty in terms of, say δD(p), is no less than its distur-
bance effect in the measured state ρ and in the subsequent test
measurement B:

δD(p) � D(ρ, ρd ) � D(q, q′).

Then, we have g(
∑

i fi · D[qi, q′
i )] � g(D(q, q′)) with

∑
i fi ·

qi = q and
∑

i fi · q′
i = q′, leading to a lower bound for coher-

ence quantifiers. We left the proof of Eq. (5) to the Appendix.
It can be seen that the function of g(·) provides a way of
finding the lower bound of the coherence measure in terms of
disturbance D(q, q′). In the next section, we shall show that
g(·) can always be found for the existing convex-roof-based
coherence quantifiers.

2. Estimation of upper bounds

In general, upper bounds for quantum properties are not
as useful as the lower bounds since they may be much larger
than the actual value and thus are commonly ignored in the
theory and experiment. Here, we can obtain the estimation of
the upper bound with the outcome distribution of the reference
measurement for free, i.e., without introducing extra exper-
imental settings, and most importantly the resulting upper
bound may assist the estimation of coherence in our frame-
work.

It follows from the UDRs that the upper bounds of the
quantifiers of the form of Eqs. (1) or (2) are given as

δ(p) � C̃(ρ) � C(ρ). (6)

The upper bound of C ′(ρ) is given as

δ(p) �
∑

i

fi · δ(pi ) �
∑

i

fi · C(φi ) = C ′(ρ). (7)

Thus, one reference measurement is sufficient for upper-
bounding the three kinds of coherence quantifiers.

Recently, with the distributions of p, q, and q′, both the up-
per and the lower bounds were obtained. A possible large gap
between them roughly indicates that (i) the state of interest
contains little coherence and (ii) the setting of B is not well
chosen. Then the lower bound may be optimized by choosing
other settings of B or one may almost confirm that the state of
interest contains little coherence. In this way the upper bound
assists the estimation of the lower bound.

III. DETECTING COHERENCE IN VARIOUS CONTEXTS

In the following, we use the above framework to estimate
coherence quantifiers having general interests.

A. Relative entropy of coherence measure
and the coherence of formation

First, we consider the relative entropy of coherence [29]
and the coherence of formation [18,27,44], which are defined
by applying Eqs. (1) and (3) to the relative entropy

S(ρ‖σ ) := Tr(ρ log2 ρ − ρ log2 σ ).

The relative entropy of coherence is a legitimate measure. It
has operational meaning as the asymptotic coherence distil-
lation rate [20] and also quantifies the quantum randomness
under the quantum adversaries (with independent measure-
ments) [27,45,46]. The quantifier is defined as

Cre(ρ) := min
σ∈I

S(ρ‖σ ) = S(ρ‖ρd ).

The coherence of formation has an interpretation of the
asymptotic coherence dilution rate [20]. It also quantifies the
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quantum randomness under the classical adversaries (with
independent measurements) [27,45,46]. The quantifier reads

C ′
re(ρ) := min

{ fi,φi}

∑
i

fi · S(φi‖φi,d ).

The UDR corresponding to the relative entropy is given as

H (p) � S(ρ‖ρd ) � H (q‖q′),

where the Shannon entropy H (p) := −∑
i pi log2 pi defines

the measurement uncertainty δre(p) and the relative en-
tropy S(ρ‖ρd ) defines disturbance in the quantum state
and the classical relative entropy H (q‖q′) := ∑

i qi log2 qi −∑
i qi log2 q′

i defines the disturbance in measurement B de-
noted as Dre(q, q′). Based on the general arguments just
provided, we immediately have [37]

H (p) � Cre(ρ), C ′
re(ρ) � H (q‖q′). (8)

For Cre(ρ), the bounds are obvious. For C ′
re(ρ), we have

C ′
re(|φ〉) = H (pφ ), which leads to the definition of the convex

and monotonically increasing g function as g(x) = x. Then
a lower bound for C ′

re(ρ), namely, H (q‖q′), follows from
Eq. (5) and the uncertainty disturbance relation [37].

B. l1 norm, l2 norm, and the trace-norm of coherence

1. l1 norm of coherence

The l1 norm of coherence quantifies the maximum entan-
glement that can be created from coherence under incoherent
operations acting on the system and an incoherent ancilla
[4]. It was used to investigate the speed-up of quantum com-
putation [47,48], wave-particle duality [17,49,50], and the
uncertainty principle [51]. The quantifier is defined via Eq. (1)
as [29]

Cl1 (ρ) = min
σ∈I

Dl1 (ρ, σ ) = Dl1 (ρ, ρd ),

where the l1 norm

Dl1 (ρ, σ ′) = ∑
i, j |ρi j − σ ′

i j |,
with ρi j and σ ′

i j specifying the matrices’ elements.
The UDR corresponding to the l1-norm distance is

‖p‖ 1
2
− 1 � Dl1 (ρ, ρd ),

where ‖p‖x = (
∑

i px
i )

1
x . The inequality is because∑

i �= j |ρi j | �
∑

i �= j
√

pi p j = ‖p‖ 1
2
− 1. Based on Eq. (6)

and the UDR, the Cl1 (ρ) is estimated via

‖p‖ 1
2
− 1 � Cl1 (ρ) � 2|q − q′|, (9)

where |q − q′| := 1
2

∑
i |qi − q′

i| is the Kolmogorov distance.
The lower-bound side is due to

∑
i �= j |ρi j | = ∑

i> j tr |�i j | �
tr |ρ − ρd | � 2|q − q′|, where tr |A| = tr

√
AA† and �i j :=

| j〉〈 j|ρ|i〉〈i| + |i〉〈i|ρ| j〉〈 j| and
∑

i �= j tr |�i j | � tr |ρ − ρd | is
due to the convexity.

2. l2 norm of coherence

The l2 norm of coherence [12,14] has an operational inter-
pretation as the state uncertainty [52] and is also employed to

study nonclassical correlations [53]. The quantifier reads

Cl2 (ρ) := min
σ∈I

Dl2 (ρ, σ ) = Dl2 (ρ, ρd ),

where the l2 norm or the (squared) Hilbert-Schmidt distance
Dl2 (ρ, σ ) := tr(ρ − σ )2.

The UDR corresponding to the l2 norm is

1 − ‖p‖2
2 � Dl2 (ρ, ρd ),

which is due to tr(ρ − ρd )2 = tr(ρ2 − ρ · ρd ) � 1 − ‖p‖2
2.

Based on Eqs. (6) and (4), Cl2 (ρ) is bounded as

1 − ‖p‖2
2 � Cl2 (ρ) � ‖q − q′‖2

2, (10)

where the lower bound is due to the data processing inequality
with the measurement B being required to be projective [54].

3. Trace norm of coherence

The trace norm of coherence has an interpretation of inter-
ference visibility and reads [25]

C̃tr(ρ) = Dtr(ρ, ρd ),

where the distance of the trace norm Dtr(ρ, σ ) = 1
2 tr|ρ − σ |.

According to the UDR corresponding to this distance [37]√
1 − ‖p‖2

2 � Dtr (ρ, ρd ),

we have √
1 − ‖p‖2

2 � C̃tr(ρ) � |q − q′|. (11)

Again, the lower bound is due to the data processing inequal-
ity.

C. Convex-roof coherence of infidelity

Now we consider the convex-roof coherence of the infi-
delity [23]

C ′
if(ρ) := min{ fi,|φi〉}

∑
i fi · Cif(φi),

where the pure-state coherence is quantified as

Cif(φ) = min
σ∈I

Dif(φ, σ ),

with the infidelity Dif(ρ, σ ) := √
1 − F (ρ, σ ) and F (ρ, σ ) =

[Tr(
√√

ρσ
√

ρ )]2. The UDR corresponding to the infidelity is
[37] √

1 − ‖p‖2
2 � Dif(ρ, ρd ).

By Eq. (7), the coherence measure acquires an upper bound as√
1 − ‖p‖2

2.
To lower-bound the measure using Eq. (5), we note

that Cif(φ) �
√

2
2

√
1 − ‖p‖2

2 :=
√

2
2 δif(p) (see the Appendix),

which leads to a definition of the g function as g(x) =√
2

2 x. Using Eq (5), we have C ′
if(ρ) �

√
2

2 Dif(q, q′), where

Dif(q, q′) :=
√

1 − (
∑

i

√
qiq′

i )
2. Thus, we finally have√

1 − ‖p‖2
2 � C ′

if(ρ) �
√

2
2 Dif(q, q′). (12)
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Till now, we estimated many distance-based coherence
quantifiers. In the following, we shall use the method to es-
timate the quantifiers going beyond the above definitions. The
following quantifiers shall be specified by C instead of C for
the sake of specification.

D. Coherence of Wigner-Yanase skew information
and the convex-roof construction

Coherence can also be quantified based on quantum Fisher
information, which is a basic concept in the field of quantum
metrology that places the fundamental limit on the informa-
tion accessible by a performing measurement on the quantum
state. Two remarkable quantifiers are the Wigner-Yanase skew
information of coherence and the convex-roof construction
based on it.

1. Wigner-Yanase skew information of coherence

The Skew information coherence is a legitimate coherence
measure and defined as [22]

Cs(ρ) =
d∑

1= j

I (ρ, | j〉〈 j|),

where I (ρ, | j〉〈 j|) ≡ − 1
2 Tr([ρ, | j〉〈 j|])2 represents the

Wigner-Yanase skew information subject to the projector
| j〉〈 j|. This measure was never estimated with a spectrum
estimation method employing the standard overlap
measurement technique [22], where one needs to perform
2d − 2 measurements to estimate the coherence of a
d-dimensional system. In the following, our method can
reduce the number to 3.

First, we can reexpress the measure as Cs(ρ) = 1 −∑
j〈 j|√ρ| j〉2 [22], then an upper bound readily follows as

Cs(ρ) = 1 −
∑

j

〈 j|√ρ| j〉2 � 1 − ∑
j〈 j|ρ| j〉2

= 1 − ‖p‖2
2.

To derive a lower bound, we use an inequality Cs(ρ) �
1
2Cl2 (ρ) [22] whose bound was already bounded in Eq. (10).
Then, we have

1 − ‖p‖2
2 � Cs(ρ) � 1

2
‖q − q′‖2

2. (13)

2. Convex-roof construction

With Cs(φ) quantifying the coherence of a pure state |φ〉,
the Wigner-Yanase skew information can lead to a convex-
roof construction of coherence as [55]

C′
s(ρ) = min{ fi,φi}

∑
i fi · Cs(φi ).

This quantifier can be equivalently defined via the quantum
Fisher information (up to an inessential factor) with respect to
the reference measurement [55,56]

C′
s(ρ) = 1

4

∑
j

F (ρ, | j〉〈 j|),

where F (ρ, | j〉〈 j|) := ∑
k,l 2 (λk−λl )2

λk+λl
|ckl |2 specifies the quan-

tum information of ρ subject to the measurement projector

| j〉〈 j| and ckl = 〈φk| j〉〈 j|φl〉 with |φn〉 being the nth eigen-
vector of ρ and λn being the weight.

Given that Cs(φ) = 1 − ‖p(φ)‖2
2 = δ2

if(p), we can define
g(δif ) = δ2

if. By Eq. (5), the lower bound of C′
s(ρ) follows as

Cs(ρ) � D2
if(q, q′).

Due to the convexity of 1 − ‖a‖2
2 with respect to distribution

a, an upper bound is immediately obtained as

1 − ‖p‖2
2 � C′

s(ρ).

Thus, the quantifier is bounded as

1 − ‖p‖2
2 � C′

s(ρ) � D2
if(q, q′). (14)

E. Robustness of coherence

One important coherence monotone is the robustness of
coherence [28], which quantifies the advantage enabled by a
quantum state in a phase discrimination task. For a given state
ρ, it is defined as the minimal mixing required to make the
state incoherent

CRo(ρ) = min
τ

{
s � 0

∣∣∣∣ρ + sτ

1 + s
:= σ ∈ I

}
,

where τ is a general quantum state. With the inequality [28]

CRo(ρ) � Dl2 (ρ, ρd )

‖ρd‖∞
.

where we note that ‖ρd‖∞ = ‖p‖∞ is just the maximum ele-
ment in p. It follows from Eq. (10) that

CRo(ρ) � ‖q − q′‖2
2

‖p‖∞
.

With the inequality CRo(ρ) � Cl1 (ρ) and Eq. (9), we have

‖p‖ 1
2
− 1 � CRo(ρ) � ‖q − q′‖2

2

‖p‖∞
. (15)

The robustness of coherence was previously detected based on
the witness method [31–33], where the mathematics of con-
structing the witness and experimental setup were generally
complex.

Finally, we summarize the obtained measurable lower
bounds in Table I. These bounds are all formulated in terms of
the statistics p, q, and q′. As the essential quantity, the distur-
bance D can readily be measured by performing a sequential
measurements scheme, which was well developed in the study
of error-disturbance relations [40–43]. In our approach, as the
lower bounds are smooth functions of experimental statistics,
the statistics errors due to imperfection of the implementation
of measurement or state preparation are one order smaller
compared to the lower bounds. These aspects make our proto-
col quite feasible.

It is also of practical interest to consider the tightness of
these bounds. We find that the bounds of coherence measures
Cl2 and C̃tr can be saturated for any input state when the test
measurement B is taken as the eigenvectors of ρ − ρd , and the
bounds for the convex-roof-based measure C′

s can be saturated
if the concerned state is pure and the bound of Cl1 is tight in
the qubit case (when B is taken as the eigenvectors of ρ − ρd ).
The bounds for other quantifiers either cannot be nontrivially
saturated or only be saturated for some specific states.
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TABLE I. Measurable lower bounds for coherence quantifiers.

Quantifier Cre Cl1 Cl2 C̃tr C ′
if Cs C′

s CRo

Upper bound H (p) ‖p‖ 1
2

− 1 1 − ‖p‖2
2

√
1 − ‖p‖2

2

√
1 − ‖p‖2

2 1 − ‖p‖2
2 1 − ‖p‖2

2 ‖p‖ 1
2

− 1

Lower bound H (q‖q′) 2|q − q′| ‖q − q′‖2
2 |q − q′|

√
2

2 Dif(q, q′) 1
2 ‖q − q′‖2

2 D2
if(q, q′) ‖q−q′‖2

2
‖p‖∞

IV. EFFICIENCY ARGUMENT

The previous coherence estimation protocols commonly
apply to only a few coherence quantifiers. The collective
measurement protocol [57] applies to the relative entropy of
coherence and the l2 norm of coherence. The witness method
[31–33,58] applies to the robustness of coherence, the l1 norm,
and the l2 norm of coherence. One quite simple and efficient
method is based on spectrum estimation via majorization
theory [35], which can be used to estimate the l1 norm, the
l2 norm of coherence, the robustness of coherence, and the
relative entropy of coherence. This method employs a similar
measurement scheme to ours. In the following, we compare
our approach with it.

A. Comparison with the method based on spectrum estimation

The spectrum estimation method is based on the theory
of majorization [35]. A probability a is said to majorize a
probability distribution b, specified as a � b, if their elements
satisfy

∑k
i=1 a↓

i � ∑k
i=1 b↓

i ∀k, where the superscript means
that the elements are arranged in a descending order, namely,
a↓ = (a↓

1 , a↓
2 , . . . , a↓

d ), b↓ = (b↓
1 , b↓

2 , . . . , b↓
d ) with ai � ai+1

and bi � bi+1. Clearly, the spectrum of ρ, specified as λ =
(λ1, λ2, . . . , λd ), majorizes distribution from any projection
measurement, say B, performed on ρ, i.e., λ � q. By the Shur
convexity theorem, H (a) � H (b) if b � a. Thus, Cr (ρ) =
H (p) − H (λ) � H (p) − H (q) with p and q being distribu-
tions from the reference measurement and B, which provides
a nontrivial lower bound if q � p. Generally, as the state of
interest is unknown one needs to try a few settings of B to en-
sure q � p. In this paper, we deal with the disturbance effect,
namely, D(q, q′), which is zero iff ρ − ρd is perpendicular
with all the elements of B simultaneously. The settings result-
ing in such a failure lie in a space of measure zero. Therefore,
our method almost always works even if the B is chosen
arbitrarily. As a simple illustration, assume that ρ is given as
|φ〉 = sin π

8 |0〉 + cos π
8 |1〉 and the reference basis is {|0〉, |1〉},

immediately, p = {sin2 π
8 , cos2 π

8 }. By the spectrum estima-
tion method, a nontrivial estimation, namely, H (q) − H (p) >

0 requires that |〈φ|B|φ〉| > cos2 π
8 − sin2 π

8 =
√

2
2 . With our

method, D(q, q′) �= 0 requires that B �= σz, σy, which is much
weaker than the above requirement.

TABLE II. Efficiencies in estimating coherence of qubit states.

Measure Cre Cl1 Cl2 C̃tr C ′
if Cs C′

s CRo

QC
D 0.36 2

π

1
2

2
π

0.22 0.25 0.31 0.28
QC

S 0.17 0.29 0.20 – – – – 0.20

B. Numerical results for the qubit case

The lower bounds provided in Table I work very well. As
the second illustration of efficiency, we consider the qubit
case. For the sake of computability, we let ρ be a pure state.
How well a quantifier is estimated can be naturally quantified
with the ratio of the estimate to the exact value. For each quan-
tifier, we calculate the average of the ratio over the randomly
chosen measurement B and randomly chosen pure state (see
the Appendix for details) with two different methods, i.e.,
our method and the one based on spectrum estimation. The
averages are listed in the Table II, where the one based on our
method is specified by QC

D and by QC
S the other method. It can

be seen that our method enjoys wider applicability and higher
efficiency.

V. CONCLUSION

In conclusion, we provided a universal and straightforward
method to estimate coherence. It enables us to give measur-
able bounds for many quantifiers of general interest, where all
the bounds are expressed as functions of the experimentally
accessible data p, q, and q′ without involving cumbersome
mathematics. This is advantageous over the previous methods,
which only applies to one or a few measures and cannot
apply to the quantifiers based on convex-roof construction.
Our approach exhibits many desired features: experimentally
friendly, broad applicability, and mathematical simplicity, and
therefore serves as an efficient coherence-detecting method.

For possible further research in the quantum foundation,
we note that the disturbance effect is one basic concept in
the quantum foundation that closely relates to nonlocality, the
uncertainty principle, and the security of quantum cryptogra-
phy. Thus, the framework may inspire alternative connection
among these concepts, for example, nonlocality and coher-
ence.
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APPENDIX

1. Proof of Eq. (5)

For any pure-state ensemble ρ = ∑
i f ′

i |φ′
i〉〈φ′

i |, we have∑
i f ′

i · qi = q and
∑

i f ′
i · qi

′ = q′. For the ensemble
∑

i fi ·
|φi〉〈φi| that achieves the minimal of the convex-roof-based
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TABLE III. Comparing the efficiencies of our method and the one based on the spectrum estimation.

Measure Cre Cl1 Cl2 C ′
if C̃tr C′

s Cs CRo

Exact value C(φ) H(sin2 θ

2 ) sin θ 1
2 sin2 θ min{sin θ

2 , cos θ

2 } 1
2 sin2 θ 1

2 sin2 θ sin θ sin θ

QC
D 0.36 2

π

1
2

2
π

0.22 0.25 0.31 0.28

QC
M 0.17 0.29 0.20 – – – – 0.20

Q′C
M 0.20 0.32 0.22 – – – – 0.22

measure C ′(ρ), we have

C ′(ρ) =
∑

i

fi · C(φi) �
∑

i

fi · g(δD(pi ))

�
∑

i

fi · g(D(qi, q′
i )) � g

(∑
i

fi · D(qi, q′
i )

)

� g(D(q, q′)). (A1)

The first inequality is due to the definition of the g function.
The second inequality is due to UDRs, which relax a concave
quantity δD(p) into a convex one D(q, q′). The third is due to
the convexity of g(·). The fourth is due to the convexity of the
classical distance D and the monotonicity assumption of g(·).

2. Proof of Eq. (12)

To lower-bound the coherence measure, let us first consider
a pure-state case, for example, |φ〉 = ∑

i

√
pi(φ)eiψi |i〉, where

we have

Cif(φ) = min
σ∈I

Dif(ρ, σ ) =
√

1 − p,

where p = maxi{|p0(φ)|, . . . , |pd−1(φ)|}. Note that√
2(1 − p) � √

(1 + p)(1 − p) �
√

1 − ‖p(φ)‖2
2.

The UDR corresponding to infidelity is√
1 − ‖p‖2

2 � Dif(q(φ), q′(φd )),

where Dif[q(φ), q′(φd )] := ∑
j

√
q jq′

j is classical infidelity.

Then we have Cif(φ) �
√

2
2

√
1 − ‖p‖2

2 :=
√

2
2 δif(p), which

leads to a definition of the g function as g(x) =
√

2
2 x. The

lower bound of C ′
if(ρ) follows from Eq. (A1)

C ′
if(ρ) �

√
2

2 Dif(q, q′).

To obtain an upper bound, we use Eq. (7) and the UDR

Dif(ρ, ρd ) �
√

1 − ‖p‖2
2 then we have

C ′
if(ρ) �

∑
i

fi ·
√

1 − ‖pi‖2 �
√

1 − ‖p‖2
2,

where we used the concavity of
√

1 − ‖p‖2
2.

3. Tightness argument

For the sake of computability, we consider an arbitrary pure
state ρ = |φ〉〈φ| with |φ〉 = sin θ

2 |0〉 + cos θ
2 eiψ |1〉 and 0 �

θ � π and 0 � ψ � 2π . The exact value of the coherence is
specified by C(φ). We choose the test measurement B as the

one maximally incompatible with the reference measurement.
Its setting thus is determined up to a relative phase as { 1√

2
|0〉 +

eiψ ′
√

2
|1〉; 1√

2
|0〉 − eiψ ′

√
2
|1〉}, and none of them is of priority. We

average the ratio
LC

D,B
C(φ) over all the possible B as

L̄C
D,B

C(φ)
:= 1

2π

∫ 2π

0

LC
D,B

C(φ)
dψ ′,

where one lower bound LC
D,B is given under the choice of B.

As the state of interest is unknown, we access the average

performance of the protocol over all the pure states as
L̄C

D,B
C(φ) .

QC
D := 1

4π

∫ 2π

0

∫ π

0

L̄C
D,B

C(φ)
sin θdθdψ.

The QC
D for the various quantifiers are calculated and listed

in Table III. Using the above maximally incompatible mea-
surement implies a greater disturbance for Cl1 , Cl2 , C̃tr, Cs,
and CRo, than using a random choice of the test measure-
ment B along direction �B = {sin α sin ψ ′′, sin α cos ψ ′′, cos α}
with 0 � α � π and 0 � ψ ′′ � 2π . This is because typ-
ical quantities such as |q − q′| or ‖q − q′‖2

2 involved
in lower bounds, which are | sin α sin θ cos(ψ ′ − ψ ′′)| or
1
2 | sin α sin θ cos(ψ ′ − ψ ′′)|2, respectively, attain their max-
imums at α = π

2 and ψ ′ = ψ ′′. We also calculate QC
D for

the other three quantifiers, namely, Cre, C ′
if, and C′

s using the
general choice of B, and obtain the average lower bounds as
0.266, 0.365, and 0.234.

We also calculate the average performance QC
M using the

method based on the spectrum estimation. One key difference
is that the test measurement B does not need to be the one
maximum incompatible with the reference measurement. This
is because, in the protocol based on spectrum estimation, the
closer the setting of B to the eigenvectors of the state of
interest, the better the estimate. However, the state of inter-
est is unknown and so are its eigenvectors. Therefore, there
is no reason to choose the test measurement B as the one
maximumally incompatible with the reference measurement.
According to this protocol, B is taken randomly as B = �σ · �B
and �B = {sin α sin ψ ′′, sin α cos ψ ′′, cos α} with 0 � α � π

and 0 � ψ ′′ � 2π with �σ being the Pauli matrix. The average
performance is defined as

QC
M := 1

4π

∫ 2π

0

∫ π

0

L̄C
M,B

C(φ)
sin θdθdψ,

with
L̄C

M,B
C(φ) being defined as

L̄C
M,B

C(φ)
:= 1

4π

∫ 2π

0

∫ π

0

LC
M,B

C(φ)
sin αdαdψ ′′.
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We calculated the coherence quantifiers to which this method
is applicable. As a comparison, we also calculated the
performance when B takes the measurement maximally

incompatible with the reference measurement, which is spec-
ified by Q′C

M . By Table III, it is shown that our method enjoys
higher efficiency and wider applicability.
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