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We study the properties of multipartite quantum correlation (MQC) in a one-dimensional spin-1/2 XY chain,
where the three-spin reduced states are focused on and the four introduced MQC measures are based on entangle-
ment negativity and entanglement of formation. It is found that, even in the Ising case, the three-spin subsystems
have long-range MQCs and the tripartite quantum correlations beyond the nearest-neighbor three spins can detect
the quantum phase transition and obey the finite-size scaling around the critical point. Furthermore, in the XY
model, we show that the two selected MQCs can indicate exactly the factorization point of the ground state for
the anisotropic model in the thermodynamic and finite-size cases. Moreover, the spatial distribution of MQC
based on entanglement negativity can attain a much larger range by tuning the anisotropic parameter, and the

newly defined MQC based on entanglement of formation can detect the bound entanglement in the three-spin
subsystems when the entanglement negativity loses its efficacy.
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I. INTRODUCTION

Quantum correlation [1-4] is a kind of important physical
resource and plays a crucial role in the tasks of quantum
information processing, such as quantum secure communica-
tion and quantum computation. At the same time, quantum
correlations also provide the effective tools for characterizing
the properties of quantum many-body systems in condensed
matter physics [5—14]. For example, Osterloh ef al. connected
the critical phenomena [15] with quantum entanglement for
a class of magnetic systems [5], and showed that the non-
analyticity of energy can be manifested by the two-qubit
concurrence [16] in the nearest and the next-nearest spins at
the critical point. In the last two decades, bipartite quantum
correlations have been widely studied in quantum many-body
systems, which helped develop the precise language for un-
derstanding quantum phase transition (QPT) in the interacting
spin models.

Multipartite quantum correlation (MQC) can reveal much
richer properties in the ground state of many-body systems
(see the review paper [17] and references therein). In par-
ticular, it was shown that MQC can exist and indicate the
QPT even when the bipartite quantum correlations disappear
[18-22]. Most of the existing studies are based on MQC such
as global entanglement [23], geometric entanglement [24],
residual entanglements [25-29], global quantum discord [30],
multipartite nonlocality [31,32], and so on, where complete
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information about the ground state is needed to calculate the
correlation functions in the interacting multipartite spin sys-
tems (for examples, see [33—45]). The MQCs have achieved
great success in analyzing the QPTs for many-body systems,
but the measurement of complete information on the ground
state is very difficult in general. Therefore, it is desirable to
study MQC in the reduced subsystems of the ground state,
where on the one hand less information about the overall
ground state is required and on the other hand more properties
in the many-body system can be obtained in comparison to
the two-site correlations. In this way, the main obstacle comes
from the fact that the theory of MQC for multipartite mixed
states is still not fully developed.

Based on the biseparable criterion I, [46], Giampaolo and
Hiesmayr analyzed the relation between genuine tripartite
entanglement and the QPT in the XY model where the reduced
state of three adjacent spins is considered [47]. Similarly,
utilizing genuine multipartite concurrence [48-50], the QPT
and finite-size effects in the cluster-Ising model were stud-
ied via the reduced state of three central spins which has
the specific X form [51]. According to genuine multipar-
tite negativity [52], Hofmann er al. showed the existence of
short-range multipartite entanglements in the reduced states
of the XY model and investigated the scaling property of
tripartite entanglement in three nearest-neighbor spins close
to the QPT [53]. However, knowledge about MQC beyond the
next-nearest-neighbor case is still lacking, although the long-
range multipartite entanglement close to the critical point in
the X X Z model was detected with the help of an entanglement
witness [54]. Moreover, it is still an open problem whether
or not the MQC beyond the adjacent three spins can detect
the QPT and obey the finite-size scaling. In addition, a good
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candidate for long-range MQCs should be effectively con-
trolled and able to capture the interesting properties of
many-body systems, for example, the factorization property
of the ground state in the anisotropic XY model [55-59].

In this paper, we focus on the spatial distribution of MQCs
in three-spin reduced states of a one-dimensional spin-1/2
XY chain, and study the properties of criticality and factor-
ization in the multipartite systems via the tripartite quantum
correlations. The four introduced MQC measures are based
on entanglement negativity [60] and the entanglement of for-
mation [61], which are computable and have larger spatial
distributions beyond the next-nearest-neighbor three spins. It
is found that the tripartite quantum correlations in reduced
subsystems can detect the ordered-nonordered transition of
the Ising model and obey the finite-size scaling even beyond
the nearest-neighbor cases. Furthermore, we show that the two
selected MQCs can indicate exactly the factorization point of
the anisotropic XY chain in both the thermodynamic limit
and the finite-size case. In particular, it is revealed that the
spatial distribution of MQC can be effectively modulated by
the anisotropic parameter of the model, and the long-range
bound entanglement [62,63] can be discriminated via our
newly defined MQC based on entanglement of formation.

This paper is organized as follows. In Sec. II, we intro-
duce the anisotropic XY model and the four utilized MQCs.
Next, the spatial distribution of MQCs and their critical be-
haviors in the Ising case are studied in Sec. III. In Sec. 1V,
the MQC modulation, the factorization property, and bound
entanglement in the XY chain are investigated. Finally, some
discussions and a brief summary of main results are given in
Sec. V.

II. THE MODEL AND MULTIPARTITE QUANTUM
CORRELATIONS

A. One-dimensional XY model and the analytical form
of three-qubit reduced state for the ground state

We now consider a spin-1/2 XY chain under the transverse
magnetic field on L spins, where the interactions involve only
nearest-neighbor couplings and the Hamiltonian with periodic
boundary conditions is given by [53,58]

L
HZ_)LZ[I Vaixaec L= 2 g; z+1]+2‘7w
i=1

where A > 0 is the dimensionless interaction constant with
respect to the external magnetic field, and {07, o], 67} are
the Pauli operators on the ith spin site. The parameter y
ranging from zero to 1 represents the anisotropic property of
the system, and the chain is referred to as the Ising model for
y = 1 and the isotropic XY model for y = 0. In the thermo-
dynamic limit (L — o00), the ground state of the many-body
system undergoes a quantum phase transition at the critical
point, A, = 1. At the phase transition, the correlation length
diverges as & ~ 1/|A — A¢| [58,59], but it was pointed out that
the two-spin entanglement length is short ranged [5]. In this
work, we will focus on the spatial distribution of MQCs and
the related critical phenomena in the spin model.

The XY chain is one of the few models for which the
ground state and its reduced states can be solved analytically

with an arbitrary chain length. Here, we consider a three-qubit
reduced density matrix p;j; of the ground state, in which the
subscripts denote the ith, jth, and kth sites in the spin chain,
respectively. Due to the translation invariance property of the
system, the reduced state can be rewritten as p;_q,;i+g and
the spin arrangement index m = (o, 8) uniquely determines
the form of the reduced density matrix no matter what the
value of the index i is chosen to be. Moreover, according to
the mirror symmetry, the indices (¢, §) and (8, «) lead to the
same form of the tripartite reduced states. Using the method
introduced in Ref. [56], the Hamiltonian in Eq. (1) can be
exactly diagonalized and the three-qubit reduced state of the
ground state |y) is expressed as [63]

pijk(a, B) = Pi—aii+ﬁ

= Z Ul Otal Ut+/3 ) Ul aatqat+/3’ (2)
p .5

where each of the summations p, ¢, s runs over {x,y, z, 0},
and the expectations of Pauli operators act on the ground state
|Yr) of the whole chain. A brief review of the diagonaliza-
tion process and the detailed expressions for the three-qubit
reduced state in the finite and infinite chains are presented in
Appendix A.

B. Multipartite quantum correlations based on entanglement
negativity

Negativity is a computable entanglement measure for bi-
partite mixed states psp, which is defined as N(pap) =
||PZ;||1 — 1 =73, |A| — 1 with A;s being the eigenvalues of
partial transposition matrix pf’l‘; [60]. In addition, the logarith-
mic negativity LN (pap) = log, ||,o§’}3| |1 is the upper bound of
the distillable entanglement [64]. Bennett et al. proposed three
reasonable postulates for measures of genuine multipartite
correlation and pointed out that a state of N particles has
genuine n-partite correlations if it is a nonproduct in every
bipartite cut [65]. Therefore, via the bipartite entanglement
negativity, we can define a measure for tripartite quantum
correlation,

Ns(pijr) = [N (pijx)N (pjiie )N (orii )17, 3)

where p; ;. is a tripartite mixed state, and the bipartite negativi-
ties characterize the quantum correlations in different bipartite
partitions. According to the definition, we have the MQC
N3(p;jr) being zero when the tripartite mixed state is bisep-
arable in any partition. It is noted that a similar measure for
a multipartite pure state was utilized to characterize genuine
tripartite entanglement [38,66].

Entanglement monogamy is one of the most important
properties in many-body systems [1]. Coffman, Kundu, and
Wootters proved the first quantitative relation for the squared
concurrence in three-qubit systems and showed that the resid-
ual entanglement is a genuine tripartite entanglement measure
[25]. Ou and Fan further proved that entanglement nega-
tivity is monogamous in N-qubit pure states [27], and the
case NA‘ sc = Nip + N3 in high-dimensional tripartite sys-
tems was also Verlﬁed numerically [38,67,68]. Moreover, it
has been shown that, utilizing the residual entanglement of
squared negativity in mixed states of many-body systems, one
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can detect the MQC and distinguish between the frustrated
and nonfrustrated regimes in spin chains [69—71]. Based on
the monogamy of negativity, a genuine tripartite quantum
correlation in a three-qubit mixed state p;;; can be defined as

T3 (pije) = max{(T§ + 7§ + 15)/3,0}, €

where T{ = Nz(,o,-‘jk) — Nz(,oij) — N?(pi) is the residual en-
tanglement corresponding to the central qubit i and the
meanings for T3j and T3k are similar. The nonzero 73 char-
acterizes the tripartite quantum correlation which cannot be
restored in two-qubit subsystems.

C. Multipartite quantum correlations based on entanglement
of formation

The entanglement of formation is a well-defined bipartite
entanglement measure, which has its operational meaning in
quantum state preparation and data storage [61]. It was proved
that the squared entanglement of formation is monogamous
in multiqubit systems, and its residual entanglements can
characterize genuine multipartite entanglement [28,72,73]. In
particular, for a three-qubit mixed state p;j, the residual
entanglement can indicate genuine tripartite quantum corre-
lation, which can be expressed as [28]

Tepr(Pijk) = E?(Piljk) - EJ%(,Oij) - E.?(,Oik)a (@)
where téEF(p,- k) 18 the tripartite quantum correlation corre-
sponding to the central qubit i, and Er(p;-) is the bipartite
entanglement between the qubit i and the subsystem r with r €
{j, k, jk}. The entanglement of formation between qubit i and
qubit pair jk is defined as Ef(p;jx) = min Y pEr(|9°)ijx)
in which E¢(|y*); k) = S(p}) = —Trp; log, p{ is the von
Neumann entropy and the minimum runs over all the pure
state decompositions pijx = >, psl¥i;) (¥ ] [61]. An ana-
lytical formula for two-qubit entanglement of formation was
given by Wootters [16], Ef(p;;) = h[(1 4+ (1 — Cizj)l/z)/Z],
in which h(x) = —xlog, x — (1 —x)log,(1 —x) is the bi-
nary entropy and C;; = max[0, vA; — v/A2 — /A3 — /A4l
is the concurrence with A; being the decreasing eigenval-
ues of matrix p;;(0y ® ay),oi*j(ay ® oy). The réEF(pijk) is an
effective MQC indicator which can characterize genuine
tripartite quantum correlation dynamics in multipartite cavity-
reservoir systems [28], and the cases for MQCs, ‘L'SEF(,O, k)
and ‘L'SEF(,O, k), are similar. However, although the residual
entanglement of formation has strong detection ability for
the MQC, its computation for a generic mixed state is very
difficult except for some specific mixed states such as rank-
2 mixed states. Therefore, the computable upper and lower
bounds for the MQC based on the residual entanglement of
formation are desirable.

Next, we first introduce a computable upper bound for the
tripartite quantum correlation Tégy(pi_,‘k) in a generic three-
qubit mixed state. Recently, Wang and Wilde determined the
positive partial transposition (PPT) exact entanglement cost
[74] of an arbitrary bipartite mixed state via the x entangle-
ment [75]. For any three-qubit mixed state p; i, the bipartite
PPT exact entanglement cost between qubit i and qubit pair

Jjk can be written as [75]
Eppr(pi) k) = Ec(pijk)
= log, ‘Hklf {Tr[StUk] ,|,k < :0 S,T\jk}
j ©)

where the x entanglement E, can be computed by means of
a semidefinite program (SDP) [76,77]. Furthermore, for the
bipartite entanglement cost, we have the relation

LN (k) 2 Ea(pijji) = Er(oijx), (7

where the first inequality is due to the logarithmic negativity
[64] in the lower bound of the PPT entanglement cost [74,78],
the second inequality comes from the relation between loga-
rithmic negativity and Rényi-o entropy entanglement for the
case 1/2 < o < 1 [79,80], and in the last inequality we use
the monotonic property of E, along with the parameter « and
the entanglement degenerating to the £y when o tends to 1.
According to the established relation in Eq. (7), we obtain that
the PPT exact entanglement cost is the upper bound for the
entanglement of formation. Therefore, combining Eq. (5) and
Eq. (7), we can define a computable upper bound of genuine
tripartite quantum correlation,

Eppr(p0ijjk) =

UB UB k(UB
t&%(ﬁijk) = (téizF '+ TSéF : S}(EF ))/3 ®)
where i = Edpr(piju) — EF(pij) — E}(pa) and  the
J(UB) k(UB)

meanings of tgpr ’ and Tgpp
are similar.

On the other hand, about the lower bound of genuine tripar-
tite quantum correlation, the key step is the characterization
on the lower bound of bipartite entanglement of formation
in a three-qubit mixed state. Chen et al. proved an analytical
lower bound for the entanglement of formation in an arbitrary
bipartite mixed state [81], and, for a three-qubit state p; jx, the
formula can be expressed as

with different central qubits

A=1

A e[l1,2], ©)

LB 0,

Etpnn) = {Hz[(l + V)21,
where A = max(||piijk||], [IR(pijx)ll1) is the maximum of
trace norms between partial transposition matrix and realign-
ment matrix, and H,(-) is the binary entropy function with
I' =1— (A — 1)2. With the help of the lower bound of en-
tanglement of formation, we can obtain an effective and
computable lower bound of genuine tripartite quantum cor-
relation,

wsie(pije) = max{ (g + ey + g )/3, 0}, (10)

LB
where /P = [E i o — Ej%(,oi )= Efz(pik) character-
izes the MQC correspondlng to central qubit i, and tripartite
quantum correlations Ts< ") and ré‘éI;B) with different central

qubits have similar meanings.

III. SPATIAL DISTRIBUTION OF MQCs AND QUANTUM
PHASE TRANSITION IN THE ISING CHAIN

We first analyze the spatial distribution of MQCs in the
spin-1/2 chain as shown in Eq. (1) and consider the case of
y = 1, which corresponds to the transverse-field Ising model.
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FIG. 1. Spatial distributions of four kinds of tripartite quantum
correlations N; (red solid line), T; (black dashed line), TJE: (blue
dotted line), and t&5: (green dot-dashed line) in three-spin reduced
states of the ground state for the Ising model at the thermodynamic
limit. [(a)—(e)] MQCs along with the parameter A for different spatial
distributions m = (1, 1), (2,1), (2,2), (3,1), and (3,2), respectively.
(f) The maxima of four kinds of MQCs N; (red squares), T3 (black
circles), T&B (blue triangles), and i (green inverted triangles)
in different distributions, and all the tripartite quantum correlations
disappear for the distribution m = (3, 3).

According to the expression of p;jx in Eq. (2), we know that
an arbitrary three-spin reduced state of the ground state can be
labeled by the index m = (&, ) which represents the spatial
arrangement of the three spins. It was pointed out in the XY
model at the thermodynamic limit (L — oo) that the three-
spin entanglements, characterized by permutation operators,
multipartite concurrence, and genuine negativity, can attain
the spatial distributions m = (1, 1) and m = (2, 1) [47,51,53].
In regard to the four tripartite quantum correlations introduced
in Sec. II, it is desirable to investigate whether the spatial
distributions of the MQCs have the longer ranges.

We first calculate the reduced state p;jx of the ground state
for the Ising model with the limit L — oo, and then evalu-
ate the four kinds of tripartite quantum correlations N3(p;jk ),
T5(pijk)s T (piji), and o (pijx), respectively. As shown in
Fig. 1, we plot the four MQCs of three spins with the spa-
tial distributions m = (1, 1), (2,1), (2,2), (3,1), and (3,2). In
Figs. 1(a)-1(c), the tripartite quantum correlation N3(p; i) (the
red solid line) has the maximal values, but the MQC vanishes
when the distribution of three spins goes beyond m = (2, 2).
For the distributions m = (3, 1) and m = (3, 2) in Figs. 1(d)
and 1(e), the tripartite quantum correlation rsl{g: (pijk) (the blue
dotted line) is maximal. Moreover, in all the distributions,
the MQCs T3(p;jx) (the black dashed line) and & (pij)
(the green dot-dashed line) are nonzero but have the smaller
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FIG. 2. The critical phenomenon and finite-size effects in the
Ising system characterized by the tripartite quantum correlation
T8 (pijx) with the spatial distribution m = (1, 1). (a) The change
of the MQC along with the parameter A for different chain lengths
L = 11 (black dot-dot-dashed line), L = 21 (red short-dashed line),
L =51 (blue dashed line), L = 101 (green dot-dashed line), and
L — oo (purple solid line), respectively. (b) The first-order derivative
0,78 versus the parameter A for different chain sizes, where the
chosen chain lengths are the same as those in panel (a) and the line
types have the same one-to-one correspondences. (¢) The minimum
of derivative 8xrsl£3F(°°> versus the parameter A close to the critical
point A, = 1. (d) The finite-size logarithmic scaling of the derivative
0 tSUEBF(L) versus the chain length. (e) The universality of the tripartite
quantum correlation T and the homogeneous function for the chain
sizes L = 41, L = 201, L = 401, and L = 2701, respectively.

values. In Fig. 1(f), we plot the maximums of the four MQCs
in different spatial distributions where the tripartite quantum
correlation N3 has the maximal value but the smallest cor-
relation length, and all the MQCs disappear at the spatial
distribution m = (3, 3) in this Ising system. It is clear that
the spatial distributions of these MQCs have a larger corre-
lation length than those of tripartite quantum entanglement
[47,51,53] not exceeding m = (2, 1).

Next, based on the computable tripartite quantum corre-
lations, we analyze the critical phenomenon and finite-size
effects in the Ising system. In Fig. 2, we characterize these
properties by the correlation rég“; (pijk) in three adjacent spins
with the spatial distribution m = (1, 1). The change of tripar-
tite quantum correlation along with the parameter A is plotted
for different chain lengths as shown in Fig. 2(a), where the
curve for the short chain length L = 11 (the black dot-dot-
dashed line) has a little deviation from the case L — oo (the
purple solid line). It is well known that the XY spin model
given in Eq. (1) will undergo a quantum phase transition
at the critical point A, = 1, and the previous study showed
that the nearest-neighbor three-spin entanglement based on
genuine multipartite negativity can indicate this transition and
the related finite-size effects [53]. In Fig. 2(b), the first-order
derivative 0, rslgi- (pijx) with different chain lengths is plotted,
which indicates the QPT and diverges at the critical point A, =
1 for the thermodynamic case L — oo. Moreover, as shown
in the figure, there is also a distinct minimum of 9;, ISEBF(L) for
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finite system size L at the pseudocritical point A, (L), which
approaches the critical point like Ap(L) — A, ~ —L7138. At
the thermodynamic limit, the derivative 8,\15%313(00) around the
critical point can be written as a function of (A — A.), and after

fitting the expected behavior to our data we can obtain

7B = 0.28191n |4 — A +0.3931,  (11)

which is depicted in Fig. 2(c). For sufficiently large L, we also
have a finite-size scaling relation

0t [Am(L)] = —0.28191n L 4 0.2720,  (12)

as shown in Fig. 2(d). Furthermore, we check the universal-
ity of the tripartite quantum correlation gy by plotting the
finite-size scaling. In the critical regime, we take a proper
scaling [82] and analyze the distance of the minimum of t&.
from the pseudocritical point A, (L). A general relation can be

obtained:

O Tsip — OaTsppliza, = R [LO-— Am)],  (13)

where R,SUE% (-) is a homogeneous function for the MQC. As
shown in Fig. 2(e), we plot the homogeneous curve via the
data of chain lengths including L = 41 (the black squares),
L =201 (the red circles), L =401 (the blue triangles),
and L = 2701 (the green inverted triangles), respectively.
In addition, we also performed the same analysis on the
correlation t{=(p;jx) with the spatial distributions m =
(2,1),(2,2), (3, 1), and observe similar qualitative results in
the Ising system. In Appendix B, the fitted relations for the
case m = (3, 1) are given.

The tripartite quantum correlation N3(p;jx) has relatively
larger values than those of the other MQCs even beyond the
nearest-neighbor case as shown in Fig. 1(f). Here, we further
analyze the properties of the Ising spin chain by utilizing the
correlation N3(p;jx) with the spatial distribution m = (2, 1).
In Fig. 3(a), the correlation N3(p;jx) versus the parameter
A is plotted in which the cases of short chains have a few
deviations from that of the thermodynamic limit L — oo.
In Fig. 3(b), the derivative 9, N\>” can indicate the QPT at
the point A, = 1, and the one for finite sizes BLN3(L) has the
minimum at the pseudocritical point Ap,(L). Similarly, after
fitting the data, we can obtain the relations about the derivative
8AN3(°°) close to A, and finite-size scaling of 8AN3(L) s

N =0.19611n A — Ac| 4 0.3042, (14)

(N Am(L)] = —0.19611In L +0.2198,  (15)

where An (L) — A ~ L™'% and the two equations are plotted
in Figs. 3(c) and 3(d), respectively. In the quantum critical
regime, the scaling behavior can be represented by 9,N; —
0. N3)p=1,, = R, [L(A — Ap)], for which the homogeneous
function is plotted in Fig. 3(e) via the data of spin chain
lengths L = 41 (black squares), L = 201 (red circles), L =
401 (blue triangles), and L = 2701 (green inverted triangles),
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InL L0~y

FIG. 3. The critical phenomenon and finite-size scaling proper-
ties characterized by the tripartite quantum correlation N3(p;jx) with
the spatial distribution m = (2, 1). (a) The MQC with different chain
sizes and (b) the derivative 0,/N; versus the parameter A, where
chain lengths are chosen to be L = 11 (black dot-dot-dashed line),
L = 21 (red short-dashed line), L = 51 (blue dashed line), L = 101
(green dot-dashed line), and L — oo (purple solid line), respectively.
(c) The fitting relation between BANéw) and the parameter A close to
the critical point. (d) The finite-size logarithmic scaling of BAN;L). (e)
The homogeneous function for the chain lengths L = 41, L = 201,
L =401, and L = 2701, respectively.

respectively. About the correlation N3 with the distributions
m = (1,1) and m = (2, 2), we can obtain similar qualitative
results in the Ising model. Moreover, the tripartite correla-
tions 73(;jx) and ts(]]g];) (pijk) can also characterize the critical
phenomenon and finite-size scaling properties, and the details
for their behaviors with the spatial distribution m = (1, 1) are
presented in Appendix B.

In this section, we have studied the spatial distribution of
the four kinds of MQCs and their critical behaviors in the Ising
system. In comparison with the previous study of tripartite
quantum entanglement, the distribution of the MQCs can be
extended to the longer range m = (3, 2). Furthermore, the
four utilized tripartite quantum correlations, even beyond the
adjacent three-spin case, can effectively characterize the crit-
ical phenomenon and finite-size scaling in the Ising system.
In next section, we will further analyze the properties of the
MQC:s in the anisotropic XY model.

IV. THE MODULATION OF MQC DISTRIBUTION AND
THE FACTORIZATION PROPERTY IN THE XY CHAIN

We now turn to study the MQCs in the XY model, for
which the Hamiltonian shown in Eq. (1) has the parameter
y # 1 being the anisotropic parameter. Factorization is one of
the most important properties in the anisotropic XY model,
which can be described as that the quantum correlation prop-
erties of the spin system undergo a sudden change in the
ordered phase and the ground state in the thermodynamic limit
turns into a fully factorized state at the factorization point
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FIG. 4. The MQCs versus the parameter A in the XY model with
L — o0. [(a) and (b)] Four kinds of MQCs N3 (red solid line), T3
(black dashed line), T35, (blue dotted line), and 755 (green dot-
dashed line) with the anisotropic parameter y = (0.2 for the spatial
distributions m = (1, 1) and m = (2, 1), respectively. [(c) and (d)]
The correlation N; with different values of y = 0 (cyan solid line),
y = 0.2 (magenta dashed line), y = 0.4 (violet dotted line), y =
0.6 (orange dot-dashed line), y = 0.8 (dark cyan dot-dot-dashed
line), and y = 1.0 (wine red short-dashed line) for the distributions
m = (3,3) and m = (4, 4), respectively. [(e) and (f)] The correla-
tion Ty with different ys under the distributions m = (3, 3) and
m = (4, 4), where the chosen values of y are the same as those of
Nj in panels (c) and (d) and the line types have the same one-to-one
correspondences.

[83-85]

Ap = . (16)

N

In the last section, we have found that all four kinds of
tripartite quantum correlations N3, T, T, and T4 can cap-
ture the properties of the QPT. But a desirable MQC measure
should be able to capture more properties of the many-
body systems, such as the factorization property in the XY
model.

For the XY model with the anisotropic parameter y = 0.2
in the thermodynamic limit, we plot the four kinds of MQCs
in the three-spin reduced state p;j; of the ground state as
shown in Figs. 4(a) and 4(b), where the spatial distributions
of the spins are chosen to be m = (1, 1) and m = (2, 1), re-
spectively. In Fig. 4(a), we find that the correlations N3 (red
solid line) and . (blue dotted line) can capture the sudden
change of the factorization and pinpoint correctly the factor-
ization point Ay = 1/,/1 — 2 >~ 1.0206, but the correlations
T; (black dashed line) and rSLégF (green dot-dashed line) cannot

indicate the sudden change property of the ground state. In
Fig. 4(b), the identification abilities for N and tgs, with the
distribution m = (2, 1) are similar, but the other two MQCs
still do not possess this property. Moreover, after comparing
the evolutions of tripartite quantum correlations N3 and Té{:ﬁ}
with those of the Ising cases shown in Figs. 2(a) and 3(a), we
find that the correlation evolutions in the XY model are quite
different. Besides the factorization property, the anisotropic
parameter ¥ = 0.2 increases N3 and . obviously in the
ordered phase (A > 1) which means that the parameter y can
modulate effectively the MQCs.

In the Ising system studied in the last section, the maximum
of spatial distribution for the four kinds of MQCs is m =
(3,2), and the correlation N3 disappears even beyond m =
(2, 2) as shown in Fig. 1(f). Next, for the XY system, it is nat-
ural to investigate the modulation effect of the parameter y on
the spatial distribution of the tripartite quantum correlations
N3 and t§=.. We plot the correlation N3 versus the parame-
ter A with the spatial distributions m = (3, 3), m = (4,4) in
Figs. 4(c) and 4(d), respectively, and the anisotropic parameter
y is chosen to be 0, 0.2, 0.4, 0.6, 0.8, and 1.0. It can be found
that the tripartite quantum correlation N3 is nonzero for most
values of y in comparison with the zero N3 for the Ising case
y = 1, which illustrates that the anisotropic parameter y can
modulate the MQC to a longer range of spatial distribution.
Moreover, compared to the N3 in Figs. 4(a)-4(d), we find
that the MQC in the ordered phase (A > 1) is sensitive to the
spatial distribution and decreases along with the increasing
of m = («, B), but the N3 in the nonordered phase (A < 1) is
robust to the spatial distribution for a properly chosen value
of y = 0.2 as shown by the magenta dashed lines in Figs. 4(c)
and 4(d). We further plot the t{s. versus the parameter A for
the spatial distributions m = (3, 3), m = (4, 4) in Figs. 4(e)
and 4(f), which also illustrate that the anisotropic parameter
(y =0.2) can effectively modulate the range of the MQC
distribution.

In order to elaborate on the modulation of spatial dis-
tribution of quantum correlations, we further analyze the
correlation N3(a, B) of reduced state p;jx in the nonordered
and ordered phases, and compare the distribution of N3(«, )
with that of concurrence C(«) in the two-qubit state p;; with
o being the distance between spins i and j. In Fig. 5, we
plot the spatial distributions of maxima of N3 and C along
with the distance parameters o and B in the two phases.
As shown in Fig. 5(a), the maxima of N3(«, 8) versus the
distribution indices («, ) in the nonordered phase (A < 1)
are plotted, where the anisotropic parameter y is chosen to be
1.0, 0.6, and 0.2 in the three panels, respectively. For the case
of y = 1, the maximal distribution of N3 is m = (2, 2) which
coincides with the result for the Ising case given in Fig. 1(f).
It should be noted that all the distributions are symmetric
under swapping « and 8 since the quantum state p; (o, B)
has the property. Along with the decreasing of the parameter
y, we find that the maximal distribution can attain the longer
ranges, where the Vs in the second panel (y = 0.6) reaches the
distribution m = (3, 3) and the situation for y = 0.2 attains
m = (7,7) and (8,2) (we multiply the N3 by a factor of 2
so as to show the trend of change more clearly in the third
panel). In Fig. 5(b), we plot the distribution of maxima of
concurrence Cpax (o) along with the distance parameter « in
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FIG. 5. The effective modulation of spatial distributions of
N3 (o, B) and Cyx (@) in the nonordered and ordered phases via the
parameter y in the XY model. (a) The distribution N3(«, f) with
y = 1.0, 0.6, and 0.2 in the nonordered phase (A < 1). (b) The
distribution Cy.x(r) with the same values of y in the nonordered
phase. The similar distributions but in the ordered phase (A > 1) are
plotted in panels (c) and (d), respectively.

the nonordered phase. For the Ising case (y = 1), the nonzero
concurrence attains the distribution Cy,x(2), and beyond the
distance o = 2 the two-spin correlation disappears. Along
with the decreasing of the parameter y, the spatial distribution
of Cpnax can reach a longer range as shown in the second
and the third panels, but the longest range « = 6 for y = 0.2
is still less than any one of the distance labels («, 8) for
the nonzero N3(7,7) with y = 0.2, which means that the
tripartite quantum correlation has the longer distribution range
than that of two-qubit quantum correlation. In Figs. 5(c) and
5(d), we plot the distributions of N3 and Cp,x in the ordered
phase (A > 1), where the parameter y still can effectively
modulate the distribution ranges of the two kinds of quantum
correlations [we multiply the N3 by a factor of 1.5 in the
second panel of Fig. 5(c)]. Moreover, in the ordered phase, the
maxima of N3(«, B) are always greater than those of Cpx ()
when the « is chosen to be the same value, for example,
N3(12, 1) ~ 1073 but Crpax(12) ~ 107> as shown in the third
panels of Figs. 5(c) and 5(d). In addition, after comparing the
distribution quantum correlations (N3 and Cp,x) in the two
phases with y # 1, we find that the spatial distributions in the
ordered phase have longer ranges than those in the nonordered
case.

Our previous studies on the MQC distributions in the XY
model have been made in the case of thermodynamic limit. It
is natural to ask whether or not the corresponding properties
still hold for the case of finite chain length. We can investigate
this problem by resorting to the fidelity of three-spin reduced

(a) 0.4 * m=(1,1)
L m=(2,1)

o m=(2,2)

m=(1.1)

Z 0.2

FIG. 6. The factorization property indicated by the sudden
changes of the tripartite quantum correlations N3 and 7 in the
thermodynamic limit. (a) Left: N3 versus the parameter A for y = 0
(cyan solid line), y = 0.2 (magenta dashed line), y = 0.4 (violet
dotted line), y = 0.6 (orange dot-dashed line), y = 0.8 (dark cyan
dot-dot-dashed line), and y = 1.0 (wine red short-dashed line) with
the spatial distribution m = (1, 1). Right: The comparison of the
sudden change positions of N3 (for y =0, 0.2, 0.4, 0.6, 0.8, 0.9) and
the analytical result A, = 1/,/1 — y? (black dotted line) with the
distributions m = (1, 1), (2,1), and (2,2). (b) Similar plots for the
correlation t&s: with the left panel being the correlation evolution
along with X [we chose the same values of y as those in panel (a)]
and the right panel being the coincident transition positions with the
analytical results.

states between the two cases [86],

(L) (0)y _ (L) (c0) (L)
F(pijk’pijk )= Tr|: V Pijk Piji  Piji :|’ (17)

where ,o(L) is the reduced state for the finite chain length L,

and ,0 k ) is the one for L — oo. In Appendix C, we calculate
the fidelities of the reduced states with L = 21 for the spatial
distributions m = (1, 1), (3,3), (6,3), and (6,6), respectively,
where the fidelities are larger than 0.99 for most regions.
Similar calculations are made for other distributions, and we
can obtain the same qualitative results. The very high fidelities
imply that the distribution properties obtained in the case of
thermodynamic limit can still hold for the case of finite chain
length (L > 21). The details for the analysis are presented in
Appendix C.

Factorization is an important property of the XY model and
other similar types of spin chains [87,88], and we have shown
in Figs. 4(a) and 4(b) that the tripartite quantum correlations
N3 and fslszF are superior to the other two MQCs (73 and rg“]g;)
because they can capture this interesting property. Here, we
further analyze the factorization property in a more generic
situation. For the case of three adjacent spins m = (1, 1) at the
thermodynamic limit, the correlation N3 versus the parameter
A is plotted for different values of y in the left panel of
Fig. 6(a), where the sudden change of the ground state can be
indicated clearly by the zero N3. In order to check the accuracy
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of the identification, we further plot these positions [the red
stars for m = (1, 1)] of sudden change and compare them
with the analytical result 2, = 1/,/1 — y? (the black dotted
line) in the right panel of this figure, which illustrates the
nice identification on the factorization property. We also plot
the sudden change positions for the spatial distributions m =
(2, 1) (the green triangles) and m = (2, 2) (the blue circles)
in this panel, which still exhibit a good coincidence. Simi-
larly, the tripartite quantum correlation t5(1, 1) versus the
parameter 2 is plotted in the left panel of Fig. 6(b), which can
indicate the sudden changes of the ground state for different
values of y too. Similarly, the accuracy of the identification
on the factorization is illustrated by the right panel and the
transition positions of . for the distributions m = (1, 1),
(2,1), and (2,2) coincide with the analytical results.

It was pointed out that the position of the factorization
point Ay =1/4/1 — y? is independent of the chain length
in the XY model [89], although the ground state at this
point in the finite chain case may not be fully separable. At
the factorization point with finite chain length, the ground
state of the XY system has a twofold degeneracy, and the
two eigenstates with even and odd parities can be written as
[47,83]

|q)even) = (|¢+> + |¢7>)/N+7
|Poaa) = (I¢+) — |¢-))/N-,

where Ny = /2(1 & cosl9;) are the normalization coeffi-
cients and the two factorized components in each eigen-
state have the form |¢1) = ®% | exp(40:07)|0) with 6. =
+arccos(y/(1 — y)(1 4+ y)). Because the two factorized
states |¢;) and |¢_) are nonorthogonal except for y =1,
the even and odd ground states given in Eq. (18) are not
orthogonal in general, which results in the ground state with
y # 1 being entangled at the factorization point.

In Ref. [47], the authors studied the tripartite entanglement
property at the factorization point in the case of finite chain
length and found that the tripartite entanglement in the ad-
jacent three spins obeys the finite-size scaling. In Fig. 7, we
further investigate this factorization property of the tripartite
quantum correlations N3 and g, which are plotted as the
logarithmic functions of the chain length L where the values
of anisotropic parameter y are chosen to be 0.2, 0.4, 0.6,
and 0.8 (the solid lines from top to bottom with different
colors in each panel) with the spatial distributions m = (1, 1)
and m = (2, 1), and the MQCs are further compared with
the behaviors of the corresponding concurrences Ci(y) for
the two nearest-neighbor spins (the dotted lines with same
colors in every panel). As shown in Fig. 7(a), we find the
tripartite quantum correlation N3 is nonzero at the factoriza-
tion points and decreases exponentially with the increasing
of chain length L, which obeys the similar finite-size scaling
to that of the concurrence C; (the solid and dotted lines with
the same color having the same value of y). Moreover, N; is
always greater than C; for the given values of L and y, and
the value of N3 decreases along with the increasing of y [for
example, N3(y = 0.2) ~ 1072 but N3(y = 0.6) ~ 10~° when
L = 21]. A similar property for N3 with the spatial distribution
m = (2, 1) is illustrated by Fig. 7(b), where we find the spatial
distribution of three spins has little influence on the factoriza-

(18)

m=(1,1) m=(2,1)
@ <02 (b)
j10 ,
g 10°
_:fm'“
17 25 33 41 9 17 25 33 41
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FIG. 7. The factorization properties of tripartite quantum corre-
lations N; and %, for the finite chain length cases with the spatial
distributions m = (1, 1) and m = (2, 1). (a) N3(1, 1) is plotted as the
logarithmic functions of the chain length L where the parameter y
is chosen to be 0.2, 0.4, 0.6, and 0.8 for the solid lines from top
to bottom, and the MQC is further compared with the behaviors of
the corresponding concurrence C; (the dotted lines with the same
colors). (b) The similar plots of N3(2, 1) at the factorization points,
where the values of y are the same as those of panel (a). [(c) and
(d)] The correlation T3, at the factorization points versus the chain
length L for different distributions.

tion property in comparison with the adjacent case m = (1, 1)
in Fig. 7(a). In Figs. 7(c) and 7(d), we further plot the tripartite
quantum correlation ‘L'Slg; with the distributions m = (1, 1) and
m = (2, 1) in a similar way, where we find that the T still
obeys the finite-size scaling and the spin distributions have
little influence on the scalings but their decreasing exponents
are different from that of two-qubit C; (or N3). For the given
values of L and y, t§%. is always less than N3, and the differ-
ent scaling exponents may come from the different measure
methods for tripartite quantum correlation: N3 quantifies the
MQC by the way that the system is correlated in any bipartite
partition, but t/%. quantifies the MQC by the way that the
correlation is multipartite which cannot be restored in any
two-spin subsystems. It is noted that our analysis does not
include the cases of y = 0 or ¥ = 1 since the reduced states
pijr for the two cases are fully separable and then have zero
tripartite quantum correlations [47,56].

At the end of this section, we further analyze the difference
between the two kinds of tripartite quantum correlations N3
and 3. in the XY model. For the given spatial distribution
m = (o, B) and the values of parameters A and y, the maxi-
mum of Nj is greater than that of 1:5[{5]?:, which can be observed
by the corresponding values in Figs. 4 and 6. In addition, for
the case of finite chain length with the same parameters in
Fig. 7, the correlation N3 at the factorization point still has
the larger value in comparison with that of . The larger
value of N3 makes its spatial distribution well modulated via
the parameter y as shown in Fig. 5. However, the detec-
tion ability of tge: for tripartite quantum correlation may be
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FIG. 8. The bipartite entanglement negativity N(p;;x) (black
dashed line) and tripartite quantum correlations N; (red solid line)
and t45. (blue dotted line) as the functions of the parameter A,
where t{5. has the stronger detection ability than that of N; and
can indicate the bound entanglement. The inset highlights the bound
entanglement detection when A € (1.205, 1.226).

superior to that of N3. In Ref. [63], the authors studied the
bound entanglement [90,91] (the entangled state but with the
positive partial transposition) of three spins in the XY model
at the thermodynamic limit, since the bound entangled state
is a kind of useful physical resource for quantum secure com-
munication [92]. They found that, for the spatial distribution
m = (4, 4) with the parameter y = 0.5, there is bound entan-
glement in the reduced three-spin state p; ;x under the partition
i|jk when the parameter A is chosen in certain ranges. In
Fig. 8, we plot the bipartite entanglement negativity N (p;jk)
and tripartite quantum correlations N3 and &5 as functions
of the parameter A for the given distribution and value of y.
We find that, when the parameter 0.959 < A < 1.074, both the
bipartite negativity (the black dashed line) and the tripartite
quantum correlation N3 (the red solid line) are zero as shown
in the figure, but the tripartite quantum correlation t{s. (the
blue dotted line) has a nonzero value which indicates the
existence of bound entanglement. According to the definition
of N3 in Eq. (3), this tripartite quantum correlation cannot
identify the bound entanglement due to its construction com-
ing from the product of bipartite negativities. Moreover, in
the inset of Fig. 8, we further highlight the bound entan-
glement indicated by nonzero tg in the parameter region
A € (1.205, 1.226).

V. DISCUSSIONS AND CONCLUSION

Based on multipartite correlation postulates and entan-
glement monogamy [27,28,65], the four utilized tripartite
quantum correlations N3, T3, T3, and t&b: we introduced
in Sec. II are computable for an arbitrary three-qubit mixed
state, which can serve as the basic tools for characterizing
the properties of quantum many-body systems. In comparison
with the tripartite quantum entanglement I, [47] and genuine
multipartite negativity [53], the tripartite quantum correla-
tions have much larger spatial distributions, which makes

our defined MQCs more suitable to distinguish the quantum
properties in the XY system especially when the tripartite
quantum entanglements and two-site concurrence are unde-
tectable. In experiments, the observations on the distribution
property of tripartite quantum correlations and the quantum
critical phenomenon are possible in many-body systems. On
the one hand, the observers only need process the data of
several particles rather than complete information about the
ground state; on the other hand, the experimental preparation
about the quantum many-body system for dozens of qubits has
been realized in superconducting platforms [93-95].

Hofmann et al. studied the four-partite entanglement in
the XY chain by using the genuine multipartite negativity,
and found that the entanglement disappears when the distance
between any two spins in the four-qubit subsystems is larger
than 2 [53]. Moreover, by means of the four-concurrence
[96], Osterloh et al. analyzed the four-particle entanglement
in the XY chain, where the entanglement changes to zero
when any two pairs of spins are next-nearest neighbors [97].
It is meaningful to further investigate whether the four-partite
quantum correlations have the larger spatial distributions.
Based on the monogamy property of squared concurrence
[26], a multipartite quantum correlation measure is presented
in four-qubit systems [98], which can characterize the multi-
partite entanglement in cluster-class states [99]. Particularly,
the MQCs utilized in this paper can be easily extended to
the four-qubit case and are computable for an arbitrary four-
qubit mixed state. Besides the XY model studied in this
work, it is worthwhile to investigate the MQC modulation
and critical property in other kinds of many-body systems
such as Heisenberg spin chains with the alternating-field
or Dzyaloshinskii-Moriya interaction [100,101], multipartite
quantum systems with topological quantum phases [102],
multispin systems with long-range interactions [103-105],
and so on.

In conclusion, we have studied the MQC properties and
critical phenomena in a one-dimensional spin-1/2 XY model,
where the four tripartite quantum correlations we introduced
are computable and can characterize effectively the MQC in
the three-spin reduced state of the ground state. In the Ising
case with y =1, the spatial distribution of MQCs attains
the range m = (3, 2), which is larger than the maximal dis-
tribution of tripartite quantum entanglement, m = (2, 1). All
the correlations N3, T3, T, and T4 can be used to detect
the quantum phase transition and obey the finite-size scaling,
even beyond the situation of nearest-neighbor three spins.
Furthermore, we have shown that the two selected MQCs N3
and 7§ can capture exactly the sudden change in behavior of
the factorization property in the XY system for both the ther-
modynamic and finite-size cases. In particular, it is revealed
that the anisotropic parameter y can modulate effectively the
spatial distribution of N3 to a much longer range, which is
very useful for the information propagation in multipartite
systems. The similar modulation property still holds for the fi-
nite chain length according to the super-high fidelity between
the three-spin reduced states in the finite and infinite chains.
In addition, the correlation rslg: has more strong detection
ability and can distinguish the bound entanglement in the XY
system when the tripartite quantum correlation N3 loses its
efficacy.

042427-9



SU, REN, WANG, AND BAI

PHYSICAL REVIEW A 106, 042427 (2022)

ACKNOWLEDGMENTS

This work was supported by NSF-China (Grants No.
11575051 and No. 11904078), Hebei NSF (Grants No.
A2021205020 and No. A2019205266), the Key-Area
Research and Development Program of GuangDong
Province (Grant No. 2019B030330001), and the project
of the China Postdoctoral Science Foundation (Grant No.
2020M670683). J.R. was also funded by the Science and
Technology Project of Hebei Education Department (Grant
No. QN2019092).

APPENDIX A: THE THREE-SPIN REDUCED DENSITY
MATRIX OF THE GROUND STATE IN THE XY MODEL

In Sec. IT A, we introduced the Hamiltonian of the XY
model and gave the expression of the three-qubit reduced
density matrix p;;; of the ground state. Utilizing the trans-
lation invariance of the system, the reduced state of three
spins with the spatial distribution m = (o, 8) can be written
as [63]

q
Pi—a,ii+p = _Z Gz aat Ol-HS N[)O—l a%i o'H-,B’ (A1)

p-q,s

where the label i is an arbitrary spin position in the XY chain,
and the operators in the expectation value (o) 007}, Y gl act
on the ground state with the summation indices p, g, s run
over the set {x, y, z, 0}. According to this expression, the three-
spin reduced density matrix can be obtained by calculating a
set of correlations (o} 0/ 0; 0it p)1y)- Combining the symmetry
of the Hamiltonian, one can get some zero correlations, which
results in half of the matrix elements of the three-qubit state
being zero [63]. After some derivations, we can obtain the
reduced state in the computational basis:

Pi—a,i,i+p

ayp 0 0 ay O ap a7 O
0 an a3 0 as 0 0 oaxp
0 axn a3 0 a5 0 0 asp

azy; 0 0 aw O a ay7 O

asi 0 0 ass O ass as; O

ar 0 0 au O aw ap; O
0 agp a3z 0 ags 0 0 asg
(A2)

The concrete form of the three-spin reduced density matrix
will be available if we can calculate all 32 nonzero matrix
elements, which is closely interrelated with the set of corre-
lation functions {(o” o/o; +,3>Wf }. Using the method given
in Refs. [56,57,59], these three-spin correlations can be fur-
ther decomposed into a series of determinants with elements
only being two-spin correlation functions. The aim of this
Appendix is to give a brief description of the derivation and
provide the detailed information needed to compute the three-
spin reduced state in Eq. (A2).

Here, we first give a brief review on the derivation of
characterizing three-spin correlation by the two-spin ones

[56,57,59]. After Jordan-Wigner transformation, the Pauli op-
erators in the Hamiltonian shown in Eq. (1) of the main text
can be mapped into spinless fermion operators cj and c;, and
we have the following relations:

-1
of = A/[ [AiB:.
i=1

(A3)

-1

o} = —iB/[ [AiB:.
i=1

Gl = —A[B[,

where the symbols denote A; = ¢; + c; and B = clT — ¢; with
the index [/ being the position of spin. By using the Wick
theorem, the three-site correlations can be decomposed into
a series of products of three kinds of correlation functions

(A1Bi) yy» (AlAk) 1y, and (B;By)y). After the exact diagonal-
ization of the Hamiltonian, we can obtain [56]
(AtA gy = du,
(B1Bi)1yy = —duk, (A4)
(A1Br)y) = Gy,

where §j; is the delta function, and G, is a newly defined func-
tion with the subscript r = k — [ according to the property of
translation symmetry. In the case of the thermodynamic limit,
the new function has the form

G, :% /ﬂ dolcos(¢pr)(1 + A cos )
° | (AS)
— yAsin ¢ sin(¢r)]—,
Ag

where the parameters are Ay = \/a?+ B2, « = (Acos¢ +
1), and B = Ay sin ¢, respectively. In the case of finite chain
with length L, we have

I !
G, ZZZA_q
q

— yAsin g, sin(¢yr)l,

[cos(¢pgr)(1 + A cos )
(A6)

where the parameter can be written as A, = /o2 + B2,
ag = (Acosg, + 1), B, =Aysing,, and ¢, =2mq/L, re-
spectively. Therefore, the nonzero matrix elements in Eq. (A2)
can be calculated by the above method.

As an example, we give the detailed calculation procedure
for the first matrix element a;;. According to the expression
in Eq. (A1), the element a;; in Eq. (A2) can be written as the
sum of certain nonzero correlation functions:

ay = (I][)w,) + (O’iz_ II)W) + (IO’-ZI)W)
+<Ilaz+ﬁ)|1// +( Oi—a0i I) +< Ioz-&-ﬂ)\\p
+<IU Gz+f3>|1//) +< Oi—a0i t+ﬂ>\1/f> (AT)

where the subscripts i, @, and B represent the spatial dis-
tribution of three spins, and I is the identity operator of a
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single-qubit system. For convenience, we further simplify the
expression of Eq. (A7) by using some abbreviations for the
single-, two-, and three-spin correlations, for instance,

Zoo = oull)y)
Z_olp = (Giia10i1ﬁ>|w), (A8)
Z_oZoZg = <G,ia0izoi€rﬁ>|¢)’

where the subscripts —«, 0, and g in the abbreviation mean
the relative distance to the spin i, and the letter Z means the
correlation is related to the Pauli operator of z direction. In
Eq. (A7), it is clear that the element a;; does not contain
any correlation function related to Pauli operators ¢ or o”.
The reason is that both ¢* and o~ are antidiagonal matrices;
thus all the first elements of the three-spin correlation operator
{0 00}, 4} are zero when it contains o* or 0. According
to the above method via Jordan-Wigner transformation and
the Wick theorem, we can calculate the matrix element a;,

and, after some derivation, we have
aj =1-3Gy+ 3G —G,G_,
- GaﬂgG,a,ﬁ - G/_L}G,ﬂ + Z,aZ()Zﬂ,

(A9)

where G, is the two-site correlation defined in Eq. (A4)
with the subscript being the relative distance [for the case
of infinite chain length, we use the expression in Eq. (AY),
and we use the formula in Eq. (A6) when the chain has a
finite chain length], and the three-spin correlation function
can be decomposed into the determinant of a set of two-site
correlations

GO Ga Got+ﬁ
Z oZZg=—| Gy Gy Gg (A10)
G_a_ﬁ G—ﬂ GO

Similarly, we can calculate other nonzero matrix elements
in Eq. (A2). It should be pointed out that, for all the three-
spin correlations {0/ ,0;'0}, 5} which concern o* or o7, the
effective contribution comes from the case that a pair of Pauli
operators o* or ¢” appears in the three-spin correlation. Af-
ter some derivations, we can obtain the formulas for other
nonzero elements:

J

an =1—Gy— Gy — GyG_g + GoypG_q_p + GsG_p — A,
a3 =1—Gy— Go+ GyG_o — Gy pG_oq_p +GpG_pg — A,
sy =1+ Go— G+ GoG_o + GaspG_a—p — GsG_p + A,
ass =1 —Go— Go+ GyG_o + GoipG_oq_p — GsG_g — A,
ass = 1 + Gy — G + GoG—g — GoypG_q—p + GsG_p + A,
a7 =14 Gy — G — GoG_o + GaspG_o—p + GsG_p + A,
ass = 1 +3Gy +3G} — GGy — Goi G o — GgG_pg — A,
a1y = XoXp + B —YoYs — C,

ax = XoXpg + B+ YoYs +C,

ass = XoXg — B — VoY +C,

agr = XoXg — B+ Yo¥s — C,

a1 =X_oXp +D =Y Y5 — &,

as =X_oXg+D+Y_ Vg +E&,

asg =X _oXp — D — Y Y5 + &,

ay =X o X —D+Y Y5 — &,

a7 =X oXo+F —Y_o ¥y — G,

ax =X _oXo—F Y Yo +G,

azs =X o Xo+ F+Y_ Yo+ G,

ase =X oXo — F +Y oY — G, (A11)
where the letters X and Y in the expressions imply that the correlation functions are from the ex-
pectation value of o, and o,, and the other parameters have the forms A=2Z7Z_,7Z0Zg, B=Z7Z_,XoXp,

C=Z_Y0Yp, D=X_oZ0Xp, E =Y _oZoYp, F = X_oXoZg, and G = Y_,YyZg, in which all the abbreviations can be expressed
via two-site correlation functions:
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Z-oZg = Gy — GyrpG_q-p,

G-
X_oXp = (=1)*F|
G_y_p
G
Yoo Yp = (=D
Ga—pr2
Gy G,
Z,D,Z()Zﬁ = — G,a GO
G p G Gy
X_oXoZg
G_
= (—1 a+1
(=1) G
G_op
Y_oYoZg
G
— (_1)a+1
G,a+2
G o pr1
X_oZoXg
G
G_
_ (_1\2+B a+1
= (=D G
G_o—p
Y_oZo¥s
G
G_
_(_1\2+B o2
=(=1) G
G_o—p+2

According to Egs. (A9)—(A12), one can obtain the concrete
form of the three-spin reduced state p;_q ; i+g, Where the for-
mulas of the two-site correlation function G, in Egs. (AS)
and (A6) are suitable for the infinite and finite chain cases,
respectively.

APPENDIX B: THE CRITICAL PHENOMENON AND
FINITE-SIZE EFFECTS IN THE ISING SYSTEM
INDICATED BY OTHER TRIPARTITE QUANTUM
CORRELATIONS

In Sec. 111, utilizing the tripartite quantum correlation g

with the spatial distribution m = (1, 1), we analyzed the crit-
ical phenomenon and finite-size effects in the Ising model.
The MQC with the distributions m = (2, 1), (2,2), and (3,1)

Goz+,3

Goyp
G_
Gutp
G
G(Jt—2 Ga+ﬂ—l
G, Gs |
G_p_1 Go
(A12)
Ga GaJr,B
G Ggul|
G Go
Gy 2 Gy Ga+ﬂ72
Gy G, Gg
G,z GO G/372
G_ﬂ_l G_ﬁ+1 G—l
Go1 Ga+1 G(X‘HS
Go G2 Gpt1
G, Gy Gg—_1
G Gopgip - G

can also serve as a good indicator to detect the QPT and
characterize the finite-size effects. After some derivation, we
can obtain similar qualitative results and plots like Fig. 2 in
the main text. Here, for the distribution m = (3, 1), we give
the fitted relations for rgi];(oo) and 8”5%1;@)’ which can be
expressed as

0, TaB() = 0.0989In |1 — Ac| +0.1240,  (BI)

3 Tgpe [Am(L)] = —0.0989In L 4 0.0814,  (B2)
where the position of the minimum of 9,7k scales as
Am(L) — Ae ~ —L7120,

The tripartite quantum correlation 73, we introduced in
Sec. II of the main text, is also an effective indicator to char-
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FIG. 9. The critical phenomenon and finite-size scaling proper-
ties characterized by the tripartite quantum correlation T3(p;j;) with
the spatial distribution m = (1, 1). (a) The MQC with different chain
sizes and (b) the derivative 9,75 versus the parameter A, where
chain lengths are chosen to be L = 11 (black dot-dot-dashed line),
L = 21 (red short-dashed line), L = 51 (blue dashed line), L = 101
(green dot-dashed line), and L — oo (purple solid line), respectively.
(c) The fitting relation between 0;, T3(°°) and the parameter A close to
the critical point. (d) The finite-size logarithmic scaling of 9;, T3<L). (e)
The homogeneous function for the chain lengths L = 41, L = 201,
L =401, and L = 2701, respectively.

acterize the critical phenomenon and finite-size effects in the
spin model as shown in Fig. 9 where the spatial distribution
of the MQC is chosen to be m = (1, 1). In Fig. 9(a), the
three-spin correlation 73(p;jx ) as a function of A is plotted with
different chain lengths, and Fig. 9(b) shows the first-order
derivative 9,73(p;jx) versus the parameter A. Similar to the
situation of N5 and 7§ shown in Figs. 2 and 3 of the main
text, we find that the curves for short chain lengths have a
little deviation from the infinite chain case, and the 9, T3(p;jx)
diverges for infinite chain and has distinct minima for the
finite chain lengths. Moreover, for the cases of infinite and
finite chain length, the fitted functions of T3(p;jr) have the
forms

9T, = 0.07761n |1 — Ac| + 0.1304, (B3)

BAT;L)[?»m(L)] = —0.0776In L + 0.0968, (B4)

where Am(L) — A. ~ —L71?8 and the two fitted results are
plotted in Figs. 9(c) and 9(d), respectively. Additionally, we
can also give a general relation to exhibit the behavior of
the tripartite quantum correlation 73 in the quantum critical
regime for finite system size,

T3 — 0 3lh=nn = Or LA — Am)],

where Qr, is a homogeneous function and plotted in Fig. 9(e)
in which we utilize the data for chain sizes L = 41, 201, 401,
and 2701, respectively.

The tripartite quantum correlation t&5. with the distribu-
tion m = (1, 1) has similar behaviors as shown in Fig. 10
and can characterize the critical phenomenon and finite-size
effects. We plot the correlation versus the parameter A with

(BS)

048 09 1};0 1.1 1.2

7

10

EE 3

< -6

3& 9

% -12

g -1
5 6 7 % -%.4 -0.2 0.0 0.2 04
InL = L(A—Ay,)

FIG. 10. The critical phenomenon and finite-size scaling prop-
erties characterized by the tripartite quantum correlation T3 (p; k)
with the spatial distribution m = (1, 1). (a) The MQC with different
chain lengths L = 11 (black dot-dot-dashed line), L = 21 (red short-
dashed line), L = 51 (blue dashed line), L = 101 (green dot-dashed
line), and L — oo (purple solid line), respectively. (b) The derivative
0, T versus the parameter A and the line types of the curves have the
same meaning as those in panel (a). (c) The fitting relation between
3, Tgme™) and the parameter A close to the critical point. (d) The finite-
size logarithmic scaling of 9; Tsng:(L)- (e) The homogeneous function
for the chain lengths L =41, L =201, L =401, and L = 2701,
respectively.

different chain length L in Fig. 10(a), and the derivation 9; t&s

can indicate the QPT as shown in Fig. 10(b). Similarly, rngp(oo)

and 0, ISLEF(L) can be fitted with the relations
Bt = 0.04611n [A — Ac| +0.0685,  (B6)
3 Tam [Am(L)] = —0.0461In L + 0.0481,  (B7)
m=(1,1) m=(3,3)
1 1
/ Vil 7 Vi
o 0.995 I
0.99 “
1
1 2o 05 !
0o 3 Xo00
m=(6,3) m=(6,6)
1 1
=099 |/ =099 ||
|
]
0'93, . 0.98
1 05 1 05
A 00 vy A 00 Y

FIG. 11. The fidelities of the reduced three-qubit states between
the finite chain length L = 21 and the infinite chain case. The four
panels correspond to the spatial distribution m = (1, 1), (3,3), (6,3),
and (6,6) respectively.
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which are plotted in Figs. 10(c) and 10(d). For the finite
chain length, the minimum of 9; t&. scales as Am(L) — Ac ~
—L~'3_ Furthermore, the behavior of the tripartite quantum
correlation T in the quantum critical regime for finite sys-
tem size can be exhibited by a homogeneous function as
shown in Fig. 10(e), where we utilize the data for chain sizes

L =41, 201, 401, and 2701, respectively.

APPENDIX C: THE FIDELITY OF THE THREE-SPIN
REDUCED STATES BETWEEN THE FINITE AND INFINITE
XY CHAINS

In this Appendix, we give detailed information of the cal-
culated fidelities for the three-qubit reduced state between the
finite chain length L = 21 and the infinite one with the spatial
distributions of three spins being m = (1, 1), (3,3), (6,3), and

(6,6), respectively. According to the formula in Eq. (17) of
the main text, we can calculate the fidelities with different
distribution, which are plotted as functions of parameters A
and y in Fig. 11. As shown in the figure, it is obvious that
the fidelities for most regions of A and y are larger than
0.99, regardless of the spatial arrangement of three spins (we
also calculated the fidelities for other spatial distributions
and obtained similar results). That is to say, the difference
between the three-qubit reduced density matrices in the finite
and infinite chain cases is very small. The quite high fidelities
imply that the distribution properties of N3 obtained in the
thermodynamic limit (L — o0) still hold in the case of finite
chain length. In particular, the anisotropic parameter y can
modulate effectively the spatial distribution of N3 to a longer
range as shown in Fig. 5 of main text.
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