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Applications of the Hillery-Zubairy entanglement criteria to N-qubit systems:
The Tavis-Cummings model
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We consider the application of the entanglement criteria derived by Hillery and Zubairy [Phys. Rev. Lett. 96,
050503 (2006)] to the detection of entanglement in N-qubit systems. For N = 2 qubits we show that, with the
natural choice of operators, one of the criteria never detects entanglement; we also derive conditions for the other
criterion to work and for it to have a simple relation to the negativity when it does. For general angular momenta
we show the Hillery-Zubairy relations can always detect the entanglement of the (pure) states of well-defined
total (J, Jz) if the “test” operators are chosen appropriately. We then show how this may be used, in particular, to
develop useful criteria to detect entanglement in a system of N two-level atoms interacting with a field initially
in a number state (the Tavis-Cummings model).
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I. INTRODUCTION AND MOTIVATION

Entanglement is a valuable quantum resource, and hence
it is useful to have ways to determine experimentally whether
two quantum systems are entangled, particularly if this can be
done only through measurements carried out on the separate
systems. Several criteria were developed to this end over the
years; see, e.g., [1–13] for a partial list. Most of these only
detected certain types of entanglement and many are only suf-
ficient, but not necessary, conditions for entanglement. This
means, in general, one must resort to several different criteria
to get as complete a picture as possible of what is going on in
the system under study.

In this paper we focus on the two entanglement conditions
derived by Hillery and Zubairy in [10], initially for two modes
of the radiation field, but since then extended to other systems
[12,14]. For a bipartite system, if A and B are non-Hermitian
operators, each acting on one of the two subsystems, the joint
state is entangled if either one of the following conditions
holds:

|〈AB†〉|2 > 〈A†AB†B〉, (1a)

|〈AB〉|2 > 〈A†A〉〈B†B〉. (1b)

Although sufficient, these conditions are, in general, not nec-
essary for entanglement. In applications to finite-dimensional
systems, it was generally found that Eq. (1a) is the more useful
of the two criteria, and we will show this to be the case here
as well.

Generally speaking, the goal of this paper is to explore the
usefulness of the criteria (1) to detect entanglement in systems
involving a finite number of qubits. We start by looking at the
simplest case, a two-qubit system, to develop an intuition for
the way the criterion (1) detects entanglement and for when it
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fails to do so; we also discuss the similarities and differences
with a necessary and sufficient criterion that was presented in
[15]. We then use these insights to propose specific choices
for the operators A and B to detect different kinds of entangle-
ment in spin systems, extending the results of [14]. Finally,
we illustrate their usefulness with one specific example,
namely, by looking at entanglement between the atoms in the
Tavis-Cummings model with the field initially in a number
state. Here again we compare the results obtained with our
criteria to others that were derived previously, in particular in
[3,7,13].

II. TWO QUBITS

A. Density matrix parametrization

We start with the simplest case of two qubits, or spin- 1
2

particles, where we will use the standard quantum information
convention of identifying the state |0〉 with the positive-
eigenvalue eigenstate of σz. For the operators A and B
we will consider initially either σ+ = (σx + iσy)/2 or σ− =
(σx − iσy)/2 and later their transformations by local unitaries.

We will consider in this section only density operators of
the following form:

ρ = 1

4

⎛
⎜⎝

1 + t3 0 0 t1 − t2
0 1 − t3 t1 + t2 0
0 t1 + t2 1 − t3 0

t1 − t2 0 0 1 + t3

⎞
⎟⎠

= λ1|�+〉〈�+| + λ2|�+〉〈�+|
+ λ3|�−〉〈�−| + λ4|�−〉〈�−| (2)

with λ1 = 1
4 (1 + t1 + t2 − t3), λ2 = 1

4 (1 + t1 − t2 + t3), and
λ3 = 1

4 (1 − t1 + t2 + t3), λ4 = 1
4 (1 − t1 − t2 − t3). The quan-

tities ti may be assumed to be ordered so that

1 � t1 � t2 � |t3|, (3)
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and the |�±〉, |�±〉 are the Bell states. The condition (3)
ensures all the eigenvalues λi are nonnegative, except possibly
the last one, which requires the additional condition

t1 + t2 � 1 − t3. (4)

The matrix (2) is written in the standard basis. While not the
most general form possible for a two-qubit system, it was
shown in [16] that most density matrices can be transformed
into a form essentially equivalent by local Lorentz transfor-
mations acting on each qubit separately. Special instances of
density operators of the form (2) have also been shown to have
interesting properties, such as maximizing entanglement for a
given degree of mixedness [17]; they are, in turn, a subset of
states that were originally studied in that context by Ishizaka
and Hiroshima [18] and which came to be called later “X
states” [19].

It is easy to see that the eigenvalues λ′
i of the partial trans-

pose matrix ρTB are λ′
1 = 1

4 (1 + t1 + t2 + t3), λ′
2 = 1

4 (1 + t1 −
t2 − t3), λ′

3 = 1
4 (1 − t1 + t2 − t3), and λ′

4 = 1
4 (1 − t1 − t2 + t3).

Because of the assumption (3), only the last of these eigenval-
ues can be negative, which means that the negativity [20] of
the state (2) is given by

N (ρ) = ‖ρTB‖1 − 1 = 1
2 (|λ′

4| − λ′
4)

= max
{
0, 1

4 (t1 + t2 − 1 − t3)
}
. (5)

Put differently, the state (2) is entangled if and only if

t1 + t2 > 1 + t3. (6)

Note that this condition, together with Eq. (4), forces t3 to be
negative.

B. Hillery-Zubairy criteria with A, B lowering operators

We can now check how well the Hillery-Zubairy conditions
do at detecting this entanglement. Starting with the choice
A = σ−,a = |1〉a〈0| and B = σ−,b = |1〉b〈0|, it is easy to
see that

〈AB†〉 = Tr(ρAB†) = Tr(ρ|10〉〈01|) = 1
4 (t1 + t2), (7a)

〈A†A〉 = Tr(ρ|0〉a〈0|) = 〈00|ρ|00〉 + 〈01|ρ|01〉
= 1

2 = 〈B†B〉, (7b)

〈A†AB†B〉 = Tr(ρ|00〉〈00|) = 1
4 (1 + t3). (7c)

From Eqs. (3), (7a), and (7b), it follows that the second con-
dition, Eq. (1b), can, in fact, never happen in the two-qubit
system. On the other hand, the first condition, Eq. (1a), is
equivalent to 1

16 (t1 + t2)2 > 1
4 (1 + t3), or

t1 + t2 > 2
√

1 + t3. (8)

Since t3 is always a number between −1 and 1, one always has
2
√

1 + t3 � 1 + t3, and so Eq. (8) always implies, but is not
equivalent to, Eq. (6); that is to say, there are entangled states
[satisfying Eq. (6)] that do not satisfy Eq. (8), and therefore
are not detected by the entanglement criterion (1a).

Moreover, the quadratic dependence of |〈AB†〉|2 on t1 +
t2, compared to the negativity (5), means that |〈AB†〉|2 −
〈A†AB†B〉 is not an entanglement monotone. For example,
suppose you change t1 → t1 + ε and t3 → t3 + 0.9ε. Then, if

ε > 0 the negativity (and hence the entanglement) increases
by an amount 0.1ε, but |〈AB†〉|2 − 〈A†AB†B〉 changes as

1

16
(t1 + t2 + ε)2 − 1

4
(1 + t3 + 0.9ε)

= 1

16
(t1 + t2)2 − 1

4
(1 + t3) + ε

4

[
1

2
(t1 + t2) + ε

4
− 0.9

]
,

(9)

and the quantity in the square brackets on the right-hand side
can be positive or negative depending on the actual value of
ε (note an overall negative value is perfectly possible since
t1 + t2 can be as small as 1.6 and still register entanglement).

Despite this negative general result, we find there are
special situations (typically involving families of states de-
pending on fewer parameters, or with some symmetries) for
which the difference |〈AB†〉|2 − 〈A†AB†B〉 is an entanglement
monotone. A couple of examples are presented in the next
subsection.

C. Optimizing the choice of A and B via local unitaries

The results from the previous subsection depend on the
density matrix adopting a certain form (which, in general, can
only be achieved after performing suitable unitary, local trans-
formations on both subsystems) and also on special choices
for the operators A and B. It is natural to ask if some other
choices of A and B, related to σ− by local unitary transforma-
tions, could be better at detecting the entanglement of states
like Eq. (2), for given values of the parameters ti. Specifically,
we want to look for local unitary operators Ua and Ub to apply
to σ−, so that the inequalities (1) will be satisfied for entangled
states by the transformed operators

A = U †
a |1〉a〈0|Ua =

(− cos ψ sin ψ cos2 ψ

− sin2 ψ cos ψ sin ψ

)
,

B = U †
b |1〉b〈0|Ub =

(− cos θ sin θ cos2 θ

− sin2 θ cos θ sin θ

)
. (10)

We consider only real transformations since the density matrix
form (2) is itself real, and therefore parametrize them by just
two angles, ψ and θ . After some algebra, we obtain

〈AB†〉 = 1
4 (t2 + t1 cos 2ψ cos 2θ + t3 sin 2ψ sin 2θ )

= 〈A†B〉, (11a)

〈A†A〉 = 1
2 = 〈B†B〉, (11b)

〈A†AB†B〉 = 1
4 (1 + t3 cos 2ψ cos 2θ + t1 sin 2ψ sin 2θ )

= 〈AA†BB†〉. (11c)

Once again, it is easy to see from Eqs. (11) that the
second criterion, inequality (1b), never holds, since Eq. (11a)
is maximized by (t1 + t2)/4, which is always � 1

2 . On the
other hand, it is also easy to see that, even with this rather
general form of the operators A and B, the criterion (1a) still
fails to detect some of the entangled states of the form (2).
For a specific example, take t1 = t2 = −t3 = 1

2 . This gives
an entangled state, with negativity 1

8 [according to Eq. (5)],
yet 〈AB†〉2 = (1 + cos[2(ψ + θ )])2/64 < 〈A†AB†B〉 =
(1 − 1

2 cos[2(ψ + θ )])/4.
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On the other hand, one may indeed use the transformed
operators (10) to detect entanglement in states that do not
necessarily satisfy the inequality (8). A particularly interest-
ing choice is to make sin 2ψ sin 2θ = −1, which yields the
condition for entanglement

t2 − t3 > 2
√

1 − t1. (12)

Like Eq. (8), this implies Eq. (6), but is not equivalent to it, and
since it is also different from Eq. (8) it can be used to identify
a different set of entangled states. This set includes states that
are an incoherent superposition of only two Bell states, for
which, with the parametrization (2) and the condition (3), one
must have t1 = 1 and t2 = −t3, in which case one has

〈AB†〉2 − 〈A†AB†B〉 = t2
2

4
= N (ρ)2. (13)

That is, in this case the quantity 〈AB†〉2 − 〈A†AB†B〉 is indeed
an entanglement monotone, equivalent to the square of the
negativity.

Another example of a family of states for which Eq. (1a)
yields an entanglement monotone is provided by the reduced-
rank density operators considered in [16] and given by

ρ = 1

2a

⎛
⎜⎝

a + c 0 0 d
0 0 0 0
0 0 b − c 0
d 0 0 a − b

⎞
⎟⎠, (14)

which do not belong to the same equivalence class as Eq. (2)
under local Lorentz transformations and are entangled if and
only if d �= 0, with negativity

N (ρ) = a

4
(
√

4d2 + (b − c)2 − (b − c)). (15)

Choosing A = |1〉a〈0| and B = |0〉b〈1|, it is easy to see that
〈A†AB†B〉 = 0 and 〈AB†〉| = |d/2a|.

D. Building a necessary and sufficient criterion:
A physical interpretation

The reason the conditions (8) and (12) do not detect all the
entangled states of the form (2) is because they are too strong:
to have entanglement it is enough to have t1 + t2 greater than
1 + t3, it is not necessary for it to be also larger than 2

√
1 + t3.

Equations (7) then suggest, therefore, that a better criterion
than Eq. (1) for a system of two qubits might be simply

|〈AB†〉| > 〈A†AB†B〉, (16)

where, for systems described by the density matrix (2), the
optimal choice of A and B is A = B = σ±. Unfortunately,
while Eq. (16) is both a necessary and sufficient entanglement
condition for systems whose density matrix is of the form
(2), it is not necessary in general, since it is easy to find
product states that also satisfy it. For example, letting |ψ〉 =
(cos θ |0〉 + sin θ |1〉) ⊗ (cos φ|0〉 + sin φ|1〉) and A = |1〉a〈0|,
B = |1〉b〈0|, we have |〈AB†〉| = | cos θ sin φ sin θ cos φ| and
〈A†AB†B〉 = cos2 θ cos2 φ, so the inequality (16) will be satis-
fied whenever | sin φ sin θ | > | cos φ cos θ |, which is not at all
difficult to arrange.

At this point, it may be useful to consider what the
original criterion (1a) is telling us about an entangled state

that it can actually detect, such as |�+〉 = 1√
2
(|10〉 + |01〉).

With the choice of A and B above, we find 〈AB†〉 =
〈�+|(|10〉〈01|)|�+〉 = 1

2 and 〈A†AB†B〉 = |〈00|�+〉|2 = 0.
So what we are comparing is the following: how much the
system’s state resembles the original state after we change the
value of a variable of system A from 0 to 1 and simultane-
ously a variable of system B from 1 to 0 (left-hand side of
the inequality), versus the plain probability to find the value
0 for both variables simultaneously in the separate systems
(right-hand side of the inequality).

Now this makes sense for the following reason: in a bi-
partite entangled state, there must be some variable in each
system that does not have a definite value by itself because
it is in a correlated superposition with the other variable in
the other system. Thus, changing the state in a way that
preserves the correlation (as above, |01〉 → |10〉) should still
yield a substantial overlap with the initial state, which we then
compare to the probability of the two variables having simul-
taneously well-defined values that violate this correlation (in
this case, |00〉).

In the original criterion (1a), to make sure we do not get
“false positives” as with Eq. (16), it is necessary to square the
left-hand side, that is to say, to make sure it is large enough.
Yet, as we showed in the previous sections, this is actually
asking for too much and the criterion (1a) ends up missing
a substantial fraction of the entangled states. The above dis-
cussion, however, immediately suggests another possibility,
based on symmetry: in the example above, we are testing the
strength of the coherent superposition or correlation |10〉 +
|01〉 versus that of the alternative, incoherent (“classical”)
correlation |00〉. Yet since the states |1〉a and |1〉b are also
involved in the quantum correlation, it would make sense
to include the state |11〉 as well on the classical side of the
inequality. In other words, to try a criterion like

|〈ψ |(|10〉〈01|)|ψ〉|2 > |〈00|ψ〉|2|〈11|ψ〉|2. (17)

With the A and B operators introduced above this “new”
criterion can be written

|〈AB†〉|2 > 〈A†AB†B〉〈AA†BB†〉. (18)

It turns out that the inclusion of the factor |〈11|ψ〉|2 on the
right-hand side of Eq. (17) is just enough to eliminate the
“false positives,” so Eq. (17) can only hold for entangled
states; moreover, as it turns out, it is now possible for every
entangled state of two qubits [whether pure or mixed, and
not restricted to the form (2)], to find operators A and B so
that Eq. (18) is satisfied, that is, the entanglement is detected.
This can again be easily checked for the states of the form
(2) that we considered above, but its full generality actually
follows from the results in [15] because, in fact, our “new,
improved” criterion (18) is not new at all, just a rephrasing of a
result in [15].

Indeed, in [15], Wölk, Huber, and Gühne established that
the inequality

|〈A1A2B1B2〉|2 > 〈A1A†
1B†

2B2〉〈A†
2A2B1B†

1〉 (19)

(where Ai and Bi are arbitrary operators acting on subsystems
A and B of a bipartite system) (i) can only be satisfied by
entangled states, (ii) is only satisfied by states with a negative
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partial transpose, and (iii) will in fact detect all the entangled
states of a two-qubit system, with the choice of operators A1 =
|a1〉〈φ|, A2 = |φ〉〈a2|, B1 = |b1〉〈ξ |, B2 = |ξ 〉〈b2|, where |φ〉
and |ξ 〉 are arbitrary pure states in A and B, respectively, and
{|a1〉, |a2〉} and {|b1〉, |b2〉} are appropriate orthogonal (i.e.,
basis) states in A and B chosen based on the Schmidt de-
composition of the eigenvector corresponding to the negative
eigenvalue of ρTA (see Theorem 4 of [15]). Note that, in terms
of these operators, we just have to define A = A1A2 = |a1〉〈a2|
and B† = B1B2 = |b1〉〈b2| to recover our criterion (18), from
Eq. (19), with A and B raising and/or lowering operators in an
appropriate basis.

Additionally, according to Theorem 3 of [15], choosing
the Ai and Bi operators to have the form A1 = |a1〉〈φ|, A2 =
|φ〉〈a2|, B1 = |b1〉〈ξ |, B2 = |ξ 〉〈b2| is always optimal for use
with the criterion Eq. (19) for bipartite systems of any di-
mension. In that case, Eq. (19) will again take the form (18),
with A = |a1〉〈a2| and B† = |b1〉〈b2|, although the optimal
choice of the |ai〉 and |bi〉 states is not trivial in general when
the systems are not qubits. If we choose |a1〉 and |a2〉 to be
mutually orthogonal, and likewise |b1〉 and |b2〉, we can think
of the ai as representing different values of some observable
in system A and likewise for the bi. Then Eq. (18) becomes an
inequality relating the density matrix elements in a basis that
includes the states |ai〉|b j〉:

|ρa2b2,a1b1 |2 > ρa2b1,a2b1ρa1b2,a1b2 (20)

(cf. Eq. (19) of [15], and inequality I in [21]). In this form
our previous interpretation becomes apparent: the criterion
compares the strength of a nonclassical correlation (a coherent
superposition, expressed by the off-diagonal element on the
left-hand side), to the strength of two alternative, incompat-
ible [22], classical correlations, expressed by the diagonal
elements on the right-hand side.

E. Discussion

Both the Hillery-Zubairy and Wölk-Huber-Gühne criteria
require one to make a good choice of the operators A and B,
or equivalently, for the criterion (20), of the basis in which
to write the density operator. Note that if the density operator
ρ is known already in some basis, there is really no point in
pursuing such an “optimization” approach since, in general, it
would be faster to just compute the eigenvalues of the partial
transpose ρTA and we know that the criterion (19) only detects
states with a negative partial transpose in the first place. [The
original Hillery-Zubairy criteria can be trivially derived from
Eq. (19) by setting some of the operators appearing in it equal
to the identity.]

These criteria, therefore, are only useful in practice if the
full density matrix is not immediately available (as in an
experimental situation), and especially, if one already has
some idea of what correlations to test for, or alternatively,
what the entangled variables are likely to be. Under those
conditions, the key difference between Eqs. (1) and (20) is that
the former requires one to measure some operators, whereas
the latter requires one to measure specific density matrix
elements. Although the latter can, in principle, be done, by
appropriate quantum tomographic techniques, the former will,
in general, be simpler [even though the operators in Eq. (1)

are non-Hermitian, one can always obtain the corresponding
expectation values by measuring the Hermitian combinations
A + A† and i(A − A†)].

For qubits, this distinction between between measuring
elements of ρ and measuring operators is pretty much mean-
ingless since all the elements of the density matrix can be
written in terms of the expectation values of appropriate
combinations of the Pauli matrices corresponding to the spin
components. For larger-dimensional systems, on the other
hand, the Hillery-Zubairy criterion, although in general less
powerful (as we have seen), may have an advantage in terms
of ease of use in experiments, especially if, as mentioned
above, one has some notion of what kind of correlations to
look for in the first place. In the following section we present
an important example in support of this idea.

III. LARGER-DIMENSIONAL BIPARTITE SYSTEMS

A. Qubits and angular momentum

It seems natural, when seeking to extend the criteria (1)
to larger-dimensional systems, to look at angular momen-
tum systems and use for the operators A and B the angular
momentum raising and lowering operators, as was done for
qubits in the previous section. Moreover, groups of qubits can
also be treated this way: defining a collective raising opera-
tor Ja+ = ∑Na

i=1 σ+,i, one has an angular momentum algebra
corresponding to ja = Na/2.

In [14], Zheng, Trung Dung, and Hillery followed this ap-
proach to investigate entanglement between groups of qubits.
They were able to identify situations and special states where
the second criterion, Eq. (1b), could be used to detect en-
tanglement; derived a more powerful criterion starting from
Eq. (1a) and requiring invariance under local rotations of one
of the subsystems; and used their results to study entangle-
ment in spin waves. The remainder of this paper will follow a
similar pattern. First, in this section, we will look for criteria
that can be used to detect certain types of angular momentum
correlations. Then, in the next section, we will apply these cri-
teria to the study of entanglement in a quantum-optical system
of some importance, namely, the Tavis-Cumming model.

B. Entangled states of total angular momentum

Consider two angular momentum systems, described by
Ja and Jb, and let the eigenstates of J2

a and J2
b have angular

momentum numbers ja and jb, respectively. The eigenstates
| j, m〉 of the total angular momentum J2 (with J = Ja + Jb)
and total Jz are always entangled, except for the m = ±( ja +
jb) cases. The property that is in an entangled superposition is,
of course, the z component of the individual angular momenta.
That is to say, if the total Jz = mh̄, with ja + jb > m > 0 for
definiteness, we can always write m = ja + jb − k for some
k > 0, and we will have

| j, m〉total =
k∑

n=0

Cn| ja, ja − n〉a| jb, jb − k + n〉b. (21)

Suppose we have a state that we suspect is close to, but
not quite, an eigenstate of the total Jz, and we want to check
to see whether it is entangled. If we could measure directly
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the arbitrary matrix elements of the system, we could test for
entanglement using Eq. (20) in the form

|〈ma, mb|ρ|ma + n, mb − n〉|2 > 〈ma, mb − n|ρ|ma, mb − n〉
×〈ma + n, mb|ρ|ma + n, mb〉

(22)

for appropriate ma, mb, and n.
Alternatively, we could try to use one of the Hillery-

Zubairy criteria (1), choosing operators A and B that have
nonvanishing matrix elements of the form appearing on the
left-hand side of Eq. (22). An obvious choice would be to
use powers of the raising operators, A = Ja

n
+ and B = Jb

n
+.

Additionally, note that Eq. (21) implies that we can always
make the right-hand side of Eq. (1a) equal to zero by choosing
the power of Ja+ and B = Jb+ equal to the constant k that
appears there since

Ja
k
+| ja, ja − n〉a = 0 except for n = k,

Jb
k
+| jb, jb − k + n〉b = 0 except for n = 0, (23)

and consequently Ja
k
+Jb

k
+ acting on the state (21) gives zero.

On the other hand,

Ja
k
+Jb

k
−

k∑
n=0

Cn| ja, ja − n〉a| jb, jb − k + n〉b

∝ Ck| ja, ja〉a| jb − k〉b, (24)

and therefore ∣∣〈Ja
k
+Jb

k
−
〉∣∣2 ∝ |C0Ck|2 > 0, (25)

which means the criterion (1a) is satisfied with A = Ja
k
+,

B = Jb
k
+.

For the case the total m is negative, we can write m =
− ja − jb + k, in which case an analogous reasoning shows
that now it is Ja

k
−Jb

k
− that gives zero when acting on the state

| j, m〉, whereas Ja
k
−Jb

k
+ yields a nonzero result.

Equation (25) makes it clear that this choice of the ex-
ponent n in A = Ja

n
+ and B = Jb

n
+ amounts to testing the

superposition, in the state (21), of the two most distant values
of ma, and similarly for mb, and one might ask whether this
is always necessary. The tests that we ran on small j cases
suggest that this is indeed the case. If we know the values of
ja, jb, j, and m, then k is uniquely determined; on the other
hand, if we do not know, say, j or m, we can try testing
for entanglement with the criterion (1a) using a hierarchy of
A = Ja

n
+, B = Jb

n
+, with n = 1, 2, . . . , 2 × min( ja, jb):
∣∣〈Ja

n
+Jb

n
−
〉∣∣2

>
〈
Ja

n
−Ja

n
+Jb

n
−Jb

n
+
〉

(26)

if we believe m is likely to be positive, or∣∣〈Ja
n
−Jb

n
+
〉∣∣2

>
〈
Ja

n
+Ja

n
−Jb

n
+Jb

n
−
〉
, (27)

if we believe m is more likely to be negative.
In addition to the pure states of well-defined total angular

momentum considered above, many other entangled states,
both pure and mixed, can be detected by the criteria (26) and
(27). For the left-hand side to be nonzero, it suffices that the
state have a nonvanishing coherence of the form shown on
the left-hand side of Eq. (22), whereas the right-hand side

will be zero for all the states that have no populations (i.e.,
diagonal matrix elements) involving both an ma � ja − n and
an mb � jb − n. Of course, some entangled states that have
such populations will still be detectable, as long as they are
sufficiently small.

It is straightforward to extend the approach developed here
to the detection of other types of entangled states. Generally
speaking, if we want to check for the presence of an entangled
superposition of the form

|ma, mb〉 + |ma + p, mb − q〉, (28)

with q, p positive or negative, we can use the criterion (1a)
with A = Ja

|p|
± , B = Jb

|q|
± , and the raising operator is used on

A (or B) if p > 0 (or q > 0), and the lowering operator in the
opposite case.

Finally, we note that all of the above has made use
only of the criterion (1a), as the obvious generalization of
Eq. (1b) appears to be weaker than Eq. (26) for detecting
the kind of entanglement considered here: in fact, for the
states (21) specifically, the closest we can get to |〈Ja

n
+Jb

n
−〉|2 >

〈Ja
n
−Ja

n
+〉〈Jb

n
−Jb

n
+〉 is the equality of both sides. This does not

mean Eq. (1b) is useless, however, as pointed out above, in
[14] the authors found |〈Ja+Jb−〉|2 > 〈Ja−Ja+〉〈Jb−Jb+〉 could
be used to detect a different kind of entanglement among
angular momentum systems. As this was well covered in [14],
we will not dwell any more on it here.

IV. APPLICATION: ENTANGLEMENT
IN THE TAVIS-CUMMINGS MODEL

In this section we show how the criteria developed in
Sec. III B can be used to study entanglement between the
atoms in the Tavis-Cummings model, which consists of N
two-level atoms interacting with a single mode of the quan-
tized radiation field in the rotating-wave approximation [23].
This is a system that recently sparked some interest in quan-
tum information, as it could be realized experimentally either
in ion traps (with a phonon instead of a photon field; see
[24]) and in circuit QED with superconducting qubits [25].
For N = 2 entanglement in this system was studied using the
tangle formalism in [26], and it was also explored in [12] (for
N = 2 in Sec. III, and for large N in the Holstein-Primakoff
approximation in Sec. VI). This last work also used a vari-
ation of the Hillery-Zubairy criteria in a form that allowed
the authors to study entanglement between different kinds of
systems, notably, in this case, the atoms and the field. See also
[27,28] for other recent studies.

As noted in [23], the Hamiltonian for this system (on
resonance) can be written in the form

H = h̄ω + ωJz + g(J+a + a†J−), (29)

where the angular momentum operators are the sum of N
“spins”:

Jz = h̄

2

N∑
i=1

σiz, J± = h̄

2

N∑
i=1

σi±. (30)

The total angular momentum J2 has j = N/2. The joint
eigenstates of Jz (eigenvalue h̄m) and the photon number
operator a†a (eigenvalue n), which we will write as |m〉|n〉,
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form a natural basis for the study of this system’s dy-
namics since the Hamiltonian (29) conserves the number
of excitations n + m. An exact (though complicated) solu-
tion was given by Tavis and Cummings in their original
paper [23].

Here we will restrict ourselves to the case in which the
initial field state is a number state with |n0〉 photons and the
initial state of the atoms is an eigenstate of Jz with eigenvalue
|m0〉. Under those circumstances, each value of n in the total
state will be associated with one and only one value of m, and
therefore, the reduced density operator of the atoms will be of
the form

ρat =
N/2∑

m=−N/2

|cm(t )|2|m〉〈m| (31)

At this point we may note that the atomic states |m〉 introduced
above are nothing but the Dicke states [29] for this collection
of N pseudospin- 1

2 systems. These include states of interest
for quantum information (such as the W states) as well as
metrological applications (see, e.g., [30,31] for relevant work
and many references). Our choice of initial state, therefore,
ensures that the atomic state at any later time is an evolving
mixture of Dicke states and our purpose is to apply the cri-
teria developed here to investigate the entanglement of such
mixtures.

In particular, if we divide the N atoms into two groups,
A and B, we can use the criteria (26) and (27) to study
the evolution of the entanglement between the two groups
for different initial conditions. Note that both the operators
Ja

n
+Jb

n
− and Ja

n
−Ja

n
+Jb

n
−Jb

n
+ [as well as the corresponding ones

in Eq. (27)], when acting on a state |m〉, either destroy it or
preserve the total number of spins up and down (N/2 + m and
N/2 − m, respectively), so their restrictions to the j = N/2
space are diagonal in the {|m〉} basis. In principle, closed-form
expressions for these matrix elements could be obtained for
arbitrary partitions into sets of Na and Nb = N − Na atoms,
using the explicit expressions

Ja± = h̄

2

Na∑
i=1

σi±, Jb± = h̄

2

N∑
i=Na+1

σi±. (32)

Here, we will only consider two types of partition: one atom
versus the rest and (for even N) half the atoms versus the
other half. These are all the possibilities through N = 4, which
is the highest N we will treat explicitly. Setting h̄ = 1 for
convenience (as we did in Sec. III), we find, for the first type
(Na = 1):

〈m|Ja+Jb−|m〉 = 1

N

(
N2

4
− m2

)
,

〈m|Ja−Ja+Jb−Jb+|m〉 = 1

N

(
N

2
+ m + 1

)

×
(

N

2
− m

)(
N

2
− m − 1

)
, (33)

and for the second one (Na = N/2)

〈m|Ja+Jb−|m〉 = N

4(N − 1)

(
N2

4
− m2

)
,

〈m|Ja−Ja+Jb−Jb+|m〉 = 1

N!
(N/2 − m)!(N/2 + m)!

×
N/2−m−1∑

k=1

(m + k+1)2(N/2 − k+1)2

×
(

N/2

m + k + 1

)(
N/2

N/2 − k + 1

)
.

(34)

Although we have not been able to find a simpler form for
the last of these expressions, its evaluation for specific cases
is straightforward and our numerical results suggest that, for
a given N , it is of the form (N/2 − m)(N/2 − m − 1) times
a polynomial of order m3. The corresponding expressions for
〈m|Ja−Jb+|m〉 and 〈m|Ja+Ja−Jb+Jb−|m〉 [to be used with cri-
terion (27)] are obtained from Eqs. (33) and (34) by changing
m to −m.

Note that Eqs. (33) and (34), and the absence of off diag-
onal elements mentioned above, indicate that, when restricted
to the subspace spanned by the kets {|m〉} for fixed j (that
is, fixed N), both the operator Ja+Jb− and Ja−Ja+Jb−Jb+ are,
in effect, functions of Jz; for instance, the first of Eqs. (33)
essentially implies Ja+Jb− = N/4 − J2

z /N . This means that
the criterion (26) becomes, for this system, an entanglement
criterion involving only the operator for the total population
inversion. For instance, explicitly, for a system of N atoms the
criterion for one of them to be entangled with the rest becomes

1

N

(
N2

4
−〈

J2
z

〉)2

>

〈(
N

2
+ 1 + Jz

)(
N

2
−Jz

)(
N

2
−1 − Jz

)〉
,

(35)

or, if Eq. (27) is used instead, the same expression with Jz →
−Jz. A similar explicit form for the criterion for entanglement
between two groups of N/2 atoms requires evaluating the
second of Eqs. (34) for specific values of N , which is not hard;
an explicit example is given below for the N = 4 case. In the
following we show that entanglement can, in fact, be detected
by these criteria.

A. Two atoms

For N = 2 the two cases (33) and (34) coincide. The pos-
sible values of m are −1, 0, and 1, and the only nonzero
matrix elements are 〈0|Ja+Jb−|0〉 = 1

2 and 〈−1|Ja−Ja+Jb−Jb+
|−1〉 = 1.

As mentioned above, we will assume an initial state of
the form |n0〉|m0〉. Moreover, we will restrict ourselves to the
two most natural initial conditions: all atoms excited with no
photons present (|ψ0〉 = |N/2〉|0〉) or all atoms in the ground
state (m0 = −N/2) with n0 photons present. Either way, the
state at any later time can be written as

|ψ (t )〉 = c1|1〉|p − 2〉 + c0|0〉|p − 1〉 + c−1| − 1〉|p〉, (36)

where p = m0 + n0 is the initial total number of excitations
and the entanglement criterion (26) (with n = 1) can be
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FIG. 1. (a) The difference 1
4 |c0(t )|4 − |c−1(t )|2 (positive values

indicate an entangled state of the two atoms) for four different cases:
pure spontaneous decay (m0 = 1, n0 = 0, solid line), and evolution
from the ground state with n0 = 1 (dashed line), 2 (dotted line), and 3
(dot-dashed line) photons respectively. (b) The same for 1

4 |c0(t )|4 −
|c1(t )|2.

written

1
4 |c0(t )|4 − |c−1(t )|2 > 0, (37)

whereas Eq. (27) yields the alternative

1
4 |c0(t )|4 − |c1(t )|2 > 0. (38)

The equations of motion for the coefficients ci are

ċ1 = −ig
√

2(p − 1) c0,

ċ0 = −ig
√

2p c−1 − ig
√

2(p − 1) c1,

ċ−1 = −ig
√

2p c0. (39)

They can easily be solved analytically and the expressions in
Eqs. (37) and (38) evaluated. Figure 1(a) shows the left-hand
side of Eq. (37) for four different cases: pure spontaneous
decay (m0 = 1, n0 = 0) and evolution from the ground state
with n0 = 1, 2, and 3 photons, respectively, whereas Fig. 1(b)
shows the same for the left-hand side of Eq. (38). As can
be seen, the usefulness of Eq. (38) decreases much faster
than that of Eq. (37) as the number of photons increases and
the probability to find the system in the doubly excited state

FIG. 2. For the same initial conditions as in Fig. 1, the
figure shows −λ′

4 [where λ′
4 is the only eigenvalue of the partial

transpose of the matrix (40) that can become negative]. The nega-
tivity N (ρ ) = max{0,−λ′

4}; a positive value of the negativity is a
necessary and sufficient condition for entanglement in this system.

(and correspondingly 〈Jz〉) increases: this is to be expected
since Eq. (38) was derived from Eq. (27), which detects en-
tanglement for states of negative total m. On the other hand,
Eq. (38) is critical in establishing the important fact that the
system with only one excitation (m0 = −1, n0 = 1) is always
entangled, except at the times when c0 = 0 (see Sec. IV.C,
below, for a general proof of this result for arbitrary N).

In view of the fact that Eqs. (37) and (38) are only suffi-
cient, not necessary conditions for entanglement, the fact that
no entanglement is seen for the spontaneous decay case may
appear suspect. Fortunately, as this simple case involves only
two qubits, we can verify that this is correct by calculating the
negativity. In the four-state basis {|ee〉, |eg〉, |ge〉, |gg〉} (equiv-
alent to the one used in Sec. II, but here using e and g instead
of 0 and 1 to avoid confusion with the total Jz eigenstates), the
reduced density matrix of the two atoms, after tracing over the
field state, is

ρ =

⎛
⎜⎜⎜⎜⎝

|c1|2 0 0 0

0 1
2 |c0|2 1

2 |c0|2 0

0 1
2 |c0|2 1

2 |c0|2 0

0 0 0 |c−1|2

⎞
⎟⎟⎟⎟⎠ (40)

and the negativity is N (ρ) = max{0,−λ′
4}, with

λ′
4 = 1

2 (1 − |c0|2

−
√

(1 − 2|c−1|2 + 2|c0|2(|c0|2 + 2|c−1|2 − 1)). (41)

Figure 2 shows −λ′
4 for the same initial conditions illustrated

in Fig. 1. As expected from the general considerations in
Sect. II, the criteria (37) and (38) do miss some of the en-
tanglement, but in general, and taken together, they can be
used to approximately identify the times where entanglement
is largest in the two-atom system.

Note that, in this special case, the criterion (37) reduces to
the ones we studied in Sec. II for two qubits, if we just write
A = |e〉a〈g| and B = |e〉b〈g| [and similarly Eq. (38) if e and g
are exchanged]. This indicates that, as suggested in Sec. III,
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FIG. 3. Entanglement, as indicated by positive values of the
left-hand sides of Eqs. (42) and (43), for a system of three atoms
starting from the ground state with n0 = 1 (solid line), 2 (dashed
line), 3 (dotted line), and 4 (dot-dashed line) photons, respectively.
For n0 = 1, only the left-hand side of Eq. (43) contributes (i.e., is
greater than zero). For larger n0, however, its contribution is limited
to small secondary minima, here only visible for n0 = 2.

this family of criteria is a natural extension of the two-qubit
case to higher-dimensional systems.

B. Three atoms

For N = 3 we have j = 3
2 and m = − 3

2 ,− 1
2 , 1

2 , 3
2 . The

matrix for N/2 − J2
z has two nonzero diagonal entries, both

equal to 2, corresponding to m = ± 1
2 , whereas the matrix for

the operator on the right-hand side of Eq. (35) has only non-
vanishing entries equal to 4, for m = − 1

2 and 6 for m = − 3
2 .

The criterion (35), therefore, becomes

4
3 (|c−1/2|2 + |c1/2|2)2 − 4|c−1/2|2 − 6|c−3/2|2 > 0 (42)

and the corresponding one with Jz → −Jz,

4
3 (|c−1/2|2 + |c1/2|2)2 − 4|c1/2|2 − 6|c3/2|2 > 0, (43)

if the total state of the system is written, as in the previous
subsection, in the general form (with p initial quanta)

|ψ (t )〉 =
m= j∑

m=− j

cm(t )|m〉|p − (m + j)〉. (44)

The equations of motion are now

ċ3/2 = −ig
√

3(p − 2) c1/2,

ċ1/2 = −ig2
√

p − 1 c−1/2 − ig
√

3(p − 2) c3/2,

ċ−1/2 = −ig
√

3p c−3/2 − ig2
√

p − 1 c1/2,

ċ−3/2 = −ig
√

3p c−1/2. (45)

As was the case for N = 2, no entanglement is found
either by Eq. (42) or Eq. (43) for the spontaneous decay case
m0 = 3

2 , n0 = 0. The cases in which the system starts from the
ground state with n0 = 1, 2, 3, and 4 photons are illustrated
in Fig. 3, which shows only the maximum of either 0, the

left-hand side of Eq. (42), or the left-hand side of Eq. (43).
As before, the usefulness of the second criterion, Eq. (43),
is limited to the cases with few excitations: all the visible
features in the figure for n0 = 3 and 4 come from Eq. (42),
and for n0 = 2 Eq (43) only contributes the small secondary
maxima. On the other hand, Eq. (43) is essential to show the
entanglement for n0 = 1 since, in that case, Eq. (42) is found
never to hold, whereas Eq. (43) shows the state is, in fact,
virtually always entangled.

Note that, for m0 = − 3
2 , if n0 = 1 (or n0 = 2) only the

state(s) m = − 1
2 (or m = − 1

2 , 1
2 ) can be excited. The solution

to Eq. (45) in these two cases is sufficiently simple to be
included here:

n0 = 1: |ψ (t )〉

= cos(
√

3gt )

∣∣∣∣ − 3

2

〉
|1〉 − i sin(

√
3gt )

∣∣∣∣ − 1

2

〉
|0〉,

n0 = 2: |ψ (t )〉

= 1

5
(2 + 3 cos(

√
10gt ))

∣∣∣∣ − 3

2

〉
|2〉 − i

√
3

5
sin(

√
10gt )

×
∣∣∣∣ − 1

2

〉
|1〉 + 2

√
6

5
sin2

(√
10

2
gt

)∣∣∣∣1

2

〉
|0〉. (46)

In the first case the reduced density operator for the atoms
is formally equivalent to a two-qubit system since only two
states of the two-atom subsystem are involved (|gg〉 and
(|eg〉 + |ge〉)/

√
2). The second case (and all the others with

n0 > 2) is formally equivalent to a qubit-qutrit system since
the state |ee〉 is also involved. This means that, in principle, the
negativity would still provide a necessary and sufficient condi-
tion for entanglement. Rather than engage in such a laborious
calculation, however, we can use Eq. (46) to understand the
main features of Fig. 3 with some simple considerations. In
particular, the taller peaks in the n0 = 2 case happen when√

10gt is close to an odd multiple of π since, in that case, the
weight of the state | − 3

2 〉 is very small (1/25 = 0.04), that of
the state | − 1

2 〉 is zero, and the state is almost entirely | 1
2 〉,

which can be written∣∣∣∣1

2

〉
= 1√

3
(|gee〉 + |ege〉 + |eeg〉). (47)

This is an entangled state, of the W form, like the one observed
experimentally in [25]. The preponderance of m > 0 in the
mix also explains why the entanglement is not so readily
detected by the criterion (43), which is instead responsible
for the small peaks; these happen at times when c1/2 is small
and the state |− 1

2 〉 dominates, although with a substantial
contribution from |− 3

2 〉.

C. Four atoms

1. One atom versus the rest

With four atoms, to test for entanglement of any one atom
with the other three, Eqs. (33) (and the corresponding ones
with m → −m) yield the two entanglement inequalities

1
4 (3|c1|2 + 4|c0|2 + 3|c−1|2)2 − 6|c0|2 − 12|c−1|2

−12|c−2|2 > 0, (48a)
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1
4 (3|c1|2 + 4|c0|2 + 3|c−1|2)2 − 6|c0|2 − 12|c1|2

−12|c2|2 > 0. (48b)

The equations of motion are now

ċ2 = −2ig
√

p − 3 c1,

ċ1 = −2ig
√

p − 3 c2 − ig
√

6(p − 2) c0,

ċ0 = −ig
√

6(p − 2) c1 − ig
√

6(p − 1) c−1,

ċ−1 = −ig
√

6(p − 1) c0 − 2ig
√

p c−2,

ċ−2 = −2ig
√

p c−1. (49)

As before, neither of the two inequalities detects entangle-
ment at any time for the spontaneous emission case, m0 = 2,

n0 = 0. When starting from the ground state instead, the in-
equality (48a) does not detect entanglement for n0 = 1, but
Eq. (48b) does and shows essentially the same result as for
N = 2 and 3 atoms, namely, a regular oscillation that implies
entanglement at all times except when c−1 = 0, which here
happens for 2gt = nπ .

It is, in fact, possible to use the criterion (35), with Jz →
−Jz, to show that this is a general result, valid for all N .
First, in the case there is only one excitation in the system,
(m0 = −N/2, n0 = 1) the equations of motion immediately
show that |c−N/2|2 = cos2 θ and |c−N/2+1|2 = sin2 θ , with θ =
gt

√
N . The density operator for the atomic system is there-

fore the incoherent superposition of an entangled state |m〉 =
| − N/2 + 1〉 and the product ground state | − N/2〉:
ρat = cos2 θ | − N/2+1〉〈−N/2 + 1|+ sin2 θ | − N/2〉〈−N/2|

(50)

When the criterion (35), with Jz → −Jz, is applied to this
state, a little algebra shows that the inequality reduces to

− (N − 1)2

N
sin4(gt

√
N ) < 0, (51)

which is always satisfied, except when gt
√

N = nπ . Note that,
for N = 2, the state | − N/2 + 1〉 is a Bell state, and for N > 2
a W state.

Leaving the n0 = 1 case aside, then, the graphs in Fig. 4(a)
focus on the less obvious cases with n0 = 2, 3, and 4. For
n0 = 2, the large peaks in Fig. 4(a) also come from Eq. (48b),
whereas Eq. (48a) contributes only a few small peaks. As
expected, as the number of excitations increases and the up-
per atomic levels become more populated, the situation is
reversed, with Eq. (48b) contributing only one small peak
to the n0 = 3 graph and essentially nothing visible to the
n0 = 4 case.

2. Two atoms versus two

If instead of one atom versus three we want to test the
entanglement of any two atoms with the other two, Eqs. (34)
(and the corresponding ones with n → −m) yield the
inequalities
(|c1|2 + 4

3 |c0|2 + |c−1|2
)2 − 8

3 |c0|2 − 4|c−1|2 − 4|c−2|2 > 0,

(52a)

FIG. 4. Entanglement between subsystems for N = 4 atoms
starting in the ground state and interacting with n0 = 2 (solid line), 3
(dashed line), and 4 (dotted line) photons. (a) One atom in subsystem
a, three in subsystem b [inequalities (48)]. (b) Two atoms in each
subsystem [inequalities (52)].

(|c1|2 + 4
3 |c0|2 + |c−1|2

)2 − 8
3 |c0|2 − 4|c1|2 − 4|c2|2 > 0.

(52b)

Again no entanglement is detected for the spontaneous
emission case and for the system starting from the ground
state the results are also remarkably similar to the 1-to-3 case,
as Fig. 4(b) shows, the only visible difference being two small
peaks for n0 = 3 (near gt = 1.5 and 3.4).

On the other hand, this is also the first opportunity to test
the criteria (26) and (27) with n > 1, namely, n = 2 (clearly,
these criteria cannot be applied to the study of the 1-to-N −
1 split since acting on a single spin J2

± will necessarily give
zero). We do not have general formulas for arbitrary N and m,
but it is easy to see that for N = 4 Eqs. (26) and (27) yield the
inequalities

|c0|4 − 36|c−2|2 > 0, (53a)

|c0|4 − 36|c2|2 > 0. (53b)

As usual, no entanglement is detected by either inequality
for the spontaneous emission case, whereas starting from the
ground-state entanglement is found for n0 = 2, 3, and 4, with
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FIG. 5. Entanglement between subsystems of two atoms each,
for a total N = 4 atoms starting in the ground state and interacting
with n0 = 2, 3, and 4 photons, as detected by inequalities (53).

inequality (53b) being the strongest for n0 = 2 and 3, and both
being comparable for n = 4. The result, shown in Fig. 5, is
visibly different from Fig. 4, which makes it clear that the
criteria (26) and (27) with n = 1 and 2 explore different types
of entanglement, as discussed in Sec. III. Specifically, the
inequalities (53) test for the presence of the entangled super-
position |eegg〉 + |ggee〉, where the states of the two subgroups
of atoms are “as far apart” as possible.

As the figure suggests, the n0 = 2 and n0 = 3 curves, while
sometimes getting very close to zero, never actually cross the
x axis. This is because, for n0 = 2 and n0 = 3, starting from
the ground state, the state m = 2 cannot get populated, and
thus the inequality (53b) is always satisfied as long as c0 �=
0. This means that, for these two cases, the atomic state is
always entangled, with at least some entanglement of the form
|eegg〉 + |ggee〉, except for the isolated times when c0 = 0. For
n0 = 2, it is easy to show analytically that this happens when
gt

√
14 = 2nπ .

3. Comparison with other entanglement criteria

As mentioned in the Introduction, a number of criteria to
detect entanglement in systems of spins have been developed
through the years. In this section we compare, for this partic-
ular problem, the performance of our criteria to some of these
alternative ones, focusing on the simplest ones, namely, those
that only require the measurement of various components of
the total angular momentum.

Perhaps the earliest such criterion is that Sørensen et al.
[3], according to which a state of N qubits is entangled if there
exist three orthogonal directions (labeled by k, l , and n below)
such that

〈�2Jn〉
〈Jk〉2 + 〈Jl〉2

<
1

N
. (54)

Because of the obvious symmetry of our problem (the density
operator is diagonal in the Jz basis) we expect to find any
maxima or minima when one of the directions above is chosen
to be z and the other two are indifferently set to x or y. Clearly

FIG. 6. Entanglement for the case N = 4 and n0 = 3 as detected
by inequalities (53) (solid line), (57) (bipartite entanglement, dashed
line), and Eq. (52) (dotted line). Note that the solid line is actually
always above zero except at gt

√
14 = 2nπ , whereas the other two

cross the horizontal axis with a nonzero slope. Note also the exis-
tence of a small region to the right where the dashed line detects
entanglement but the dotted one does not.

setting n = z in Eq. (54) will not work in our case since
〈Jx〉 = 〈Jy〉 = 0, but we can try, e.g., k = z and then n = x,
l = y. For 〈�2Jx〉 with a ρ of the form (31) we find

〈�2Jx〉 = 〈�2Jy〉 = 〈
J2

x

〉 = 〈
J2

y

〉 = N

4

(
N

2
+ 1

)
− 1

2

〈
J2

z

〉
,

(55)
and hence the condition (54) becomes(

1

N
− 1

2

)〈
J2

z

〉 − N

4

(
N

2
+ 1

)
> 0, (56)

which is an impossibility for any N � 2.
Korbicz, Cirac, and Lewenstein [7] introduced a necessary

and sufficient criterion for bipartite entanglement in symmet-
ric systems: the reduction of the density operator to just two
spins will be entangled if and only if there is a direction n
along which the total angular momentum satisfies

1 − 4〈Jn〉2

N2
− 4〈�2Jn〉

N
> 0. (57)

With n = x or y this gives 〈J2
z 〉 > N2

4 , which is impossible
since N2/4 is the largest value J2

z can have. With n = z, how-
ever, the criterion (57) actually shows entanglement most (but
not all) of the time our other criteria do, and also sometimes
when our criteria fail to detect it, as shown in Fig. 6.

The fact that our criteria sometimes show entanglement
when Eq. (57) does not is indicative that we have genuine
multipartite entanglement (involving three or more qubits)
in those cases. In [7] the authors actually gave several other
criteria to test for tripartite entanglement in any reduction
of ρ to three qubits. One, Eq. (23) of [7], is specifically for
Greenberger-Horne-Zeilinger (GHZ)-type entanglement, and
fails to detect any for our system. Two others, Eqs. (24) and
(25) of [7], detect either GHZ or W -type entanglement. The
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FIG. 7. Entanglement for the case N = 4 and n0 = 4 as detected
by inequalities (53) (solid line), (57) (bipartite entanglement, dashed
line), and (58) (genuine tripartite entanglement, dotted line). Note
that the three criteria overlap in places, but there are also times when
entanglement is only detected by one of them.

first one, for the optimal choice of z (z = n), becomes

− 3
〈
J3

z

〉 − 3

2
(N − 2)

〈
J2

z

〉 + 3N2

4
〈Jz〉 − N

24

× (7N2 − 38N + 32) > 0. (58)

For N = 4, this fails to detect entanglement for the n0 = 1
case. For n0 = 2, however, it detects it in a narrow region
around the tall peaks of Fig. 5, meaning it always overlaps
with Eq. (57), but it also shows that at those times the system
has both bipartite and tripartite entanglement. For n0 = 3,
it sometimes overlaps with Eq. (57) and sometimes it does
not, but in general both are worse than Eq. (53b). Lastly, for
n0 = 4, each of these three criteria spots some entanglement
that the others miss, as can be seen in Fig. 7.

As for the last criterion presented in [7], their Eq. (25), for
our system it yields the condition

5
6

〈
J3

z

〉 − 1
4 (N − 2)

〈
J2

z

〉 − 1
24 (3N2 + 6N − 4)〈Jz〉

− 1
16 (N3 − 4N2 + 4N ) > 0. (59)

For N = 4, we find this only detects entanglement when
n0 = 1. This happens around the times where the left-hand
side of the inequality (51) is largest in absolute value, that is,
around gt = (2n + 1)π/4. Recall that both our criteria (48b)
and (52b) show that the n0 = 1 case is always entangled [ex-
cept when c0(t ) = 0], both across 1-to-3 qubit and 2-2 qubit
partitions. From Eq. (59), we get the additional information
that the system also has genuinely tripartite entanglement for
the reductions of ρ around the times gt = (2n + 1)π/4.

Finally, Tóth et al. presented in [13] several other criteria,
summarized in their Eqs. (7b) to (7d). When we apply them to
our system, we obtain only one inequality that can actually be

satisfied: this is derived from their Eq. (7c) with m = z, and
ends up being equivalent to Eq. (57).

V. CONCLUSION

We presented a number of results concerning the
usefulness of the Hillery-Zubairy entanglement criteria
for systems of N qubits. For N = 2, we showed that the
criterion (1b) is in general not useful and that Eq. (1a), while
useful, is not in general an entanglement monotone, although
we also identified some sets of states for which it does have
such a property. By focusing on the kinds of correlation it is
best suited to detect, we generalized it to angular momentum
systems, or systems with N > 2 qubits, and we used these ex-
tensions, Eqs. (26) and (27), to explore entanglement among
atoms in the Tavis-Cummings model when the field is initially
in a number state, so the atomic state is an evolving mixture
of Dicke states. By comparing our results with those obtained
from other previously derived criteria to detect entanglement
in systems of spins, we showed that ours can, in fact, detect
entanglement in situations where the others miss it and vice
versa. We conclude that, as all of these criteria explore differ-
ent entanglement possibilities, all are valuable if one wants
to obtain as complete a picture as possible of the quantum
correlations possible in mixed states of N-qubit systems.

With respect to the Tavis-Cummings model specifically, we
were able to prove a number of results, such as that, for any N ,
when the atoms start in the ground state with only one photon
present, the resulting state (a mixture of the ground state and
a W -type state) is always entangled, except for a discrete set
of times. We also showed that the same is true in the N = 4
atom case when only two or three photons are initially present.
Generalizations of this last result to larger N systems are
almost certainly possible, but we did not pursue them here.

Perhaps our most intriguing result, however, is that all
the criteria fail to detect any entanglement, at any time, for
the “spontaneous emission” case, where the atoms start all in
the excited state with no photons present. We conjecture that
this is probably a general result, valid for all N , but we have
no way of proving it or explaining it. It implies, among other
things, that the probability to find all the atoms in the ground
state cannot be equal to 1 at any time since otherwise the
subsequent evolution would produce entangled states; hence,
the picture it suggests is that as long as the emitted photons
“stick around,” they can be reabsorbed and the atomic system
cannot get rid of all its energy at any time. This, at least,
would change in the presence of losses (e.g., in free space
or in a leaky cavity), and it might be interesting to see if
entanglement appears in that case.
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