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Quantifying multiqubit magic channels with completely stabilizer-preserving operations
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In this paper we extend the resource theory of magic states to the channel domain by considering completely
stabilizer-preserving operations (CSPOs) as free. We introduce and characterize the set of CSPO-preserving
and completely CSPO-preserving superchannels. We quantify magic channels by extending the generalized
robustness and the min-relative entropy defined for magic states to channels and show that they bound the
single-shot dynamical magic cost and distillation. We also provide analytical conditions for qubit interconversion
under CSPOs and show that it is a linear programming feasibility problem and hence can be efficiently solved.
Lastly, we give a classical simulation algorithm whose runtime is related to the generalized robustness of magic
channels. Our algorithm depends on some predefined precision, and if there is no bound on the desired precision
then it achieves a constant runtime.
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I. INTRODUCTION

In recent years, several schemes have been developed to
achieve fault-tolerant quantum computation, and most of them
use the stabilizer formalism [1–5]. The stabilizer formalism
consists of the preparation of stabilizer states, application of
Clifford gates, and measurements in the computational basis.
Within this formalism, pure nonstabilizer states (popularly
known as magic states) are used as a resource to promote
fault-tolerant quantum computation to universal quantum
computation. This model of quantum computation is known
as the magic state model of quantum computation, and finding
magic distillation rates and estimating classical simulation
cost of quantum circuits are active areas of research in this
field [5–32]. While formulating optimal rates promises bet-
ter distillation protocols, improved classical simulations help
benchmark the computational speedups offered by quantum
computers [24,27,29,33–43]. It follows from the Gottesman-
Knill theorem that it is possible to efficiently simulate any
stabilizer circuit on a classical computer, hence rendering
stabilizer states and operations useless for universal quantum
computation [44,45]. For this reason, this model fits the mold
of quantum resource theories where all the states and opera-
tions that cannot provide any quantum advantage are treated
as free [19,24,46–50].

Using the above criterion to define free elements,
considerable work has been directed towards developing
the resource theory of magic states and channels
[17,20,22,24,29–31,41,43,50–54]. In this process, two
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branches have emerged: one branch deals with odd
d-dimensional qudits, and the other branch deals with
the practically important case of multiqubit systems. In the
former case, a clear connection between quantum speedup
and the negativity of the Wigner representation of the state
or channel has been established [15–17,20,50,55–60]. All
the states and operations with positive Wigner representation
have been considered free as they cannot offer any quantum
computational advantage. Moreover, the negativity of the
Wigner representation has been used to quantify magic
resources and has been connected to various classical
simulation algorithms. However, in the latter case, a discrete
phase space approach cannot be cleanly applied without
restricting free states to some subset of stabilizer states or
excluding some Clifford operations [19,22,26,61–65]. Thus,
to retain all stabilizer states and operations as free elements
(in the multiqubit scenario), alternative approaches have been
taken [18,23,24,27–29,43,54,58,64,66,67].

In [24], Howard and Campbell presented a scheme where
all density matrices are decomposed as real linear combina-
tions of pure stabilizer states. Borrowing the idea from the
resource theory of entanglement [68], they introduced the
robustness of magic which is the minimum �1 norm of all such
decompositions. They showed that it is a resource monotone
under all stabilizer operations and linked it to the runtime
of a classical simulation algorithm, thus giving robustness of
magic an operational meaning. Using robustness of magic,
they also formulated lower bounds on the cost of synthesiz-
ing magic gates. Taking this approach forward, Seddon and
Campbell enlarged the set of free operations from stabilizer
operations to the set of completely stabilizer-preserving oper-
ations (CSPOs) and introduced channel robustness of magic
for multiqubit channels [29]. They decomposed a channel as a
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linear combination of CSPOs and defined channel robustness
as the minimum �1 norm of all such decompositions. They
also formulated a classical algorithm and linked its runtime
with the channel robustness, thus efficiently simulating a cir-
cuit consisting of CSPOs.

Since CSPOs cannot provide any quantum advantage
and strictly contain the set of stabilizer operations, we ex-
tend the resource theory of magic states to the channel
case by treating CSPOs as free. We introduce two sets
of free superchannels, CSPO-preserving superchannels and
completely CSPO-preserving superchannels, to manipulate
quantum channels. Since there is no physical restriction over
such sets of free superchannels, they are useful in finding
fundamental limitations on the ability of a quantum channel
to generate magic states. Besides, studying such superchan-
nels gives us no-go results in resource interconversion tasks
involving more restricted type of operations such as the set of
stabilizer operations.

This paper is organized as follows. In Sec. III, we define
and characterize the two above-mentioned sets of free super-
channels. Then in Sec. IV, we generalize the key operational
magic monotones defined for states to the channel domain,
namely, the generalized robustness of magic states and the
min-relative entropy of magic states. Using these monotones,
in Sec. V we formulate single-shot bounds on distilling single-
qubit magic states from a quantum channel and the magic
cost of simulating a channel under the free superchannels.
However, due to the complexity in determining whether a
state is a stabilizer state or not [24,55,69], finding the lower
bound on distillation under completely CSPO-preserving su-
perchannels is still an open problem. In Sec. V, we also show
that interconversion among single-qubit states under CSPOs
is an SDP feasibility problem and hence can be efficiently
solved. This result can also be interpreted as a no-go result
for qubit interconversion using stabilizer operations. As our
last result, in Sec. VI, we provide an algorithm to classically
simulate a general quantum circuit and relate the runtime
of this algorithm to the generalized robustness of dynamical
magic resources. Such algorithms help benchmark quantum
computational speedup. Our algorithm is designed such that
its runtime varies according to the desired precision, and if
there is no bound on the desired precision, the algorithm runs
in constant time.

II. PRELIMINARIES

A. Notations

In this paper, we denote all static systems using uppercase
English letters and with a numerical subscript, like A1, B0, R1,
etc., and these systems will be considered as qubit (or multi-
qubit) systems unless otherwise specified. Dynamical systems
will simply be denoted by English capital letters such as
A, B, R, etc., and this notation for a dynamical system, say
A, would indicate a pair of systems such that A = (A0, A1) =
(A0 → A1). The set of Hermitian matrices on system A1 will
be denoted by HERM(A1). The set of density matrices on a
system, say B1, will be represented by D(B1). We will use ψ

and φ for pure states, and ρ and σ will be used for mixed
states. The set of all stabilizer states in system A1 will be de-

noted by STAB(A1). For pure stabilizer states in system A1 we
will write φ ∈ STAB(A1), and notation like σ ∈ STAB(A1)
will mean a density matrix of a state taken from the stabilizer
polytope which is a convex hull of pure stabilizer states. The
maximally entangled state and the un-normalized maximally
entangled state on the composite systems A1Ã1 will be de-
noted by φ+

A1Ã1
and �+

A1Ã1
, respectively, where we used the

tilde symbol to denote a replica of the system A1. To denote
the dimension of a system, two vertical lines will be used. For
example, the dimension of B0 is |B0|.

The set of quantum channels or completely positive and
trace-preserving (CPTP) maps on a dynamical system A will
be denoted by CPTP(A) or CPTP(A0 → A1). To represent
channels, calligraphic letters such as E,N , etc. will be used.
The notation NA or N ∈ CPTP(A0 → A1) will mean that the
quantum channel N takes an input state in A0 to an output
state in A1. The evolution of quantum channels is described
by superchannels. A brief discussion of superchannels is pro-
vided in Appendix A for completeness. We will use uppercase
Greek letters, for example, �,	, etc., to represent superchan-
nels. We will denote the set of superchannels by S(A → B)
such that � ∈ S(A → B) implies that the superchannel �

takes a dynamical system in A to a dynamical system in B. The
Choi matrix of a channel N ∈ CPTP(A0 → A1) is defined as
JN

A := NA(�+
A0Ã0

), where in the notation JN
A , the subscript

denotes the dynamical system A = (A0, A1). The Choi matrix
of a superchannel � ∈ S(A → B) will be denoted in bold as
J�

AB. To denote the normalized Choi matrix of a channel NA,
we will use tilde symbol over J as J̃N

A .

B. Stabilizer formalism

In this section we give a brief overview of the stabilizer
formalism. For single-qubit systems, the Pauli group consists
of Pauli matrices and the identity matrix, together with mul-
tiplicative factors ±1, ±i. We will denote this group as P1 =
(±1,±i){I, X,Y, Z}. For multiqubit systems, a general Pauli
group on n qubits consists of all n-fold tensor products of Pauli
matrices (including identity), together with the multiplication
factors ±1,±i. We will denote the n-qubit Pauli group as Pn.
We say a pure, n-qubit state |ψ〉 is a stabilizer state if there
exists an Abelian subgroup of the Pauli group S ⊂ Pn such
that S|ψ〉 = |ψ〉 for all S ∈ S . The elements of the subgroup S
are called stabilizers of |ψ〉, and the total number of elements
in S is equal to 2n. For example, the Pauli matrix Z is the
stabilizer of state |0〉. For single-qubit states, there are six pure
stabilizer states with the following stabilizers:

±X |±〉 = |±〉, (1)

±Y |±i〉 = |±i〉, (2)

Z|0〉 = |0〉, (3)

−Z|1〉 = |1〉. (4)

The mixed stabilizer states of a system A1 are defined as
a convex combination of pure stabilizer states. We can also
define the set of stabilizer states using Clifford unitaries which
are the unitaries that preserve the Pauli group under conjuga-
tion. Let U represent an element of Clifford unitaries such
that UPU † ∈ Pn for all P ∈ Pn. Then the set of stabilizer
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states can be represented as conv{U |0〉〈0|U † : U ∈ Clifford}.
Evolution of stabilizer states under Clifford unitaries can be
efficiently tracked classically. Further, even the measurement
of Pauli operators on stabilizer states can be efficiently sim-
ulated [44,45]. A quantum circuit that comprises of Clifford
unitaries, Pauli measurements, and classical randomness and
conditioning is known as a stabilizer circuit. The usefulness
of the stabilizer formalism comes in quantum error correction
and in efficiently simulating stabilizer circuits classically [44].

III. COMPLETELY STABILIZER-PRESERVING
OPERATIONS (CSPO), CSPO-PRESERVING

SUPERCHANNELS, AND COMPLETELY
CSPO-PRESERVING SUPERCHANNELS

The set of completely stabilizer-preserving operations, or
CSPOs, was introduced in [29] and comprises all the quantum
operations that preserve stabilizer states in a complete sense.
The set of completely stabilizer-preserving operations taking
system A0 to system A1 will be denoted by CSPO(A0 → A1)
or CSPO(A). Let EA ∈ CPTP(A). Then EA is a completely
stabilizer-preserving operation if for any system R0 it holds
that

EA(ρR0A0 ) ∈ STAB(R0A1) ∀ ρR0A0 ∈ STAB(R0A0). (5)

These operations can alternatively be defined using their Choi
matrices as follows:

EA ∈ CSPO(A) ⇐⇒ JE
A

|A0| ∈ STAB(A). (6)

In [29] it was also shown that the action of CSPOs on a
stabilizer state can be efficiently simulated classically. This
set is the largest known set of operations in the multiqubit
scenario that do not provide any quantum advantage, and as
such they are perfect candidates for the free channels of a
dynamical resource theory of magic. To manipulate quantum
channels, we choose the two natural sets of superchannels,
namely, the set of CSPO-preserving superchannels and the
set of completely CSPO-preserving superchannels—as the
set of free superchannels in our work. We will denote the
set of CSPO-preserving superchannels taking dynamical sys-
tem A to dynamical system B by F1(A → B) and the set of
completely CSPO-preserving superchannels taking dynami-
cal system A to dynamical system B by F2(A → B). In the
following two sections we define and characterize the two sets
of free superchannels.

A. CSPO-preserving superchannels

Definition. Given two dynamical systems A and B, a su-
perchannel � ∈ S(A → B) is said to be a CSPO-preserving
superchannel if

�A→B[NA] ∈ CSPO(B) ∀ NA ∈ CSPO(A). (7)

Let {Wj} be the set of stabilizer witnesses for system
B0B1. Then, using the above definition and the set of sta-
bilizer witnesses [51,70], we can characterize the set of
CSPO-preserving superchannels using their Choi matrices as
follows. The Choi matrix of a superchannel � ∈ F1(A → B)
must satisfy the following conditions:

J�
AB � 0, (8)

J�
AB0

= J�
A0B0

⊗ IA1

|A1| , (9)

J�
A1B0

= IA1B0 , (10)

Tr
[
J�

AB(φi ⊗ Wj )
]
� 0 ∀ φi ∈ STAB(A0A1),Wj . (11)

In the above, the first three conditions follow from the require-
ment of � to be a superchannel [71]. The condition in Eq. (11)
simply uses the fact that if a CSPO-preserving superchannel
takes the extreme points of the stabilizer polytope to a sta-
bilizer state, then it will also take any convex combination
of them to a stabilizer state. However, finding all stabilizer
witnesses is a hard problem, but for small dimensions, they
can be found and the above characterization can be used as a
set of conditions in resource interconversion tasks formulated
as conic optimization problems..

B. Completely CSPO-preserving superchannels

Definition. Given two dynamical systems A and B, a su-
perchannel � ∈ S(A → B) is said to be completely CSPO
preserving if

�A→B[NAR] ∈ CSPO(BR) ∀ N ∈ CSPO(AR). (12)

In other words, a superchannel is completely CSPO pre-
serving if, for every input CSPO, the output is also CSPO,
even if the superchannel acts only on a subsystem of the input
channel.

Theorem 1. Let � ∈ S(A → B). Then � ∈ F2(A → B) if
and only if

1

|A1B0|J�
AB ∈ STAB(AB). (13)

Proof. We first prove that if � is a completely CSPO-
preserving superchannel [i.e., belongs to F2(A → B)], then its
normalized Choi matrix is a stabilizer state. For the other side,
we show that if a superchannel � is not a completely CSPO-
preserving superchannel, then its normalized Choi matrix is
not a stabilizer state.

Let � ∈ S(A → B) be a completely CSPO-preserving su-
perchannel. By definition, a superchannel can be realized
using a preprocessing channel E ∈ CPTP(B0 → E1A0) and
a postprocessing channel F ∈ CPTP(E1A1 → B1) [71]. The
normalized Choi matrix of the superchannel can be expressed
in terms of these pre- and postprocessing channels in the
following way:

1

|A1B0|J�
AB = idA1B0 ⊗ (

idA0 ⊗ FE1A1→B1

) ◦ (idA1 ⊗ EB0→A0E1 )
(
φ+

A1Ã1
⊗ φ+

B0B̃0

)
, (14)

where φ+
A1Ã1

(φ+
B0B̃0

) represents the maximally entangled state in the system A1Ã1(B0B̃0). Equation (14) can be diagrammatically
illustrated using Fig. 1.
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FIG. 1. Normalized Choi matrix of a superchannel.

Define N ∈ CPTP(A0 → Ã0A1Ã1) such that

N (ρA0 ) := ρA0 ⊗ φ+
A1Ã1

(15)

for any input density matrix in A0. Note that the normalized
Choi matrix of N is a stabilizer state. Therefore N is a
completely stabilizer-preserving operation [29]. Using such a
channel, we can view the Choi matrix of a superchannel as
shown in Fig. 2.

Since � is a completely CSPO-preserving superchannel
and N is a CSPO as defined in Eq. (15), the output channel
�[N ] is a CSPO and so, �[N ](φ+

B0B̃0
) is a stabilizer state.

Hence the normalized Choi matrix of a completely CSPO-
preserving superchannel is a stabilizer state.

For the other side of the proof, let � ∈ S(A → B) be
a superchannel that is not completely CSPO preserving.
Then there exists a CPTP map E ∈ CSPO(A0R0 → A1R1)
such that �A→B[EAR] /∈ CSPO(B0R0 → B1R1). Therefore, for
some stabilizer witness WBR̃, it holds that

Tr

[
WBR̃TrAR

[ |A0|
|B0|J1⊗�

ARBR̃

(
JE

AR

|A0R0| ⊗ IBR̃

)]]
< 0. (16)

After some algebraic manipulations, the above inequality re-
duces to

Tr

[(
JE

AR

|A0R0| ⊗ WBR̃

) |A0|
|B0|J1⊗�

ARBR̃

]
< 0. (17)

Since the normalized Choi matrix of E is a stabilizer state, the
following inequality,

Tr

[
(|φ〉AR〈φ| ⊗ WBR̃)

1

|A1B0R0R1|J1⊗�

ARBR̃

]
< 0, (18)

FIG. 2. Choi matrix of a completely CSPO-preserving super-
channel viewed as a CSPO.

must hold for some pure stabilizer state |φ〉AR. From [29]
we know that (|φ〉AR〈φ| ⊗ WBR̃) is a valid stabilizer witness.
Hence,

1

|A1B0R0R1|J1⊗�

ARBR̃
/∈ STAB(ARBR̃), (19)

which is equivalent to

1

|A1B0R0R1|J1
RR̃ ⊗ J�

AB /∈ STAB(ARBR̃), (20)

and that implies

1

|A1B0|J�
AB /∈ STAB(AB). (21)

Therefore we can conclude that the normalized Choi matrix
of a superchannel is a stabilizer state if and only if the super-
channel is completely CSPO preserving. �

This characterization finds its use in classical simulation
algorithms. As we will show later that the runtime of our
algorithm depends on magic monotones, so, if one can iden-
tify a certain combination of channels in a circuit as a free
superchannel, then using the above characterization, one can
argue for a smaller runtime.

IV. MAGIC MEASURES

In this section we quantify magic states and channels. We
extend the generalized robustness and the min-relative entropy
magic measures from the state to the channel domain [28,43].
These quantifiers arise from the standard resource theoretic
techniques and are related to the channel divergences, which
have been studied recently in detail in Refs. [71–78]. Next, we
formally define the geometric measure for magic states, which
to the best of our knowledge has not been defined earlier. We
could not find any operational use of this monotone and leave
it as an open problem. Note that we will denote the (free)
robustness of magic as R, the generalized robustness of magic
as Rg, the min-relative entropy of magic states as DSTAB

min , the
hypothesis testing relative entropy of magic states as Dε, STAB

min ,
and the min-relative entropy of magic channels as DCSPO

min .
For completeness, we have briefly discussed robustness of
magic and hypothesis testing relative entropy of magic states
in Appendixes D and E, respectively.

A. Generalized robustness of dynamical magic resources

The generalized robustness for magic states was defined in
[43]. Below we generalize it for the channel case and define
the log of generalized robustness for a magic channel NA ∈
CPTP(A0 → A1) as

LRg(NA) = min
E∈CSPO(A0→A1 )

Dmax(NA‖EA) (22)

= log min{λ : λ E � N ; E ∈ CSPO(A0 → A1)}.
(23)
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This optimization problem can be expressed in terms of Choi
matrices as

LRg(NA) = log min λ

s.t.: λ JE
A � JN

A ,

JE
A0

= IA0 ,

JE
A

|A0| ∈ STAB(A0A1), (24)

which can be simplified as

LRg(NA) = log min
Tr[ωA]

|A0|
s.t.: ωA � JN

A ,

ωA0 = Tr[ωA]
IA0

|A0| ,
ωA

Tr[ω]
∈ STAB(A0A1). (25)

The dual of the above primal problem can be written as

LRg(NA) = log sup Tr[αAJN
A ]

s.t.: Tr

[
φi

(
αA + βA0 ⊗ IA1 − Tr[βA0 ]

IA

|A0|
)]

� 1

|A0| ∀ φi ∈ STAB(A0A1),

αA � 0, βA0 ∈ HERM(A0). (26)

Some properties of the generalized robustness of magic chan-
nels are listed below:

(1) Faithfulness. LRg(NA) = 0 ⇐⇒ N ∈ CSPO(A0 → A1).
The proof is similar to the state case.

(2) Monotonicity. LRg(�[N ]) � LRg(N ) for any free su-
perchannel � ∈ F1(A → B) or � ∈ F2(A → B). The proof
follows from the data-processing inequality as

LRg(�[N ]) = min
F∈CSPO(B)

Dmax(�[N ]‖F )

� min
E∈CSPO(A)

Dmax(�[N ]‖�[E])

� min
E∈CSPO(A)

Dmax(N‖E ). (27)

(3) Subadditivity. LRg(N ⊗ M) � LRg(N ) + LRg(M).
The proof easily follows from Eq. (22).

Remark 1. Equation (23) can be rewritten (without the log)
as

Rg(NA) = min

{
λ � 1 :

N + (λ − 1)M
λ

∈ CSPO(A0 → A1),

M ∈ CPTP(A0 → A1)

}
. (28)

Hence, for any λ � Rg(NA), a channel NA can then be ex-
pressed as

NA = λE − (λ − 1)M (29)

for some E ∈ CSPO(A0 → A1) and some M ∈ CPTP(A0 →
A1).

B. Min relative entropy of magic resources

Below, we present another monotone, the min-relative en-
tropy of magic states and channels. The min-relative entropy
of a magic state ρ is defined as

DSTAB
min (ρ) := min

σ∈STAB
Dmin(ρ‖σ ) (30)

= min
σ∈STAB

(− log2 Tr[Pρσ ]) (31)

= − log2 max Tr[Pρσ ]

s.t.: σ ∈ STAB, (32)

= − log2 max Tr[Pρφ]

s.t.: φ ∈ STAB, (33)

where Pρ denotes the projection onto the support of ρ. Sim-
ilarly, the min-relative entropy of a magic channel N can be
defined as

DCSPO
min (NA) := min

E∈CSPO(A)
Dmin(N‖E ) (34)

= min
E∈CSPO(A)

sup
ψ∈D(R0A0 )

Dmin(N (ψ )‖E (ψ )). (35)

Below we list some of the properties of the min-relative en-
tropy of magic states and channels.

(1) Faithfulness. The min-relative entropy of magic states
and channels is faithful, i.e.,

DCSPO
min (NA) = 0 ⇐⇒ N ∈ CSPO(A0 → A1), (36)

DSTAB
min (ρA0 ) = 0 ⇐⇒ ρ ∈ STAB(A0). (37)

(2) Monotonicity. The min-relative entropy is a magic
monotone under CSPOs for the state case and under CSPO-
preserving and completely CSPO-preserving superchannels
for the channel case. Thus, for any state ρ ∈ D(A0) it
follows that DSTAB

min (E (ρ)) � DSTAB
min (ρ) for any E ∈ CSPO,

and for any channel N ∈ CPTP(A0 → A1) it follows that
DCSPO

min (�[N ]) � DCSPO
min (N ) for any � ∈ F1(A → B) or � ∈

F2(A → B). The proof for the state case is given below, which
follows from the data-processing inequality as

DSTAB
min (E (ρ)) = min

σ∈STAB
Dmin(E (ρ)‖σ )

� min
σ∈STAB

Dmin(E (ρ)‖E (σ ))

� min
σ∈STAB

Dmin(ρ‖σ ). (38)

Proof for the channel case follows similarly.
(3) Subadditivity. Subadditivity holds for min-relative en-

tropies of both static and dynamic magic resources, i.e.,
DSTAB

min (ρ1 ⊗ ρ2) � DSTAB
min (ρ1) + DSTAB

min (ρ2) for any two den-
sity matrices ρ1 and ρ2, and DCSPO

min (N ⊗ M) � DCSPO
min (N ) +

DCSPO
min (M) for any two quantum channels N and M. More-

over, for single-qubit states, the min-relative entropy of
magic states is additive, i.e., DSTAB

min (ρ1 ⊗ ρ2) = DSTAB
min (ρ1) +

DSTAB
min (ρ2) [28]. The proof of this is provided in Appendix C.
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C. Geometric magic measure for static resources

In this section we formally define the geometric magic
measure for states. Inspired from the geometric measure of
entanglement [79], we define the geometric magic measure
for pure states as

g(ψ ) = 1 − max
φ∈STAB

Tr[ψφ]. (39)

For general mixed states we can extend the above measure
using fidelity as

g(ρ) = 1 − max
σ∈STAB

F 2(ρ, σ ), (40)

where F (ρ, σ ) := Tr[
√√

σρ
√

σ ] is the fidelity between two
states ρ and σ . Below we list the properties of this measure:

(1) Faithfulness. g(ρ) = 0 if and only if ρ ∈ STAB.
(2) Monotonicity. g(E (ρ))� g(ρ) ∀ E ∈ CSPO. The proof

is similar to the proof of monotonicity of geometric measures
in [46].

(3) Subadditivity. g(ρ1 ⊗ ρ2) � g(ρ1) + g(ρ2). This fol-
lows easily if we let σ1 and σ2 be the respective optimal
stabilizer states such that g(ρ1) = 1 − F 2(ρ1, σ1) and g(ρ2) =
1 − F 2(ρ2, σ2). Then

max
σ∈STAB

F (ρ1 ⊗ ρ2, σ ) = max
σ

Tr
[√√

σ (ρ1 ⊗ ρ2)
√

σ
]

(41)

� Tr
[√

(
√

σ1ρ1
√

σ1) ⊗ (
√

σ2ρ2
√

σ2)
]

(42)

= F (ρ1, σ1)F (ρ2, σ2), (43)

where the inequality follows by choosing σ = σ1 ⊗ σ2.

V. INTERCONVERSIONS

Resource interconversion is one of the central themes of
resource theory. In this section we discuss the conditions for
qubit interconversions under CSPOs in Sec. V A, and the
conversion of magic states to channels and vice versa under
CSPO-preserving and completely CSPO-preserving super-
channels in Sec. V B. We also formulated the interconversion
distance, which is given in Appendix B.

A. Qubit interconversion under CSPOs

For the resource theory of magic, any pure magic state can
be used as a resource to achieve universal quantum computa-
tion [6]. The procedure involves distilling a pure magic state
from a given magic state and then using few copies of this

pure magic state to perform any quantum computation. Ex-
perimentally, it of interest to distill single-qubit magic states,
and the common choices are that of the |T 〉 state or the |H〉
state, where

|T 〉〈T | = 1

2

(
I + (X + Y )/

√
2
)
, (44)

|H〉〈H | = 1

2

(
I + (X + Y + Z )/

√
3
)
. (45)

Here we are interested in a more general problem of finding
whether a given single-qubit magic state can be converted
to another by repeated application of CSPOs. Equivalently,
we want to find out which set of states on the Bloch sphere
can be reached by restricting ourselves to the application of
CSPOs on a single-qubit magic state. For multiqubit systems,
this problem is an NP-hard problem because the number of
stabilizer states increases superexponentially as we increase
the dimension. For the qubit case, we use geometry to our ad-
vantage and provide the following theorem for the conversion
of a state ρ into a state σ . We show that this interconversion
problem can be cast as a linear programming feasibility prob-
lem. For the purpose of this theorem, let us define C(ρ) :=
{UρU † : U ∈ Clifford} as the set of Clifford equivalent states
of ρ. We show in the proof of the theorem below that for a
single-qubit state ρ, the set C(ρ) contains 24 elements unless
the state has additional symmetry, in which case the number
of elements is less than 24. For instance, C(|0〉〈0|) contains
only six elements, which are all the pure single-qubit stabilizer
states.

Theorem 2. Let A be a (3×31) matrix with the first 24
columns being the Bloch vectors of the elements of C(ρ), the
next six columns being the Bloch vectors of the pure qubit
stabilizer states, and the last column being (1, 1, 1)T. Let b be
the (3×1) Bloch vector corresponding to the state σ . Then the
state ρ can be converted to the state σ using CSPOs if there
exists an x ∈ R31

+ such that Ax = b.
Remark 2. The problem of finding x such that Ax = b and

x � 0 is known as an SDP feasibility problem and can be
solved using standard techniques in convex analysis [80,81].
It also has a dual given by the Farkas lemma. Using the dual
of the above feasibility problem, we can say that the state ρ

cannot be converted to σ if there exists a y ∈ R3 such that
ATy � 0 and b · y < 0.

Proof. From [29] and Eq. (6), we know that the normalized
Choi matrix of any CSPO is a stabilizer state. Let EA0→A1 ∈
CSPO(A) such that both A0 and A1 are single-qubit systems.
If we denote a pure two-qubit maximally entangled stabilizer
state as ψent and a single-qubit stabilizer state as φ, we can
write the action of EA on any input ρ ∈ D(A0) as

E (ρA0 ) = TrA0

[
JE

A (ρA0 ⊗ IA1 )
]

(46)

= |A0|
⎛
⎝∑

i

piTrA0

[
ψent

i

(
ρA0 ⊗ IA1

)]+
∑

j,k

p j,kTrA0

[(
(φ j )A0

⊗ (φk )A1

)
(ρA0 ⊗ IA1 )

]⎞⎠ (47)

=
∑

i

piUi(ρA0 ) + |A0|
∑

j,k

p j,kTr
[
(φ j )A0

ρA0

]
(φk )A1

(48)

=
∑

i

piUi(ρA0 ) +
∑

k

qkφk, (49)
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where qk = |A0|
∑

j p j,kTr[φ jρ]. In the above, the second
equality follows because any two-qubit stabilizer state can
be expressed as a convex combination of pure two-qubit en-
tangled and pure two-qubit separable stabilizer states. From
the above equations, we see that the action of a (qubit input
and output) CSPO on a qubit can be represented as a convex
combination of the action of completely stabilizer-preserving
unitary operations and stabilizer replacement channels. (An
alternative proof can also be found in [82].) Note that for
two-qubit states, there are a total of 60 pure stabilizer states
of which only 24 are entangled [55]. Hence there are only
24 single-qubit unitary gates that are completely stabilizer
preserving. These unitary gates are listed in Appendix G and
are Clifford unitaries. Therefore any state can be transformed
to at most 24 states (including itself) on the Bloch sphere
using these unitary gates. For a single-qubit state, which can
be expressed as a vector (r1, r2, r3)T in the Bloch sphere, its
transformations using these unitary gates are given in Ap-
pendix G. Furthermore, if we view the Bloch sphere as been
divided into eight octants according to (±X,±Y,±Z ) and
each octant to be further subdivided into three subsets such
that for one subset it holds that |〈X 〉| � |〈Y 〉|, |〈Z〉|, for the
second subset it holds that |〈Y 〉| � |〈X 〉|, |〈Z〉|, and for the
third subset we have |〈Z〉| � |〈X 〉|, |〈Y 〉|, then using Table III
in Appendix G, we can say that any arbitrary state in some
subset (of an octant) is the Clifford equivalent to a state in
any other subset. Therefore we can conclude from the equa-
tions and the arguments above that the set of states that can be
generated from a given state under the action of CSPOs must
belong to a convex polytope in the Bloch sphere, the extreme
points of which are the Clifford equivalent states of the given
state and the stabilizer states. Further, if we let {ri} denote the
set of Bloch vectors of the Clifford equivalent state of ρ, {sk}
denote the Bloch vectors of the pure single-qubit stabilizer
states, and b as the Bloch vector of E (ρ), then from Eq. (49),
we can write the Bloch vector b as

b =
∑

i

piri +
∑

k

qksk . (50)

We can now express the above in the form of the equa-
tion Ax = b, where the matrix A is a (3×30) matrix consisting
of ri’s and sk’s as column vectors, and x is the (30×1) vector
consisting of non-negative numbers summing to 1. We can
include this last condition on x by inserting a (1, 1, . . . , 1)
row in A, thus making A a (4×30) matrix. Therefore we can
now say that a state ρ can be converted to a state σ with Bloch
vector b if there exists a vector x ∈ R30 such that

Ax = b, and (51)

x � 0. (52)

Remark 3. The above interconversion conditions can be
expressed and visualized on a Bloch sphere which has been
discussed in Appendix H. �

B. Cost and distillation bounds under CSPO-preserving
and completely CSPO-preserving superchannels

In this section we find bounds on the cost of converting
a magic state to a multiqubit magic channel and the bounds

on distilling magic states from a quantum channel using
both CSPO-preserving and completely CSPO-preserving su-
perchannels. For the case of distillation, we focus on distilling
pure single-qubit magic states, because a pure magic state is
enough for achieving universality in the magic state model
of quantum computation. Besides, due to the complexity in-
volved in verifying whether a state is a stabilizer state, we
leave the problem of finding the upper bound of cost and lower
bound of distillation using completely CSPO-preserving su-
perchannels as open.

Since any pure magic state can be used as a resource
to perform universal quantum computation, we define the
dynamical magic cost of converting a pure magic state to
a channel N ∈ CPTP(B0 → B1) under CSPO-preserving su-
perchannels or completely CSPO-preserving superchannels as

COSTF1(2) (NB) = min log{|A1| : �[ψA1 ]

= NB, ψ ∈ D(A1), � ∈ F1(2)(A1 → B)}.
(53)

If we want the cost of simulating a channel in terms of a
particular magic state ψ ∈ D(A1), we define cost as

COSTψ,F1(2) (NB) = min
{
n : �[ψn] = NB,

� ∈ F1(2)(A1 → B)
}
. (54)

Distillation of a pure single-qubit magic state ψ from a
channel N ∈ CPTP(A0 → A1) using CSPO-preserving or
completely CSPO-preserving superchannels is defined as

DISTILLε
ψ,F1(2)

(NA) = max{n : F (�[N ], ψn)

� 1 − ε, � ∈ F1(2)(A → B1)}. (55)

Proposition 1. COSTF1 (N ) � log(|A1|) if for some sys-
tem A1, we have

max
ψ∈D(A1 )

DSTAB
min (ψA1 ) � LR(NB), (56)

where LR(NB) is the log of the robustness of NB. If ψ is a
given single-qubit magic state, then it follows that

COSTψ,F1 (N ) �
⌈

LR(N )

DSTAB
min (ψ )

⌉
. (57)

Proof. Let for some ψ ∈ D(A1), the following is satisfied:

DSTAB
min (ψA1 ) � LR(NB). (58)

Now consider the following superchannel � ∈ S(A1 → B),
whose action on any input state ρ ∈ D(A1) is given as

�[ρ] := Tr[ψρ]N + (1 − Tr[ψρ])M, (59)

where M is the optimal CSPO chosen from the definition of
the channel robustness, R(N ). It is easy to verify that �[ψ] =
N . From Eq. (58) we also get that

− log Tr[ψσ ] � log (1 + R(N )) ∀σ ∈ STAB(A1). (60)

Hence, for any σ ∈ STAB(A1), it holds that Tr[ψσ ] �
1

1+R(N ) , implying that � ∈ F1(A1 → B). Thus the cost of
converting a pure magic state to a magic channel NB using
CSPO-preserving superchannels is no greater than log(|A1|)
if maxψ∈D(A1 ) DSTAB

min (ψA1 ) � LR(N ).
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TABLE I. Comparison of upper bound of magic cost of states.

State Upper bound from our work Lower bound from [24]

|H〉 2 2
|CS1,2〉 3 3
|T1,2,3〉 4 3
|χ〉 4 4
|CCZ〉 4 4
|CS12,13〉 4 4
|T1CS2,3〉 5 4
|T1CS12,13〉 5 5
|Hoggar〉 6 6

Further, if ψ is a given single-qubit pure magic state, then
using the additivity of min-relative entropy of single-qubit
magic states we get

COSTψ,F1 (NB) �
⌈

LR(N )

DSTAB
min (ψ )

⌉
. (61)

�
Remark 4. We numerically verify that the bound in

Eq. (57) is not trivial. As an example, we use the |T 〉 state
[DSTAB

min |T 〉〈T | = 0.2284] to calculate the upper bound of cost
of creating some magic states. We present the comparison of
the upper bound of our results of cost with the lower bound
obtained in [24] as a table below (see Table I). Note that in
[24] the free operations were stabilizer operations. In the table,
a general resource state |U 〉 = U |+〉, where |+〉 is the maxi-
mally coherent state and U is some unitary gate. Also, some
special states include the |H〉 state, which is the single-qubit
state with Bloch vector (1, 1, 1)/

√
3 and has robustness

√
3,

the |χ〉 state is the two-qubit state with maximum robustness
of

√
5 for two-qubit states, and the |Hoggar〉 state is the three-

qubit state which maximizes robustness for three-qubit states
and has robustness 3.8.

Remark 5. We would like to emphasize here that we pro-
vide a general result for the case of channels by giving a
precise formula to find the upper bound on the cost that
depends on the log robustness of the magic channel and the
min-relative entropy of the single-qubit magic state.

Proposition 2. The cost of converting a pure magic state
ψA1 ∈ D(A1) to a target channel NB ∈ CPTP(B0 → B1) using
CSPO-preserving or completely CSPO-preserving superchan-
nels is lower bounded by

LRg(NB)

LRg(ψA1 )
� COSTψ,F1(2) (NB). (62)

Proof. The proof follows from the standard resource theo-
retic methods and can be seen as a special case of Theorem 1
of [83], together with the subadditivity of generalized robust-
ness of magic resources. �

Proposition 3. Given a channel N ∈ CPTP(A0 → A1) and
a single-qubit state ψ , the following holds:

DISTILLψ,F1(2) (NA) � DCSPO
min (NA)

DSTAB
min (ψ )

. (63)

Proof. The proof of the above proposition also follows
from standard resource theoretic methods [83,84] and the

additivity of min-relative entropy of single-qubit magic states.
For completeness, we provide the proof in Appendix F. �

Proposition 4. The lower bound on distilling a single-qubit
pure magic state ψ from a channel N ∈ CPTP(A0 → A1)
using a CSPO-preserving superchannel is given by

DISTILLε
ψ,F1

(NA) �
⌊

Dε, STAB
min (J̃N

A )

LR(ψ )

⌋
, (64)

where J̃N
A is the normalized Choi matrix of the channel N ,

and Dε, STAB
min (·) represents the hypothesis testing relative en-

tropy of magic states which we have defined in Appendix E.
Proof. Let n be the largest non-negative integer such that

Dε, STAB
min (J̃N

A ) � nLR(ψ ). Then we can construct the follow-
ing superchannel � ∈ S(A → B1) such that for any input
channel M ∈ CPTP(A0 → A1),

�[M] := Tr
[
J̃M

A E
]
ψn + (

1 − Tr
[
J̃M

A E
])

σ, (65)

where σ ∈ STAB(B1) is chosen from the definition of R(ψn),
and E is the optimal POVM element chosen in the defini-
tion of hypothesis testing relative entropy of magic states,
Dε, STAB

min (J̃N ). We first notice that for such a superchannel,

F (�[N ], ψn) � Tr[�[N ]ψn] (66)

� Tr[J̃N E ] (67)

� 1 − ε, (68)

where the last inequality comes from the fact that E is optimal
in Dε, STAB

min (J̃N ). Since Dε, STAB
min (J̃N

A ) � nLR(ψ ), we get

− log Tr[Eσ ] � log (1 + R(ψ ))n � log (1 + R(ψn)) (69)

for all σ ∈ STAB(A0A1). Therefore if the input M ∈
CPTP(A0 → A1) is a CSPO, then − log Tr[EJ̃M

A ] � log (1 +
R(ψn)), which implies that

Tr
[
EJ̃M

A

]
� 1

1 + R(ψn)
.

Hence � is a CSPO-preserving superchannel. Thus we can
distill at least n copies of the single-qubit state ψ from the
channel N , where n satisfies Dε, STAB

min (J̃N
A ) � nLR(ψ ). �

VI. CLASSICAL SIMULATION ALGORITHM
FOR CIRCUITS

The goal of a classical simulation algorithm is to estimate
Born rule probabilities or to find the expectation value of
an observable. To this purpose, a class of algorithms, known
as quasiprobability simulation techniques, have recently been
developed that make use of the quasiprobability decomposi-
tion of magic states or channels [15,24,29,43]. The runtime
of these algorithms has been shown to be of the order of
the square of the robustness [24,29], or the square of an-
other similar monotone, the dyadic negativity [43]. In [43],
another simulation technique, the constrained path simulator
for states, was introduced with the idea to reduce the runtime
of the simulation. This simulation technique offers constant
runtime by compromising with the precision in estimating the
expected value.

Below we extend the constrained path simulator algorithm
to the general case of a circuit composed of a sequence of

042422-8



QUANTIFYING MULTIQUBIT MAGIC CHANNELS WITH … PHYSICAL REVIEW A 106, 042422 (2022)

channels acting on an initial stabilizer state and ending with
a measurement of some Pauli observable. We modify the al-
gorithm so that we achieve the estimate with a precision more
than or equal to a desired precision. With this modification, the
runtime of the algorithm is not a constant but depends on the
desired precision (or the desired error). For any nonzero error,
the runtime never exceeds that of a quasiprobability simulator
for channels. Moreover, if there is no bound on the error or
precision, the algorithm achieves a constant runtime.

The overall idea of the constrained path simulator for states
is as follows. A magic state ρ ∈ D(A1) can be decomposed
as ρ = tσ+ − (t − 1)ρ− for some t � 1, σ+ ∈ STAB(A1),
and ρ− ∈ D(A1). The constrained path simulator for states
works by constraining the quasiprobability decomposition of
a state to the positive part, i.e., by making the approximation

ρ ≈ tσ+. Then the algorithm estimates tTr[EO(σ+)] up to ε

error using a Clifford simulator (like quasiprobability simu-
lator). Here E is some Pauli observable, and O is a CSPO.
This estimate is then used to obtain the expectation value
Tr[EO(ρ)] and the estimation error. The runtime of the algo-
rithm is decided by the Clifford simulator used. By defining ε

as the product of a constant c and t , the algorithm was shown
to have a constant runtime.

Constrained path simulator for channels. Let N be a cir-
cuit composed of a sequence of n channels, and let the ith
circuit element be denoted by Ni. As mentioned previously in
Remark 1, the circuit element Ni can be decomposed using
some CSPO Ei and some other channel Mi such that Ni =
λiEi − (λi − 1)Mi, where λi is the generalized robustness of
Ni. Then for the whole circuit we can write

N = Nn ◦ · · · ◦ N1 = (λn · · · λ1)(En ◦ · · · ◦ E1) + . . . + [(λn − 1) · · · (λ1 − 1)]Mn ◦ · · · ◦ M1

= (λn · · · λ1)(En ◦ · · · ◦ E1) + [(λn · · · λ1) − 1]M

= λE + (λ − 1)M, (70)

where λ = λn · · · λ1, E = En ◦ · · · ◦ E1, and M follows from
simple arithmetic manipulation of the first equation and is
the probabilistic combination of the sequence of channels
where each sequence contains at least one Mi. The aim of
the algorithm is to estimate Tr[EN (|0〉〈0|)] with a precision
more than or equal to some target precision and a runtime less
than what can be achieved by a quasiprobability simulator.

The algorithm starts by replacing the original circuit N
with another circuit N ′ to achieve the mean estimate up to
some target error �∗. The algorithm first replaces the channel
N j with λ jE j if λ j , the generalized robustness of N j , is less
than some fixed real number λ∗. Here E j is the optimal CSPO
such that λ jE j � N j . The choice of λ∗ ensures that the estima-
tion error never exceeds the target allowed error. Then, using
the static Monte Carlo routine introduced in [29] for circuits,
the algorithm estimates λ′Tr[EN ′(|0〉〈0|)] up to ε error where
λ′ is the product of the generalized robustness values of the re-
placed channels and the error ε equals a constant c multiplied
with λ′. Next, using ε, λ′ and the estimate we obtained above,
the algorithm outputs the estimate of the expectation value
Tr[EN (|0〉〈0|)] up to error � � �∗ following some trivial
steps.

In the static Monte Carlo routine, the runtime of the al-
gorithm is decided by finding the total number N of steps
required to achieve the mean estimate up to an additive error ε

with success probability 1 − pfail. The number of steps N that
the static Monte Carlo takes is given by

N = ⌈
2ε−2‖q‖2

1 log 2
(
2p−1

fail

)⌉
, (71)

where ‖q‖1 = ∏
j R(N j ), and R(N j ) is the robustness of the

circuit element N j as defined in [29]. In our hybrid algorithm,
since we choose to keep some channels and replace some with
CSPOs, the number of steps to estimate λTr[EN ′(|0〉〈0|)] up

to ε error with success probability 1 − pfail is given by

N =
⎡
⎢⎢⎢2ε−2λ2

∏
j:λ j>λ∗

R(N j )
2 log

(
2p−1

fail

)⎤⎥⎥⎥ (72)

=
⎡
⎢⎢⎢2c−2

∏
j:λ j>λ∗

R(N j )
2 log

(
2p−1

fail

)⎤⎥⎥⎥, (73)

where c is a predefined small constant. In this sense the num-
ber of steps only depends on the robustness of the channels
whose λi > λ∗. Note that if all the channels are selected by
the algorithm, we essentially have the same runtime as that of
static Monte Carlo routine. If all the channels are replaced in
the initial steps then we get a constant runtime.

Analysis. As with the constrained path simulator for states,
the choice of Emax and Emin ensure that for all λ and EN ′ , the
following inequality holds with probability 1 − pfail:

|Ê − Tr[EN (|0〉〈0|)]| � �. (75)

To justify the choice of λ∗, let λ∗ be the generalized robustness
of each channel used in the circuit, and λ∗ times the optimal
CSPO for each channel is considered in the above routine.
Then for any � we have

� � λ(1 + c) − 1, (76)

and hence we require λ(1 + c) − 1 � �∗. Assuming there are
n channels in the circuit, we get

λ∗ �
(

�∗ + 1

1 + c

)1/n

(77)

≈ (�∗ + 1)1/n. (78)

Since this is the worst-case analysis, in practical scenarios
we will have λ � λ∗(equality only arising when the circuit
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Algorithm 1 Dynamic constrained path simulator.

Input: (i) Sequence of channels N1, . . . ,Nn such that the target
channel N = Nn ◦ · · · ◦ N1.
(ii) Real numbers 0 < c, pfail � 1 and Pauli observable E .
(iii) Desired error �∗.
Precomputation: (i) λ∗ = (�∗ + 1)1/n. (ii) For each circuit
element, an optimal decomposition in terms of CSPOs is
determined.
Output: (i) Born rule probability estimate Ê . (ii) Error � such
that |Ê − Tr[E N (|0〉〈0|)]| � �, and � � �∗.
1: for i ← 1 to n do
2: λi ← �+(Ni ), and denote the optimal free channel by Ei.
3: if λi � λ∗ : then
4: Ni ← λiEi

5: end if
6: end for
7: N ′ ← (

∏
j:λ j�λ∗ λ j )(Fn ◦ · · · ◦ F1), where N ′ denotes the new

circuit that will be used to find the estimate and Fk’s denote the
circuit elements given by

Fk =
{
Ek if λk � λ∗

Nk otherwise
(74)

8: ε ← cλ where λ = ∏
j:λ j�λ∗ λ j

9: Let EN ′ be an estimate of λTr[EN ′(|0〉〈0|)] up to ε error and
success probability 1 − pfail.

10: Emax ← min{1, EN ′ + ε + λ − 1}
11: Emin ← max{−1, EN ′ − ε − λ + 1}
12: Ê ← (Emax + Emin )/2
13: � ← (Emax − Emin )/2

consists of just one channel applied n times), and therefore
� � �∗.

VII. CONCLUSION

In this work we developed the dynamical multiqubit re-
source theory of magic channels by identifying the completely
stabilizer-preserving operations (CSPOs) as the set of free
operations. CSPOs are a perfect candidate for the free chan-
nels of a resource theory of magic channels because they
form the largest known set of operations that cannot pro-
vide any quantum advantage. In previous resource theoretic
studies of magic channels, the superchannel approach was
only taken in Ref. [50], where the authors considered the
odd-dimensional qudit case and the free channels were the
completely positive Wigner preserving operations (CPW-
POs). There, the free superchannels were chosen to be the
ones that completely preserve the set of CPWPOs. In this
paper we defined and characterized two sets of free super-
channels, namely, the CSPO-preserving superchannels and
the completely CSPO-preserving superchannels. We charac-
terized completely CSPO-preserving superchannels in terms
of their Choi matrices, and in particular, we showed that
a superchannel is completely CSPO preserving if and only
if its normalized Choi matrix is a stabilizer state. We then
defined monotones for states and channels which include the
generalized robustness of magic channels, the min-relative
entropy of magic channels, and the geometric magic measure
for states. We also addressed some resource interconversion

problems, specifically proving that the qubit interconversion
under CSPOs can be solved with simple linear program-
ming. We then determined a closed formula for the upper
and lower bound on both the cost of simulating a chan-
nel from a qubit and distilling a qubit magic state from
a channel, under CSPO-preserving superchannels. We also
formulated the lower bound on the qubit cost of simulating
a magic channel, and the upper bound on distilling a pure
qubit magic state from a magic channel under completely
CSPO-preserving superchannels using the standard resource
theoretic techniques. Finally, we gave a classical simulation
algorithm to find expectation values given a general quantum
circuit. The algorithm works by selecting and replacing some
circuit elements with some CSPO, based on a parameter that
depends on the minimum target precision required. Hence,
due to this selective replacement algorithm, the runtime of
our algorithm also depends on the precision required. If the
precision required is too tight, then the runtime reaches that
of the static Monte Carlo simulation algorithm given in [29],
whereas if there is no bound on the precision, the algorithm
has a constant runtime and can be seen as a generalization of
the constrained path simulator introduced in [43] for states.
These classical simulation algorithms help benchmark the
quantum computational speedup, and there is a lot left to
explore in the general circuit case. Apart from that, it would
be interesting to explore nondeterministic transformations and
catalytic transformations under CSPO-preserving and com-
pletely CSPO-preserving superchannels. Lastly, because of
the difficulty in verifying whether a state is a stabilizer or not,
we were unable to find lower bounds on distilling magic states
using completely CSPO-preserving operations and leave it as
an open problem.
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APPENDIX A: SUPERCHANNELS

A superchannel is a linear map that takes a quantum chan-
nel to another quantum channel. In other words, we can say
that a superchannel � describes the evolution of a quan-
tum channel N ∈ CPTP(A0 → A1) to a target channel M ∈
CPTP(B0 → B1) as

�A→B[NA] = MB (A1)

and even when acting on part of the channel as

1R ⊗ �A→B[NAR] = MBR, (A2)

where NAR ∈ CPTP(A0R0 → A1R1), MBR ∈ CPTP(B0R0 →
B1R1), and 1R denotes the identity superchannel that takes
the dynamical system R to R. A superchannel can be real-
ized in terms of a pre- and a postprocessing channel. Let
E ∈ CPTP(B0 → E1A0) be the preprocessing channel and
F ∈ CPTP(E1A1 → B1) be the postprocessing channel for a
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superchannel � ∈ S(A → B), then the left-hand side describ-
ing the evolution in Eq. (A1) can be written as

�A→B[NA] = FE1A1→B1 ◦ NA0→A1 ◦ EB0→E1A0 . (A3)

Apart from that, the transformation of Eq. (A1) can also
be written using Choi matrices of channels N , M, and the
superchannel � as

JM
B = TrA

[
J�

AB

((
JN

A

)T ⊗ IB

)]
, (A4)

where the Choi matrix of a superchannel is defined in terms
of a linear map Q�,

J�
AB = Q�

Ã1B̃0→A0B1

(
φ+

A1Ã1
⊗ φ+

B0B̃0

)
, (A5)

where the linear map takes bounded operators in Ã1B̃0 to
bounded operators in A0B1. More details about supermaps
and superchannels can be found in Refs. [71,85–91]. Lastly,
note that the Choi matrix of a superchannel � ∈ S(A → B)
follows the following conditions [71]:

J�
AB � 0, (A6)

J�
A1B0

= IA1B0 , (A7)

J�
AB0

= J�
A0B0

⊗ IA1

|A1| . (A8)

APPENDIX B: INTERCONVERSION DISTANCE

We define the interconversion distance from a state
ρ ∈D(A0) to another state σ ∈ D(A1) as

d (ρA0 → σA1 ) = 1

2
min

E∈CSPO(A0→A1 )
‖E (ρ) − σ‖1 (B1)

= min
E∈CSPO

(
max

0�P�I
Tr[(E (ρ) − σ )P]

)
. (B2)

Using the dual of trace norm, we can express the above inter-
conversion distance as follows:

d (ρ → σ ) = min Tr[X + Y ] (B3)

s.t.

(
X E (ρ) − σ

E (ρ) − σ Y

)
� 0, (B4)

X � 0, Y � 0, (B5)

JE
A0A1

� 0, JE
A0

= IA0 , (B6)

JE
A0A1

|A0| ∈ STAB. (B7)

APPENDIX C: PROOF OF ADDITIVITY
OF MIN-RELATIVE ENTROPY OF QUBIT

MAGIC STATES

To prove the additivity of min-relative entropy of qubit
magic states, first note that the projector onto the support of a
qubit state is identity if the state is mixed, or else it is the state
itself if it is pure. For the proof, we construct the following
four possible cases for qubits ρ1 or ρ2:

(1) For ρ1, ρ2 > 0, we get

DSTAB
min (ρ1 ⊗ ρ2) = − log2 max

ψ∈STAB
Tr[(Pρ1 ⊗ Pρ2 )ψ] (C1)

= − log2 max Tr[(I ⊗ I )ψ] (C2)

= 0 (C3)

= DSTAB
min (ρ1) + DSTAB

min (ρ2) (C4)

(2) For ρ1 > 0 and ρ2 = |χ〉〈χ |, we get

DSTAB
min (ρ1 ⊗ ρ2) = − log2 max

ψ∈STAB(A1A2 )
Tr[(Pρ1 ⊗ Pρ2 )ψ] (C5)

= − log2 max
φ∈STAB(A2 )

Tr[|χ〉〈χ |φ] (C6)

= DSTAB
min (ρ2) (C7)

= DSTAB
min (ρ1) + DSTAB

min (ρ2) (C8)

(3) For ρ1 = |χ〉〈χ | and ρ2 > 0, we get the same result as
obtained in 2, i.e.,

DSTAB
min (ρ1 ⊗ ρ2) = DSTAB

min (ρ1) + DSTAB
min (ρ2) (C9)

(4) For the case when both ρ1 and ρ2 are pure and let ρ1 =
|χ〉〈χ | and ρ2 = |ω〉〈ω|, we get

DSTAB
min (ρ1 ⊗ ρ2) = − log2 max

ψ∈STAB
Tr[(|χ〉〈χ | ⊗ |ω〉〈ω|)ψ]

(C10)

= − log2 F (|χ〉〈χ | ⊗ |ω〉〈ω|) (C11)

= − log2 (F (|χ〉〈χ |)F (|ω〉〈ω|)) (C12)

= DSTAB
min (ρ1) + DSTAB

min (ρ2), (C13)

where the second equality follows from the definition of sta-
bilizer fidelity as defined in [28]. The third equality follows
from Theorem 5 and Corollary 3 of [28].

Therefore for single-qubit states we find that the min-
relative entropy of magic states is additive.

APPENDIX D: ROBUSTNESS OF MAGIC

We define the robustness of magic of a quantum state as

R(ρ) = min

{
λ � 0 :

ρ + λσ

λ + 1
∈ STAB, σ ∈ STAB

}
, (D1)

which is slightly different from how it was originally defined
in [24]. We use this definition because any resource monotone
must be zero for free elements. Likewise, we define channel
robustness of magic of a quantum channel N as

R(NA) = min

{
λ � 0 :

N + λE
λ + 1

∈ CSPO, E ∈ CSPO

}
,

(D2)

which again differs slightly from the definition of channel
robustness of magic in [29].

Both these quantities are magic monotones and are sub-
multiplicative under tensor products. Therefore the log of the
robustness of magic (denoted as LR) is subadditive, i.e.,

LR(ρ⊗m) � mLR(ρ), (D3)

LR(N⊗m) � mLR(N ), (D4)

where LR(ρ) = log (1+R(ρ)) and LR(N ) = log (1 + R(N )).
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APPENDIX E: HYPOTHESIS TESTING RELATIVE
ENTROPY OF MAGIC STATES

The hypothesis testing relative entropy of magic states or
the operator smoothed min-relative entropy of magic states is
defined as

Dε, STAB
min (ρ) = min

σ∈STAB
Dε

min(ρ‖σ ) (E1)

= min
σ∈STAB

(− log2 min Tr[Eσ ] (E2)

s.t. 0 � E � I, (E3)

Tr[Eρ] � 1 − ε ). (E4)

For ε = 0, the hypothesis testing relative entropy of magic
states becomes equal to the min-relative entropy of magic
states, i.e., Dε=0, STAB

min (ρ) = DSTAB
min (ρ).

APPENDIX F: PROOF OF PROPOSITION 3

First we note that for any EA ∈ CPTP(A) and any � ∈
CSPSC(A → B1) we have

Dmin
(
ψ⊗k‖�[E]

) = − log2 Tr
[
ψ⊗k�[E]

]
(F1)

� DSTAB
min (ψ⊗k ) (F2)

= k DSTAB
min (ψ ), (F3)

where the inequality follows from the definition of min-
relative entropy of magic states, and the last equality follows
from its additivity for single-qubit states.

The hypothesis testing relative entropy [92,93] between
two states ρ1 and ρ2 is given by

Dε
Hyp(ρ1‖ρ2) := − log2 min{Tr[Mρ2] : 0 � M � I,

Tr[Mρ1] � 1 − ε}, (F4)

and its channel counterpart can be given as

Dε
Hyp(NA‖MA) := sup

ψ∈D(R0A0 )
Dε

Hyp(N (ψR0A0 )‖M(ψR0A0 )).

(F5)
Using this definition, we then have

k DSTAB
min (ψ ) � min

E∈CSPO
Dmin(ψ⊗k‖�[E]) (F6)

� min
E∈CSPO

Dε
Hyp(�[N ]‖�[E]) (F7)

� min
E∈CSPO

Dε
Hyp(N‖E ), (F8)

where the second inequality follows from the definition of
hypothesis testing relative entropy, and the last inequality
follows from the data-processing inequality. And therefore we
get

DISTILLε
ψ (NA) �

minE∈CSPO(A0→A1 ) Dε
Hyp(N‖E )

DSTAB
min (ψ )

, (F9)

which for an exact distillation process (i.e., ε = 0) will be-
come

DISTILLψ (NA) � DCSPO
min (NA)

DSTAB
min (ψ )

. (F10)

TABLE II. Unitary CSPOs and their Choi matrices.

Unitary gate State corresponding to associated Choi matrix

I |00〉 + |11〉
X |01〉 + |10〉
Z |00〉 − |11〉
XZ |01〉 − |10〉
H |0+〉 + |1−〉
HX |0−〉 + |1+〉
HZ |0+〉 − |1−〉
HXZ |0−〉 − |1+〉
S |00〉 + i|11〉
XS |01〉 + i|10〉
ZS |00〉 − i|11〉
XZS |01〉 − i|10〉
HS |0+〉 + i|1−〉
HSZ |0+〉 − i|1−〉
HXS |0−〉 + i|1+〉
HXSZ |0−〉 − i|1+〉
SH |0 + i〉 + |1 − i〉
SHZ |0 + i〉 − |1 − i〉
SHX |0 − i〉 + |1 + i〉
SHXZ |0 − i〉 − |1 + i〉
SHS |0 + i〉 + i|1 − i〉
SHSZ |0 + i〉 − i|1 − i〉
SHSX i|0 − i〉 + |1 + i〉
SHSXZ i|0 − i〉 − |1 + i〉

APPENDIX G: SINGLE-QUBIT UNITARY CSPOs

Table II lists the set of 24 unitary gates which are
completely stabilizer preserving along with corresponding
(un-normalized) Choi matrices. Table III gives an account of
the states generated by these unitary CSPOs. Since a single-
qubit state can be represented as a vector (r1, r2, r3)T in the
Bloch sphere, we will give below the vectors to which this
vector transforms on the application of the above unitaries.

APPENDIX H: GEOMETRICAL INTERPRETATION
OF THEOREM 2

To find whether a qubit can be converted to another using
CSPOs, from Eq. (49) we get that it is enough to check
whether the target state (or any of its Clifford equivalent state)
lies outside the facets of the convex polytope (generated by the
original state) that together cover any subset of any octant. For
convenience, let us choose this subset to be the positive octant
(+X,+Y,+Z ) for which |〈X 〉| � |〈Y 〉|, |〈Z〉| and denote it by
PX . Hence it is enough to find only those extreme points of
the convex polytope which are used to form the facets that
together cover PX . Using the hyperplane separation theorem,
we can then find whether the target state lies inside this convex
polytope. Now, let the Bloch vector corresponding to ρ (or
its Clifford equivalent state) belonging to PX be denoted by
r1 = (rx, ry, rz ). We denote the neighboring Clifford equiva-
lent states which are used to form the facets of the convex
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TABLE III. Possible transformations of a Bloch vector using
unitary CSPOs.

Unitary gate Transformed vector

I r1, r2, r3

SH r2, r3, r1

HSZ r3, r1, r2

X r1, −r2,−r3

SHXZ r2, −r3,−r1

HS r3, −r1, −r2

Z −r1,−r2, r3

SHX −r2, −r3, r1

HXSZ −r3,−r1, r2

Y −r1, r2,−r3

SHZ −r2, r3,−r1

HXS −r3, r1, −r2

SHS r1, r3, −r2

HZ r3, r2,−r1

XZS r2, r1,−r3

SHSX r1,−r3, r2

H r3,−r2, r1

ZS r2, −r1, r3

SHSZ −r1, r3, r2

HX −r3, r2, r1

S −r2, r1, r3

SHSXZ −r1, −r3, −r2

HY −r3, −r2,−r1

XS −r2, −r1,−r3

polytopes as

r2 = (rz, rx, ry),

r3 = (ry, rz, rx ),

r4 = (−rx, rz, ry),

r5 = (−ry, rx, rz ),

r6 = (ry,−rx, rz ),

r7 = (0, 0, 1),

r8 = (0, 1, 0),

r9 = (−rz, ry, rx ),

r10 = (rz, ry,−rx ). (H1)

Now, depending on the location of r1 in PX , there are three
possible ways to form a convex polytope. Since we are only
interested in the facets of these polytopes that cover PX , we
list below the set of vectors which, for each possible polytope,
form a facet partially covering PX :

Possibility 1. (r1,r6,r7), (r1,r7,r5), (r1, r5, r4), (r1, r4, r3),
(r1, r3, r2), (r1, r2, r6), (r3, r4, r8)

Possibility 2. (r1,r3,r2), (r1,r2,r7), (r1, r7, r4), (r1, r4, r8),
(r1, r8, r3)

Possibility 3. (r1,r10,r3), (r1,r3,r2), (r1,r2,r4), (r1, r4, r9),
(r1, r9, r8), (r1, r8, r10), (r4, r2, r7)

In Figs. 3 and 4 we have marked the location of the points
in possibility 1 and possibility 2, respectively, highlighted
(with red arcs) the subset they belong to, and connected the

FIG. 3. Points corresponding to Possibility 1.

points in the way they are connected in the convex polytope
for a particular possibility.

Using these sets of vectors for each possible convex
polytope, it is straightforward to find the vector (say v) per-
pendicular to each facet such that the inner product of v with
all vectors lying inside that facet is less than or equal to the
inner product of v with one of the vectors on the surface of
the facet. Let us call this inner product v. All the vectors on
the other side of this facet will then give a value more than v

when their inner product is calculated with v. Therefore, by
finding all such vectors perpendicular to each facet, we find
the conditions to verify whether a vector lies inside or outside
the facets. Hence a state ρ can be converted to a state σ using
completely stabilizer-preserving operations if and only if

s · ui � ui, ∀ i = 1, . . . , 7 or

s · vj � v j, ∀ j = 1, . . . , 5 or

s · wk � wk, ∀ k = 1, . . . , 7, (H2)

FIG. 4. Points corresponding to Possibility 2.
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where s corresponds to the Bloch vector of the Clif-
ford equivalent state of σ in PX . The vectors ui’s, vj’s,
and wk’s are the vectors perpendicular to the facets of
the respective possible polytopes, and ui’s, v j’s, and wk’s
are the constants which can be calculated from the in-
ner product of ui, v j , and wk , with any vector lying
on the surfaces of the respective facets of the possible
polytopes.

The code for the above interconversion has been uploaded
in a public git repository and can be freely accessed using the
link in [94]. In the same link, we have also provided a code to
construct a convex polytope from a given state. The code can
also be used to construct convex polytopes for various states
at the same time and hence can be used to check whether
a convex polytope corresponding to some state lies inside
another convex polytope or not.
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