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Efficient quantum state tomography with mode-assisted training
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Neural networks (NNs) representing quantum states are typically trained using Markov chain Monte Carlo
based methods. However, unless specifically designed, such samplers only consist of local moves, making the
slow-mixing problem prominent even for extremely simple quantum states. Here, we propose to use mode-
assisted training that provides global information via the modes of the NN distribution. Applied to quantum state
tomography using restricted Boltzmann machines, this method improves the quality of reconstructed quantum
states by orders of magnitude. The method is applicable to other types of NNs and may efficiently tackle
problems previously unmanageable.
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I. INTRODUCTION

With the ability to compress and extract information from
high-dimensional data, machine learning has become a useful
tool in a wide variety of fields [1]. Physics is no exception.

For instance, neural networks (NNs) have been used with
reasonable success as variational wave functions of quantum
many-body systems [2–10]. Irrespective of the type of NN
employed as variational state, the vast majority of methods
to train NNs rely on Markov chain Monte Carlo (MCMC)
sampling [1], which, unless specifically designed, only con-
sists of local moves. As a result, the slow-mixing problem
arises, significantly slowing down the algorithm, sometimes
causing the training to fail completely, even for very simple
systems. Countless efforts have been devoted to solving this
problem, and various improved MCMC routines have been
proposed, aiming at accelerating the mixing of the Markov
chain [11–16]. Yet, they all serve one purpose: to increase the
quality of the MCMC samples for a more accurate gradient
estimation.

In fact, the cost function of a NN defines a nonconvex
landscape, and as any nonconvex landscape, convergence to
the global minimum with gradient-based methods can never
be guaranteed. In some cases this may not be of concern, since
proper design of the NN, weight initialization and/or learning
rate scheduling empirically seem to guarantee a smooth con-
vergence to some local minimum, close enough to the global
one. However, as we will show below, conventional sam-
pling methods can easily lead to bad local minima for certain
types of quantum states with strongly nonlocal features, which
could become a serious problem, causing complete failure of
the training.

In this paper, we tackle this issue from a different perspec-
tive: we design an off-gradient training step (i.e., a training
step that does not align with the direction of the gradient),
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constructed using the mode of the NN distribution, which we
call mode-assisted training [17,18]. This method supplements
the regular gradient descent with mode updates, which explic-
itly inject global information to the training process, leading
to better estimations of the global minimum.

As an example of NNs, we employ the well-known
restricted Boltzmann machines (RBMs) and focus on the chal-
lenging task of reconstructing a quantum state with repeated
measurements on its identical copies. This is called quantum
state tomography (QST) [19,20]. While traditional, brute-
force methods require tens of thousands of measurements to
reconstruct even small quantum states [21], recent advance-
ments in machine learning methods have greatly improved the
efficiency of such a task, making it feasible to perform QST
on states with tens or even hundreds of qubits [5,7,9,22]. Yet,
as we show below, such methods are still inefficient when the
quantum states showcase strongly nonlocal features. Instead,
mode-assisted training significantly improves the quality of
reconstructed quantum states while reducing the number of
required measurements by orders of magnitude. This opens
up the possibility of efficiently tackling other types of quan-
tum problems previously unmanageable with these types of
approaches.

II. RESTRICTED BOLTZMANN MACHINES

In this section, we outline the basics of the RBM, and
leave the detailed calculations in Appendix A. As illustrated in
Fig. 1, a RBM is a two-layered neural network with n visible
nodes v ∈ {0, 1}n, m hidden nodes h ∈ {0, 1}m, and trainable
weights Wi j and biases ai, b j . Together, they define a joint
distribution,

p(v, h) = 1

Z
exp

(
n∑

i=1

aivi +
m∑

j=1

b jh j +
n∑

i=1

m∑
j=1

Wi jvih j

)
,

(1)
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FIG. 1. The structure of a typical RBM. The visible nodes vi

and hidden nodes hj form a bipartite graph, with no intralayer
connections.

where Z is the partition function. The marginal distribution of
the visible nodes,

p(v) =
∑

h

p(v, h) = 1

Z
e
∑

i aivi
∏

j

(1 + ebj+
∑

i viWi j ), (2)

is used to model the unknown data distribution.
To represent a quantum state |ψ〉, we map the wave func-

tion to such a probability distribution. For instance, if the wave
function is positive, we can simply set ψ (v) = √

p(v). For
a general complex wave function, one can either allow the
RBM weights to have complex values [2], or use a second
RBM to model the phase [3]. Yet another approach is to
model the quantum state with informationally complete pos-
itive operator-valued measurements (IC-POVM) [7], whose
outcome is an ordinary probability distribution instead of a
quasiprobability distribution.

Irrespective, the standard method of training a RBM is to
minimize the Kullback-Leibler (KL) divergence [23,24],

KL(q||p) =
∑

v

q(v) ln
q(v)

p(v)
, (3)

between the target distribution q(v) and the RBM distribution
p(v). Computing the gradient with respect to the RBM param-
eters, we obtain the formula of weight updates:

�Wi j = η(〈vih j〉q(v)p(h|v) − 〈vih j〉p(v,h) ), (4)

in which η is the learning rate, and 〈·〉p denotes expectation
over the probability distribution p. A similar expression holds
for the biases.1 See Appendix A for detailed derivations.

In Eq. (1), the partition function Z involves a summation
over an exponential amount of terms, making it impossible
to evaluate p(v, h) efficiently. Instead, Z cancels out in the
conditional probabilities, p(h|v) and p(v|h), making them

1Throughout this work, η = 0.01 and reduces by half whenever
performance does not improve for 104 iterations, and the mini-batch
size for computing the expectation is N2, where N is the number of
qubits

efficiently computable [24]:

p(h|v) =
m∏

j=1

ehj (b j+
∑n

i=1 viWi j )

1 + ebj+
∑n

i=1 viWi j
,

p(v|h) =
n∏

i=1

evi(ai+
∑m

j=1 Wi j h j )

1 + eai+
∑m

j=1 Wi j h j
. (5)

Therefore, in the expression of the gradient, Eq. (4), the first
expectation can be evaluated exactly and efficiently, while the
second expectation is usually approximated with a sampling
algorithm.

III. LOCAL SAMPLERS

Contrastive divergence (CD) [1] is the most widely adopted
sampling algorithm for RBMs. CD-k starts from a sample v0

from the dataset and constructs a Markov chain of samples,

v0 → h0 → v1 → h1 → · · · → vk, (6)

using the conditional distributions p(h|v) and p(v|h), alter-
nating between the visible nodes v and hidden nodes h for k
times. When k → ∞, the distribution of vk converges to p(v),
and we can approximate the second term in Eq. (4) with an
expectation over a batch of sampled vk .

CD, among many other Markov chain based samplers,
like persistent contrastive divergence (PCD) [11] and parallel
tempering (PT) [12–14], belongs to the category of “local
samplers.” Unless specifically designed, they only contains
“local moves” and does not include global information on the
probability distribution. In Appendix B, we rigorously define
the concept of locality with respect to Markov chains and
visualize the spatial proximity of basis states over an example
RBM. Here, we first demonstrate the potential issues that can
arise with local samplers.

As a simple example, let us consider the Greenberger-
Horne-Zeilinger (GHZ) state [25],

|�GHZ〉 = 1√
2

(|00 · · · 0〉 + |11 · · · 1〉), (7)

a prototypical N-qubit entangled state with two modes that
has wide applications in quantum information theory and is
also used for benchmarking different QST algorithms [7,8].

Superficially, this state seems trivial and has an exact RBM
representation with only one hidden neuron [5]. On the other
hand, training a RBM with CD to represent this state faces im-
mediate failure. Starting from an ideal 10-qubit GHZ state, we
obtain training data by performing projective measurements
in the {|0〉, |1〉} basis on 104 copies of the state. Figure 2
(red dotted curve) shows the reconstruction fidelity for this
state between the exact state |ψexact〉 and the reconstructed one
|ψ〉, f (ψexact, ψ ) = |〈ψexact|ψ〉|2, for 10 qubits. CD can only
learn one of the two modes, reaching a final fidelity of 1/2.
As already mentioned, this is of no surprise, since CD is a
local sampling algorithm and has difficulty mixing between
different modes [15]. If a CD chain starts from one mode, it is
(almost) trapped there forever. This sampling bias is amplified
over time, causing the RBM to eventually converge towards
one of the two modes.
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FIG. 2. Training a RBM to represent a 10-qubit GHZ state.
Training data are obtained by performing projective measurements
in the {|0〉, |1〉} basis on 104 copies of the state. The inset shows the
frequency of mode updates, Eq. (9) (with parameters α = 20, β = 6,
and Pmax = 0.05), as training goes on. Curves represent the medians
of 20 runs, and the shaded regions are enclosed by the maximum and
minimum.

To solve this problem, we need to properly incorporate
global information into the training process. One simple yet
efficient approach is mode-assisted training [17].

IV. MODE-ASSISTED TRAINING

A. Algorithm

To explicitly inject global information into the training pro-
cess, we design an off-gradient training step that supplements
the regular gradient updates, using the mode of the RBM
distribution [17]. This means replacing the formula of weight
updates, Eq. (4), as follows:

�W mode
i j = η

(〈vih j〉qmode(v)p(h|v) − [vih j]p(v,h)

)
, (8)

where [·] indicates expectation over the mode of the RBM
distribution p(v, h), and qmode is a uniform distribution over
all possible modes of the data distribution q. We call Eq. (8)
“mode-assisted training,” or “mode training” for short.

We train the NN for nmax iterations (nmax = 2 × 105

throughout this work), and the schedule of when to perform
mode updates is determined by calculating the probability of
replacing Eq. (4) with Eq. (8) at each training iteration step n
as

Pmode(n) = Pmaxσ
(
α

n

nmax
− β

)
, (9)

where σ is the sigmoid function, and 0 < Pmax � 1 is the
maximum probability of a mode update. At the beginning of
the training, Pmode is then small, but it increases gradually with
the number of updates, according to the parameters α and β

(see inset of Fig. 2).2

2The choice of the sigmoid in Eq. (9) is arbitrary: other types of
functions can be chosen to accomplish the same task.

To find vmode, the mode of the RBM distribution, for dis-
tributions with a simple data structure, it suffices to evaluate
the amplitudes of mode candidates from the dataset (e.g.,
|00 · · · 0〉 and |11 · · · 1〉 for the GHZ state). For more compli-
cated distributions where identifying the mode candidates is
hard, qmode(v) can be approximated with q(v), and vmode can
be sampled from the joint distribution p(v, h), by employing
an optimization solver. This involves minimizing the RBM
energy,

E (v, h) = −
∑

i

aivi −
∑

j

b jh j −
∑
i, j

Wi jvih j, (10)

which is a quadratic unconstrained binary optimization
problem [26] and is generally NP-hard. We employ the MEM-
COMPUTING solver [17,27–29], which can efficiently generate
good approximations of vmode, and an empirical polynomial
scaling for typical RBMs is observed [17].

We now show that, when properly combined with regular
CD updates, this off-gradient mode update greatly increases
the stability of the training. This is clearly seen in Fig. 2. In
the initial phase of the training, CD is able to learn the support
of the distribution but not much else. As training goes on, the
frequency of mode updates is increased to balance between
the multiple modes and bring the RBM distribution as close to
the data distribution as possible. In fact, as the probability of
mode updates increases, mode-assisted training easily jumps
out of the local minimum and learns the full distribution with
near perfect fidelity.

B. W state

To show even more clearly that mode-assisted training
provides global (long-range) information during training, we
consider the W state (named after Wolfgang Dür) [30], an-
other N-qubit entangled state given by

|�W 〉 = 1√
N

(|100 · · · 0〉 + |010 · · · 0〉 + · · · + |000 · · · 1〉).

(11)

Similar to the GHZ state, we constructed a synthetic
dataset by taking 104 projective measurements in the {|0〉, |1〉}
basis on a 10-qubit W state and trained two RBMs using CD-1
and mode-assisted training, respectively. Figure 3(a) com-
pares their reconstruction fidelity. In Fig. 3(b), we show the
amplitude of the state after training: mode-assisted training
quickly converges to the target distribution almost perfectly,
but the result for CD-1 is a lot more noisy. Again, while
CD-1 can correctly locate the mode states (the support of the
distribution), it does a terrible job at matching their amplitudes
to the target. We included two GIF files in the supplemental
materials, visualizing the entire training process from scratch,
from which the advantage of mode-assisted training is clearly
visible.

At this point, if we correct the noisy distribution learned
with CD-1, we can visualize how mode-assisted training
works. Figures 3(b)–3(d) show this procedure, where we ap-
plied 10 mode updates to the distribution learned with CD-1.
The correction is already significant after a single mode up-
date: from Fig. 3(b) to 3(c), the global maximum of the CD-1
distribution is pushed down, while all other states pop up a bit.
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1 Mode update

9 Mode updates

(a)

(b)

(c)

(d)

FIG. 3. Training a RBM on the 10-qubit W state. Training data
are obtained by performing projective measurements in the {|0〉, |1〉}
basis on 104 copies of the state. (a) The fidelity curve during training.
Curves represent medians of 20 runs, and the shaded regions are
enclosed by the maximum and minimum. Mode-assisted training
converges quickly to f = 1 with vanishing variance, leaving a sig-
nificant gap compared with CD-1. (b) Example of the distribution
learned by the RBM, after training completes. Among all 210 possible
configurations, we only plotted the 10 most important ones in the W
state, |10 · · · 0〉 through |00 · · · 1〉. While the result of mode-assisted
training is almost perfect, CD-1 produces far less satisfying results.
(c), (d) Smoothing the noisy distribution learned with CD-1 using
additional mode updates. Each mode update locates the global max-
imum and “pushes it” down, while all other states “pop up” a bit.
Repeated mode updates would eventually enforce uniformity over
multiple modes.

Repeating this procedure an additional nine times, the result-
ing distribution is already very close to uniformity. The direct
access to global maxima is what local samplers like CD lack,
and this deficiency cannot be solved by increasing the length
of the sampling chain. This is explicitly shown Appendix C. In
Appendix D, we compare the performance of mode-assisted
training against persistent contrastive divergence [11] and
parallel tempering [12–14], two advanced (albeit still local)

FIG. 4. Comparing the reconstruction fidelity of CD-1 and
mode-assisted training for the W state with N qubits and fixed
amount of measurements. Data points are computed using the me-
dian of 20 runs, and error bars represent corresponding maximum
and minimum values. In all cases, mode-assisted training outper-
forms CD-1, and the difference is increasing as we increase the
number of measurements, up to two orders of magnitude.

samplers that are designed to alleviate the slow-mixing prob-
lem. Several additional numerical experiments are presented
in Appendix E, showing the performance of mode training
under different scenarios.

C. Scalability

So far, we have only considered small systems. Now, we
scale up the system size and show that mode training re-
quires orders of magnitude fewer measurements compared
with MCMC sampling. As an explicit example we consider
the W state up to 50 qubits, and focus on two physical quanti-
ties: fidelity and number of measurements. To study the effect
of measurements on reconstruction quality, we mimic exper-
iments by first performing a fixed number of measurements
on the exact state, then use the measured results as dataset to
train the RBM model. As shown in Fig. 4 for a W state with
N qubits, when fixing the number of measurements, mode
training outperforms CD-1 by one to two orders of magnitude.

Next, we fix a target fidelity and estimate the amount
of measurements required to reach that fidelity. For better
comparison, we also included results from the maximum
likelihood method, a brute-force approach for quantum state
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FIG. 5. Number of measurements required to reach a certain
fidelity for the W state with N qubits with maximum likelihood,
CD-1, and mode-assisted training. Data points are computed with
interpolation, using the best result from 20 runs with a fixed number
of measurements.

tomography [20]. The difference is drastic: maximum likeli-
hood has a hard time reaching any fidelity using reasonable
resources already for less than 10 qubits. This is due to the
exponential space complexity of storing and manipulating the
full density matrix, which allows us to show results only up to
seven qubits in Fig. 5.

When the fidelity target is not too high ( f � 0.95), CD-1
shows a performance comparable to mode-assisted training.
However, as the target fidelity increases, CD increasingly
struggles to reach the same fidelity, eventually disappearing
from the plot due to its inability to reach the target with less
than 104 measurements. Mode-assisted training, on the other
hand, performs consistently throughout the size range and
shows a subquadratic scaling (see Fig. 5) in the number of
measurements to reach the target up to the size considered,
without much sensitivity to the target fidelity.

V. CONCLUSION

In this work, we have shown that providing global informa-
tion to the training of a NN representing quantum states, in the
form of the modes of its probability distribution, improves sig-
nificantly the reconstruction of such states. The improvement
also translates into an orders of magnitude reduction in the
number of required measurements. We have employed RBMs
as example, but the method is applicable to other types of
NNs [18].

We have also shown that the mode-assisted training method
scales very favorably in terms of number of measurements
required to reach a target fidelity as a function of number of
qubits. This result, coupled with optimization methods, like
MemComputing [29], to efficiently sample the mode(s) of
multidimensional probability distributions, paves the way to
solve a wide variety of quantum problems classically and with
considerably less resources.

See Ref [31] for the code for all simulations performed in
this paper.
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APPENDIX A: AN INTRODUCTION TO RESTRICTED
BOLTZMANN MACHINES

For completeness, in this section, we systematically intro-
duce the restricted Boltzmann machine (RBM) [1].

Figure 1 shows the structure of a typical RBM, where
two sets of binary nodes, {vi, h j}, lies on a bipartite graph.
One can view the RBM as a classical Ising model, with
each binary node as an individual spin. The weight matrix
Wi j parametrizes the interaction between the spins, and each
spin has an external field, ai or b j , acting on it. Combining
everything, we can define the energy of the RBM:

E (v, h) = −
(

n∑
i=1

aivi +
m∑

j=1

b jh j +
n∑

i=1

m∑
j=1

Wi jvih j

)
.

(A1)

At equilibrium, the distribution of the spins is characterized
by the Boltzmann distribution (hence the name Boltzmann
machine):

p(v, h) = 1

Z
e−E (v,h), (A2)

where Z = ∑
v,h e−E (v,h) is the partition function. To model

an unknown distribution, we use the marginal distribution of
v,

p(v) =
∑

h

p(v, h). (A3)

There are two conventions when choosing the values of
the binary nodes, either {0, 1} or {+1,−1}, and conversion
between the two representations can be easily carried out via a
transformation on the weights and biases [32]. We stick to the
former convention, {v, h} ∈ {0, 1}n+m. Then, the summation
in Eq. (A3) can be carried out explicitly:

p(v) = 1

Z

∑
h∈{0,1}m

e−E (v,h)

= 1

Z
e
∑n

i=1 aivi

m∏
j=1

(
1 + ebj+

∑n
i=1 viWi j

)
. (A4)

The partition function Z involves a summation over an
exponential amount of terms, making it impossible to evaluate
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Eq. (A4) exactly. Instead, the conditional probabilities p(h|v)
and p(v|h) can be computed efficiently:

p(h|v) = p(v, h)

p(v)

=
m∏

j=1

ehj (b j+
∑n

i=1 viWi j )

1 + ebj+
∑n

i=1 viWi j

=
m∏

j=1

p(h j |v),

(A5)

with

p(h j = 1|v) = sigmoid

(
b j +

n∑
i=1

viWi j

)
,

p(h j = 0|v) = sigmoid

(
−b j −

n∑
i=1

viWi j

)
. (A6)

Thanks to the bipartite structure of the RBM, with fixed v,
different h j are independent of each other, and the conditional
probability p(h|v) factors into a product form. Similarly,

p(v|h) =
n∏

i=1

p(vi|h),

p(vi = 1|h) = sigmoid

(
ai +

m∑
j=1

Wi jh j

)
,

p(vi = 0|h) = sigmoid

(
−ai −

m∑
j=1

Wi jh j

)
. (A7)

Equations (A6) and (A7) can be efficiently computed and
are frequently used in the training and sampling procedures.

To model the target distribution q(v), we train the RBM by
minimizing the KL divergence [23,24],

KL(q||p) =
∑

v

q(v) ln
q(v)

p(v)
. (A8)

Explicitly computing the gradients with respect to the
RBM weights, we have

∂KL(q||p)

∂Wi j
= −

∑
v

q(v)
1

p(v)

∂ p(v)

∂Wi j

= −
∑

v

q(v)
1

p(v)

∑
h

∂ p(v, h)

∂Wi j

= −
∑
v,h

q(v)
p(v, h)

p(v)
vih j + 1

Z

∂Z

∂Wi j

= −
∑
v,h

q(v)p(h|v)vih j +
∑
v,h

p(v, h)vih j

= − 〈vih j〉q(v)p(h|v) + 〈vih j〉p(v,h). (A9)

Similarly,

∂KL(q||p)

∂ai
= −〈vi〉q(v) + 〈vi〉p(v,h),

∂KL(q||p)

∂b j
= −〈h j〉q(v)p(h|v) + 〈h j〉p(v,h). (A10)

With the analytic expression of the gradients, we can use
algorithms such as stochastic gradient descent to train the
RBM. However, another problem remains: without access to
the partition function Z , we cannot compute the expectation
with respect to p(v, h) efficiently.

To compute the likelihood gradient, Eq. (A9), one can use
a sampling algorithm to approximate the expectation with
respect to p(v, h). The most widely adopted algorithm, con-
trastive divergence (CD) [1], starts from a sample v0 from the
dataset and constructs a Markov chain of samples,

v0 → h0 → v1 → h1 → · · · → vk, (A11)

using the conditional distributions p(h|v) and p(v|h). When
k → ∞, the distribution of vk converges to p(v), and we can
approximate the second term in Eq. (A9) with an expectation
over a batch of sampled vk .

In practice, k can be chosen to be very small, and the
performance of CD-k is reasonable even with k = 1. In this
case, the samples are biased from the actual RBM distribution,
and we are actually minimizing the difference between two
KL divergences [23] (hence the name contrastive divergence),

KL(q|p) − KL(pk|p), (A12)

where pk is the distribution of the visible nodes after k steps
of the Markov chain. As k → ∞, pk → p, and the approxi-
mation becomes exact.

However, as we will show next, in some cases, the Markov
chain does not reach stationarity even with very large k. When
this happens, CD practically fails as a useful sampler, and
mode-assisted training would be necessary to train the RBM
successfully [17].

APPENDIX B: DISTANCE MEASURE ON THE
RESTRICTED BOLTZMANN MACHINE

In the main text, we mentioned that CD only utilizes lo-
cal, short-range information, while mode-assisted training can
incorporate global, long-range information into the training
procedure. Here we define precisely what kind of distance we
refer to.

Recall that CD utilizes a Markov chain, Eq. (A11), to
sample the state space. At the ith step vi → hi → vi+1, the
achievable states vi+1 might be limited. In this case, the
achievable states {vi+1} become the “neighborhood” of vi.
With respect to the RBM, we define the distance between two
configurations, vi and v j , as

d
(
vi → v j

) = − ln

(∑
h

p
(
v j |h)

p
(
h|vi

))
, (B1)

which is the negative log transition probability from vi to v j .
With this definition, we can verify that d (vi → v j ) + d (v j →
vk ) leads to the transition probability p(vi → v j → vk ).
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FIG. 6. Visualization of the graph structure of a RBM, trained
on the 6-qubit W state. Sizes of vertices represent probabilities in
the RBM distribution (not proportional), and width of edges are pro-
portional to the transition probabilities in the Markov chain during
sampling. With this graphical representation, we can view CD as a
random walk on the graph.

Note that the distance defined in Eq. (B1) is not symmetric
and does not necessarily satisfy the triangle inequality. Rather,
if we view each basis state in the Hilbert space as a vertex on a
graph, Eq. (B1) will act as the directed graph distance between
two vertices. In this way, we can define the concept of locality
on the graph.

In Fig. 6, we plot the weighted directed graph defined
above using the NETWORKX python package [33], with the
reference RBM trained on a 6-qubit W state. Each vertex
is numbered using the decimal representation of its corre-
sponding binary basis vector, with larger vertices representing
larger probabilities in the RBM distribution, and widths of the
edges proportional to the transition probabilities. Edges with
transition probabilities less than 0.01 are omitted.

The layout of the vertices are computed using the
Fruchterman-Reingold force-directed algorithm [34], which
treats the vertices as repelling objects and edges as springs
holding them close. At equilibrium, the spatial proximity of
vertices would more or less characterize the distance between
basis vectors in the Hilbert space.

Recall that |000001〉 through |100000〉 are the six most
important bases in the W state. In Fig. 6, the corresponding
nodes 1, 2, 4, 8, 16, and 32 form a hexagon, enclosing all
other nodes in it. None of them have an edge connecting each
other—in fact, none of them even have an outgoing edge at
all! According to our defined distance measure Eq. (B1), they
are indeed far apart from each other.

Now, we can view CD-k as a random walk on the graph
for k steps. Then, it is immediately obvious that, CD is a
local sampler in the sense that it can only access a small
neighborhood of the starting vertex. What is worse, in Fig. 6,
the six out-most vertices act as sinks for the random walker:
once it gets in one of them, escaping it is almost impossible.
In this case, ergodicity is practically lost, and CD fails as a
useful sampler.

APPENDIX C: A FURTHER LOOK INTO CD-k

We further demonstrate via a sampling experiment that
access to global minima cannot be cured with a local sampler,
like CD, by simply increasing the length of the Markov chain.

Again, using the RBM trained on the 6-qubit W state, we
start the sampling chain from one of the modes and perform
CD-k sampling 104 times. The normalized transition proba-
bility is plotted in Fig. 7: the (i, j)th location in each plot
represents pi→ j/p j , the probability of starting from the ith
state and ending in the jth state, divided by the probability
of the jth state in the original distribution. In the ideal case
where the Markov chain has sufficiently mixed, the sampled
distribution should converge to the exact distribution and be
independent of the starting point, resulting in pi→ j/p j = 1.

However, as we clearly see in Fig. 7 this is not the case.
Figures 7(a)–7(c) show the results of CD-k, with k = 1, 32,
1024, respectively. Even with CD-1024, most sampling chains
are still stuck at their starting point. Practically, CD fails as a
sampler in this case, as it cannot properly explore the phase
space: when falling into a mode, it cannot easily escape from
it.

We can then naturally ask: for what type of distributions
does CD work well? To this end, we consider the depolarized
W state, whose density matrix is given by

ρ̂W = (1 − p)|�W 〉〈�W | + p1/2N , (C1)

where p controls the noise level, and N is the number
of qubits. To get comparable results to the pure W state
|�W 〉, we synthesize a similar dataset by performing two-
outcome POVMs described by the measurement operators
Mi = {|0〉〈0|, |1〉〈1|}. To be specific, in each measurement,
the full measurement operator is the tensor product M =
M1 ⊗ M2 ⊗ · · · ⊗ MN , and the outcome of the measurement
can be written as a bit string v1v2 · · · vN . In the noiseless
limit, this is the projective measurement in the computational
basis, and the outcome bit strings precisely correspond to the
basis vectors |v1v2 · · · vN 〉. With the depolarization noise, the
second term in Eq. (C1) acts as a uniform background noise to
the distribution of the measurement outcome. Note, however,
that this measurement is not informationally complete.

In Figs. 7(d)–7(f), we show the same sampling experiment,
with p = 0.4. Thanks to the background noise which lowers
the energy barrier between different modes, it now becomes
possible for local moves to jump out of the local minima, and
the CD chains can properly converge with increasing chain
length k.

Figure 8 shows this effect from another perspective, where
we plot the final fidelity after training versus the noise level
p, on the depolarized 10-qubit W state. Unlike some works
claiming that the noiseless limit is the hardest to learn [7], here
we find that the difficulty peaks near p ≈ 0.15. We suspect
this is due to the fact that the model has to learn the exact
amplitude of a small but nonzero background noise, which is
more difficult than simply setting the background to zero.

Irrespective, since the background noise greatly eases the
burden of sampling, the advantage of mode-assisted train-
ing gradually disappears as p increases, until both methods
converge to f = 1 as p → 1. Such strongly noisy states are
easier for local samplers, as local moves would be sufficient to
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FIG. 7. Normalized transition probability when sampling a trained RBM with CD-k. Location (i, j) represents the normalized transition
probability pi→ j/pj of starting the Markov chain from configuration i and ending in configuration j. We observe a strong correlation between
the initial and final configurations. (a)–(c) The 6-qubit pure W state. With isolated modes and zero amplitude on all other basis, the energy
barriers between different modes is so high that even CD-1024 cannot escape them. (d)–(f) The depolarized 6-qubit W state with p = 0.4.
With a background noise, CD can properly escape from each local minimum and explore other parts of the phase space.

explore the entire phase space, and this difficulty is tunable as
we change the parameter p. This further reinforces the notion

FIG. 8. (a) Reconstruction of the depolarized W state ρW = (1 −
p)|�W 〉〈�W | + p1/2N . Data points are medians over 20 runs, and
error bars represent corresponding maximum and minimum values.
Reconstruction is most difficult at a moderate noise level p ≈ 0.15.
(b) Fidelity difference between mode-assisted training and CD-1. As
sampling gets easier with the introduction of the background noise,
the advantage of mode-assisted training gradually disappears.

that approaches providing nonlocal information to the training
(as the one we have discussed here) are very important for
quantum states with strongly nonlocal features.

APPENDIX D: ADVANCED SAMPLERS

To overcome the weaknesses of CD, many advanced sam-
pling algorithms have been proposed, aiming at alleviating the
slow mixing problem of the Markov chain. In this section, we
examine two notable examples, persistent contrastive diver-
gence (PCD) [11] and parallel tempering (PT) [12–14].

The quality of the samples drawn by CD depends strongly
on the length of the Markov chain. Generally, CD-k with a
large k performs better than CD-1, at the expense of a much
longer running time.

PCD builds on the idea that, instead of starting a new
Markov chain for sampling at every training step, one can
maintain one Markov chain throughout the entire training
process. With a small learning rate, the RBM distribution
only changes slightly at every training step. Therefore, if the
Markov chain is sufficiently mixed at the previous training
step, it will be close enough to equilibrium at the next training
step. By maintaining one Markov chain throughout training,
one is essentially using CD-k, with k very large.

PT is also known as replica exchange MCMC sampling,
which maintains many copies of the system at different
temperatures, and exchange of configurations at different tem-
peratures is allowed according to some acceptance criteria.
Since higher temperatures allow the system to explore the
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FIG. 9. Comparison of four different training methods on the W
state. Data points are medians of five runs, and error bars represent
the maximum and minimum values. Mode-assisted training consis-
tently outperforms other methods.

high-energy configurations more efficiently, the resulting al-
gorithm is less prone to getting stuck in local minima.

For training RBMs, PT maintains N copies of the same
RBM, with the distributions

pi(v) = e−βiE (v)

Z
(D1)

for a set of gradually increasing temperatures {T1, T2, . . . , TN },
with βi = 1/Ti denoting the inverse temperature. T1 = 1 cor-
responds to the original RBM distribution, and TN is usually
chosen to be a very large number (e.g., TN = 100) to ensure
a proper exploration of the entire phase space. When running
the Markov chain, each copy of the system evolves on its own
using Gibbs sampling, and an additional cross-temperature
state swap move is introduced. At each sampling step, two
neighboring configurations vi, vi+1 are exchanged with prob-
ability

r = pi(vi+1)pi+1(vi )

pi(vi )pi+1(vi+1)
. (D2)

Using Eq. (D1), Eq. (D2) becomes

r = exp {(βi − βi+1)[E (vi ) − E (vi+1)]}. (D3)

While PCD and PT have already seen some success at
training RBMs [11–14], here, we show that they are not as
effective in our case. Figure 9 compares the performance of
CD, PCD, PT, and mode-assisted training, on the N-qubit
W state. With enough measurements, mode-assisted training

?

(a) (b)

FIG. 10. (a) An illustration of the triangular lattice. (b) A frus-
trated loop. With antiferromagnetic interactions, two neighboring
spins tend to anti-align with each other, leaving the direction of the
third spin undetermined.

consistently outperforms all other methods by at least one
order of magnitude. PCD has the worst performance, and PT
only outperforms CD on smaller systems.

PCD and PT are designed to improve on CD, but why
are we seeing worse performance here? To understand this
behavior, let us again focus on Fig. 6. While PCD and PT
are designed to alleviate the slow mixing problem, their un-
derlying proposal and acceptance steps are the same as CD.
Therefore, they are still random walkers on Fig. 6, except
with a new set of random-walk rules, and they suffer from the
same problem as CD: the random walker will get stuck on one
mode configuration, unable to escape, and ergodicity is lost.
Importantly, PCD and PT start from random initial conditions,
and the distribution of the ending mode state they get stuck
in is likely biased from the RBM distribution. While CD also
gets stuck, it is initialized with configurations from the dataset,
and the ending distribution will be much closer to the actual
RBM distribution.

Again, we see the superiority of mode-assisted training,
and the usefulness of global information. While PCD and PT
may offer improvements compared with CD in certain cases,

FIG. 11. (a) The ground-state wave function of the 3 × 3 TFFIM.
(b) One ground state of the 2 × 2 toric code model. While both
distributions are multimodal, the first distribution has a structured
background, making jumps between modes easier. On the contrary,
the second distribution has isolated modes, making it difficult for
local samplers to capture the entire distribution.
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FIG. 12. The training curve on the 4 × 4 TFFIM. Since sampling
from this state is easy, mode-assisted training and CD-1 have com-
parable performance.

they are still local samplers, in the sense that they only utilize
local information, performing a random walk on a small re-
gion of the graph. One potential improvement for them could
be explicitly providing global information at the proposal-
acceptance step, like mode-hopping moves [15]. But again,
doing so requires prior knowledge of the target distribution,
while mode-assisted training achieves this automatically.

APPENDIX E: FURTHER NUMERICAL EXPERIMENTS
ON ENTANGLED QUANTUM SYSTEMS

In this section, we further test the capabilities of mode-
assisted training on two more highly entangled quantum
systems: the transverse-field frustrated Ising model (TFFIM)
on the triangular lattice [35,36], and the toric code model
[37]. As a proof-of-concept demonstration, we focus on
small systems where exact results are available using exact
diagonalization and compare the performance between mode-
assisted training and CD-1.

Figure 10 is an illustration of the TFFIM on the triangular
lattice. The Hamiltonian reads

H = J
∑
〈i, j〉

σ z
i σ z

j − h
∑

i

σ x
i , (E1)

where J is the nearest-neighbor antiferromagnetic Ising cou-
pling and h is the transverse field. In this demonstration, we
choose h = J = 1.

Without the transverse field, frustration would lead to
a highly degenerate ground state [38]. Together with the
transverse field, we arrive at a ground-state wave function
multimodal in the σ z basis.

In Fig. 11(a), we plot the exact ground state of the 4 × 4
TFFIM on the triangular lattice. A synthetic dataset is gener-
ated by taking 104 projective measurements on this state, and
we perform quantum state tomography on it using methods
described in the main text.

FIG. 13. The training curve of the 2 × 2 and 3 × 3 toric code
state. CD-1 completely fails, while mode-assisted training still per-
forms reasonably well.

The result is shown in Fig. 12: the performance of mode-
assisted training and CD-1 are comparable. This is an example
where CD already works very well, and we would not gain
much from mode-assisted training. The reason is similar to the
frustrated W state we just showed: the background structure
in the distribution in Fig. 11(a) helps the sampler to jump
between different modes, and the quality of the samples is al-
ready good using CD-1. In such cases, mode-assisted training
would be an overkill.

Another example is the toric code model [37]. It was al-
ready demonstrated that a RBM can exactly and efficiently
represent the ground state of the toric code, with analytically
computable RBM weights [39–41]. However, the story is
quite different if we actually train a RBM with data sampled
from the toric code state, which is what it would happen in an
actual experiment.

Figure 11(b) shows one ground state of the 2 × 2 toric code
model: a multimodal distribution with isolated modes, which,
according to our analysis, is difficult for local samplers such
as CD. The training curve in Fig. 13 confirms this prediction.
Even for the 2 × 2 toric code state with eight qubits, CD-1 per-
forms rather poorly, while mode-assisted training can achieve
near perfect fidelity. And in the 3 × 3 case, CD-1 completely
fails with final fidelity less than 0.1, but mode-assisted training
can still reasonably reconstruct this state with fidelity near 0.9.

We can now clearly understand when the mode training is
particularly advantageous. If a local sampler like CD performs
well when training the RBM, then mode-assisted training
would not be very useful. But for multimodal states with
strongly nonlocal features, mode-assisted training can offer
significant advantages over traditional methods.
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