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Capacity of entanglement for a nonlocal Hamiltonian
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The notion of capacity of entanglement is the quantum information theoretic counterpart of the heat capacity
which is defined as the second cumulant of the entanglement spectrum. Given any bipartite pure state, we can
define the capacity of entanglement as the variance of the modular Hamiltonian in the reduced state of any of
the subsystems. Here, we study the dynamics of this quantity under a nonlocal Hamiltonian. Specifically, we
address the following question: Given an arbitrary nonlocal Hamiltonian, what is the capacity of entanglement
that the system can possess? As a useful application, we show that the quantum speed limit for creating the
entanglement is not only governed by the fluctuation in the nonlocal Hamiltonian, but also depends inversely
on the time average of the square root of the capacity of entanglement. Furthermore, we discuss this quantity
for a general self-inverse Hamiltonian and provide a bound on the rate of capacity of entanglement. Towards
the end, we generalize the capacity of entanglement for bipartite mixed states based on the relative entropy of
entanglement and show that the above definition reduces to the capacity of entanglement for pure bipartite states.
Our results can have several applications in diverse areas of physics.
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I. INTRODUCTION

Entanglement has potential applications in quantum in-
formation science, ranging from quantum computing and
quantum communication to a host of other areas such as con-
densed matter physics, high-energy physics, and even string
theory [1,2]. It is considered a very useful resource in infor-
mation processing tasks. For several years, how to create and
quantify entanglement has been a subject of major exploration
[3,4]. Thanks to technological progress, now we can create en-
tanglement between two or more particles in quantum optical
systems [5], ion traps [6], superconducting systems [7,8], and
nuclear magnetic resonance (NMR) setups [9]. How to create
entanglement between more and more particles and distribute
over long distances still continues to be quite challenging [10].
Quantum entanglement between two particles can of course
be created depending on the choice of the initial state and
suitable nonlocal interaction between them. However, the de-
sign of a suitable interacting Hamiltonian is not always easy.
This makes the production of entanglement a nontrivial task.
Therefore, it is natural to ask the question, for a given nonlocal
Hamiltonian, what is the best way to exploit this Hamiltonian
to create entanglement? This was addressed in Ref. [11].

Entanglement entropy is quite a useful diagnostic tool
which measures the degree of quantum entanglement between
subsystems in many-body quantum systems [12]. A differ-
ent quantity, called the capacity of entanglement, has been
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proposed to characterize topologically ordered states in the
context of the Kitaev model [13]. Given a pure bipartite entan-
gled state ρAB, the capacity of entanglement is defined as the
second cumulant of the entanglement spectrum. Thus, associ-
ated to a reduced density matrix, we can define the capacity
of entanglement as the variance of the modular Hamiltonian
in the mixed state. If {λi}′s are the eigenvalues of the reduced
density matrix of one of the subsystems, then the entangle-
ment entropy is defined as SEE = S(ρA) = − tr(ρA log2 ρA) =
−∑

i λi log2 λi. Now, the capacity of entanglement CE is de-
fined as the second cumulant of this entanglement spectrum
[14], i.e., the variance in the entanglement entropy operator. It
is similar to the heat capacity of thermal systems and is given
by [14–16]

CE =
∑

i

λi log2 λi − S2
EE .

The above quantity can be thought of as the variance of
the distribution of − log2 λi with probability λi, and thus it
contains information about the width of the eigenvalue distri-
bution of the reduced density matrix. We can gain insight on
the whole spectrum by studying up to the first two cumulants,
i.e., the entanglement entropy and the capacity of entangle-
ment. Defining a modular Hamiltonian as KA = − log2 ρA,
they are the expectation value and the variance of KA. The
capacity of entanglement has found useful applications in
conformal and nonconformal quantum field theories [17,18],
as well as in models related to gravitational phase transitions
[18–21].

The motivation for using the above definition of the capac-
ity of entanglement stemmed from the fact that it is defined
as the variance of an operator whose average is the entangle-
ment entropy. In principle, one can define the entanglement
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capacity for other measures of entanglement, provided we
can define an operator whose average will give that particular
measure of entanglement. As we can see, not all measures of
entanglement can be defined as averages of some Hermitian
operators. This is the main reason why, in the literature, the ca-
pacity of entanglement has been defined for the entanglement
entropy. Also, as mentioned above, it has a similarity with the
heat capacity in the context of quantum thermodynamics.

In this paper, we address the entanglement capacities for
nonlocal Hamiltonians. To be specific, we answer the fol-
lowing question: Given a nonlocal Hamiltonian, what is the
capacity of entanglement for bipartite systems? We show that
the entanglement rate is bounded by the fluctuation in the
nonlocal Hamiltonian and the capacity of entanglement. In
addition, the quantum speed limit for creating the entangle-
ment depends inversely on the fluctuation in the nonlocal
Hamiltonian, as well as on the time average of the square
root of the capacity of entanglement. Thus, the more the
capacity of entanglement, the shorter the time duration system
may take to produce the desired amount of entanglement.
We illustrate the quantum speed limit for a general two-qubit
nonlocal Hamiltonian and find that our bound is indeed tight.
Furthermore, we discuss the capacity of entanglement for
self-inverse Hamiltonians and provide a bound on the rate of
capacity of entanglement. Finally, we generalize the capacity
of entanglement for bipartite mixed states based on the relative
entropy of entanglement measure. This definition reduces to
the capacity of entanglement for the pure bipartite states. This
will open up its explorations for mixed states in the future. We
believe that our results can find applications in diverse areas of
physics, ranging from condensed matter systems to conformal
field theories and the like.

The present paper is organized as follows. In Sec. II, we
provide basic definitions and useful relations for the capac-
ity of entanglement for pure bipartite states. In Sec. III, we
discuss the capacity of entanglement for nonlocal Hamilto-
nians. In Sec. IV, we prove that the entanglement rate is
bounded by the capacity of entanglement and the speed of
quantum evolution under the nonlocal Hamiltonian. We also
provide a quantum speed limit for entanglement production
or degradation and discuss how the capacity of entanglement
helps in deciding the speed limit. In Sec. V, we discuss the
capacity of entanglement for self-inverse Hamiltonians and
provide a bound on the rate of the capacity of entanglement.
In Sec. VI, we generalize the definition of the capacity of
entanglement for bipartite mixed states based on the notion
of relative entropy of entanglement. Finally, in Sec. VII, we
summarize our findings.

II. DEFINITIONS AND RELATIONS

Let H represent a separable Hilbert space and dim(H) be
the dimension of Hilbert space. Let us consider a bipartite
quantum system described by state vector |�〉AB ∈ HAB =
HA ⊗ HB with unit norm. It is possible to express the state
vector |�〉AB as

|�〉AB =
∑

n

√
λn|ψn〉A ⊗ |φn〉B, (1)

where {|ψn〉}A and {|φn〉}B are the Schmidt basis in HA and
HB, respectively, and {λn} are the non-negative real numbers
with

∑
n λn = 1. Equation (1) is called the Schmidt decompo-

sition of |�〉AB and λn are known as the Schmidt coefficients.
If the Schmidt decomposition of |�〉AB has more than one
nonzero Schmidt coefficient, then we say that systems A and
B are “entangled.” If there is only one nonzero Schmidt coef-
ficient, then the state is not entangled.

Let B(HAB) denote the algebra of linear operators act-
ing on a finite-dimensional Hilbert space HAB of dimension
dim(HAB) and let D(HAB) denote the set of density operators
for the bipartite system. The density operators are positive op-
erators of unit trace acting on HAB. For any state ρAB ∈ D(H),
if we can express ρAB as ρAB = ∑

i piρi
A ⊗ ρi

B, then it is
a separable state, otherwise the mixed state is an entangled
one. Given a density operator ρAB associated with a bipartite
quantum system AB, the reduced density matrix for subsystem
A (or B) is obtained by taking the partial trace over subsystem
B (or A), i.e., ρA = trB(ρAB). A physical quantity of system A
represented by a self-adjoint operator OA on HA is identified
with a self-adjoint operator OA ⊗ IB on HAB, where IB is the
identity operator on HB. The expectation value of OA ⊗ IB

on state ρAB is given by tr(ρAOA), where ρA is the reduced
density operator of system A.

The quantum relative entropy between two density opera-
tors ρ and σ acting on the same Hilbert space H is defined as
[22]

S(ρ‖σ ) :=
{

tr[ρ(ln ρ − ln σ )] if supp(ρ) ⊆ supp(σ )
+∞ otherwise,

(2)
where supp(ρ) and supp(σ ) are the supports of ρ and σ ,
respectively. The quantum relative entropy satisfies impor-
tant properties: (i) S(ρ‖σ ) � 0 and S(ρ‖σ ) = 0 iff ρ = σ ,
(ii)

∑
i piS(ρi‖σi ) � S(

∑
i piρi‖

∑
i piσi ), and (iii) S(ρ‖σ ) �

S[E (ρ)‖E (σ )] for any completely positive trace-preserving
map E .

Let us consider a composite system AB with pure state
|�〉AB. The amount of entanglement between subsystems A
and B can be quantified via the entanglement entropy, which
is defined as the von Neumann entropy of the reduced density
operator ρA = ∑

n λn|ψn〉A〈ψn| (or ρB), i.e.,

SEE = S(ρA) = − tr(ρA log2 ρA) = −
∑

n

λn log2 λn, (3)

which is invariant under local unitary transformations on ρA.
The von Neumann entropy vanishes when density operator ρA

is a pure state. For a completely mixed density operator, the
von Neumann entropy attains its maximum value of log2 dA,
where dA = dim(HA).

For any density operator ρA associated with quantum sys-
tem A, we can define a formal Hamiltonian KA, called the
modular Hamiltonian, with respect to which the density op-
erator ρA is a Gibbs-like state (with β = 1),

ρA = e−KA

Z
,

where Z = tr(e−KA ). Note that any density matrix can be writ-
ten in this form for some choice of Hermitian operator KA.
With slight adjustments in the above equation, the modular

042419-2



CAPACITY OF ENTANGLEMENT FOR A NONLOCAL … PHYSICAL REVIEW A 106, 042419 (2022)

Hamiltonian KA can be written as KA = − log2 ρA. In this case,
the entanglement entropy of the system is equivalent to the
thermodynamic entropy of a system described by Hamiltonian
KA (with β = 1). Writing in terms of modular Hamiltonian
KA = − log2 ρA, the entanglement entropy becomes the ex-
pectation value of the modular Hamiltonian,

SEE = − tr(ρA log2 ρA) = tr(ρAKA) = 〈KA〉. (4)

The capacity of entanglement is another information-
theoretic quantity that has gained some interest recently
[13,23]. It is defined as the variance of the modular Hamil-
tonian KA [13] in the state |�〉AB and can be expressed as

CE (ρA) = 〈�|(KA ⊗ IB)2|�〉 − 〈�|(KA ⊗ IB)|�〉2

= tr[ρA(− log2 ρA)2] − [tr(−ρA log2 ρA)]2 (5)

= tr
[
ρAK2

A

] − [tr(ρAKA)]2

= 〈
K2

A

〉 − 〈KA〉2 = 	K2
A . (6)

The capacity of entanglement can also be defined in terms
of the variance of the relative surprisal between two density
matrices V (ρ||σ ) [24],

V (ρ||σ ) = tr[ρ(log2 ρ − log2 σ )2] − [D(ρ||σ )]2. (7)

If one of the density matrices becomes maximally mixed (i.e.,
either ρ or σ becomes I/d), then the variance of the relative
surprisal becomes the capacity of entanglement.

As shown in Ref. [25], uncertainty for any observable is
a convex function. Given two or more Hermitian operators
such as O1 and O2, the standard deviation or the uncer-
tainty for observables satisfies 	(p1O1 + p2O2) � p1	O1 +
p2	O2 for 0 � pi � 1 (i = 1, 2) with 	Oi =

√
〈O2

i 〉 − 〈Oi〉2.
This shows that adding two or more observables always re-
duces the uncertainty. If we define the standard deviation in
the modular Hamiltonian as uncertainty in the entanglement
operator, then for any two modular Hamiltonian K1 and K2,
we will have

	

(∑
i

piKi

)
�

∑
i

pi	Ki, (8)

where Ki = − ln ρi. This property has an interesting implica-
tion when we have a modular Hamiltonian undergoing some
variation. Suppose we allow a variation in the modular Hamil-
tonian as K → K ′ = K + xV , where V is the additional term
in the modular Hamiltonian and x is a real parameter. Then,
the following relation holds true: 	K ′ � 	K + x	V .

For the sake of completeness, we mention the following
properties which are applicable for CE due to having a similar
form as the relative surprisal between two density matrices:

(i) Additivity under tensor product:

CE (ρA ⊗ ρB) = CE (ρA) + CE (ρB).

(ii) Positivity : CE (ρ) � 0.
(iii) Uniform continuity:

|CE (ρ) − CE (ρ ′)|2 � ξ log2 d · D(ρ, ρ ′),

for ξ some constant and l1 the trace norm between states
D(ρ, ρ ′).

(iv) CE (ρ) = 0 if and only if all nonzero eigenvalues of ρ

are the same. Such states are termed as flat states. Examples
include any pure state or maximally mixed state.

(v) Corrections to subadditivity:

CE (ρ) � CE (ρ1) + CE (ρ2) + χ log2 d · f (Iρ ),

for any bipartite state ρ with marginal states ρ1, ρ2 and mutual
information Iρ , with constant χ and f (x) = max(x1/4, x2).

(vi) For fixed dimensions d � 2, the state ρd with maximal
variance has the spectrum

spec(ρd ) =
(

1 − r,
r

d − 1
, . . . ,

r

d − 1

)
,

with r being the unique solution to

(1 − 2r) ln

[
1 − r

r
(d − 1)

]
= 2.

We get 1
4 log2(d − 1) < CE (ρd ) < 1

4 log2(d − 1) + 1
ln2(2)

and,

for the limit of large d , r ≈ 1
2 .

For further details and proofs regarding the above proper-
ties, see Ref. [24].

III. CAPACITY OF ENTANGLEMENT
FOR NONLOCAL HAMILTONIANS

The dynamics of entanglement under a two-qubit nonlocal
Hamiltonian has been addressed in Ref. [11]. In this section,
we address the following question: What is the capacity of
entanglement for an arbitrary two-qubit nonlocal Hamilto-
nian? Further, we also discuss the rate of the capacity of
entanglement for the nonlocal Hamiltonian. For any two-qubit
system, the nonlocal Hamiltonian can be expressed as (except
for trivial constants)

H = �α · �σ A ⊗ IB + IA ⊗ �β · �σ B +
3∑

i, j=1

γi jσ
A
i ⊗ σ B

j , (9)

where �α, �β are real vectors, γ is a real matrix, and IA and
IB are the identity operator acting on HA and HB. The above
Hamiltonian can be rewritten in one of the two standard forms
under the action of local unitaries acting on each qubit [11,26].
This is given by

H± = μ1σ
A
1 ⊗ σ B

1 ± μ2σ
A
2 ⊗ σ B

2 + μ3σ
A
3 ⊗ σ B

3 , (10)

where μ1 � μ2 � μ3 � 0 are the singular values of matrix γ

[11]. Using the Schmidt decomposition, any two-qubit pure
state can be written as

|�〉AB = √
p|φ〉|χ〉 +

√
1 − p|φ⊥〉|χ⊥〉. (11)

We can utilize the form of Hamiltonian in Eq. (10) and choose
H+ [i.e., assuming det(γ ) � 0] to evolve the state in Eq. (11)
without losing any generality [11]. To further showcase a
specific example, let us choose |φ〉 = |0〉 and |χ〉 = |0〉. Thus,
the state at time t = 0 takes the form

|�(0)〉AB = √
p|0〉|0〉 +

√
1 − p|1〉|1〉. (12)

Under the action of the nonlocal Hamiltonian, the joint state
at time t can be written as (h̄ = 1)

|�(t )〉AB = e−iHt |�〉AB = α(t )|0〉|0〉 + β(t )|1〉|1〉, (13)
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FIG. 1. Plot for capacity of entanglement (CE ) and entanglement
entropy (SEE ) vs p and t taking θ = 1.

where α(t ) = e−iμ3t [
√

p cos(θt ) − i
√

1 − p sin(θt )], β(t ) =
e−iμ3t [

√
1 − p cos(θt ) − i

√
p sin(θt )], and θ = (μ1 − μ2).

To evaluate the capacity of entanglement, we would require
the reduced density matrix of the two-qubit evolved state,
ρA(t ) = trB[ρAB(t )], which is given by

ρA(t ) = λ1(t )|0〉〈0| + λ2(t )|1〉〈1|, (14)

where λ1(t ) = |α(t )2| and λ2(t ) = |β(t )2|, with

λ1(t ) = 1
2 [1 − (1 − 2p) cos (2θt )],

λ2(t ) = 1
2 [1 + (1 − 2p) cos (2θt )].

The capacity of entanglement at a later time t can be calcu-
lated from the variance of modular Hamiltonian KA. This is
given by

CE (t ) = tr{ρA(t )[− log2 ρA(t )]2} − {tr[−ρA(t ) log2 ρA(t )]}2,

=
2∑

i=1

λi(t ) log2 λi(t ) −
[
−

2∑
i=1

λi(t ) log2 λi(t )

]2

.

(15)

In Fig. 1 we plot the capacity of entanglement CE (t )
and entanglement entropy SEE (t ) for an example case taking
θ = 1. In order to quantify the entanglement production, we
can define the entanglement rate � as defined in Ref. [11],
i.e.,

�(t ) = dSEE (t )

dt
= dSEE (t )

d p

d p

dt
. (16)

The assertion is that this quantity depends upon the entangle-
ment SEE , which depends upon some parameter p and the rate
of the Schmidt coefficient. The condition(s) to obtain a max-
imal entanglement rate are of interest for which two things
are of significance. First, for a given value of SEE of a two-
qubit system, we find |�E 〉 for which the interaction produces
maximum rate �E and, the maximal achievable entanglement
rate �max = maxE �E with corresponding state |�max〉.

Let us evaluate objects defined above for an arbitrary
Hamiltonian H . Using the Schmidt decomposition of the state
|�(t )〉,

|�〉AB = √
p|φ〉|χ〉 +

√
1 − p|φ⊥〉|χ⊥〉, (17)

where 〈φ|φ⊥〉 = 0 = 〈χ |χ⊥〉 and p � 1
2 . The entanglement

measure SEE must depend only on the Schmidt coefficient
p, given the fact that it must be invariant under local unitary
operations. If we choose the entropy of entanglement as SEE ,
the entropy of the reduced density operator of one of the qubits
is given by

SEE (p) = −p log2(p) − (1 − p) log2(1 − p). (18)

Operationally, SEE quantifies the amount of Einstein–
Podolsky–Rosen entanglement contained asymptotically in a
pure state |�〉AB, and thus SEE gives a ratio of maximally
entangled EPR state |�−〉AB = 1√

2
(|0〉|0〉 − |1〉|1〉) which can

be distilled from |�〉AB.
Considering the infinitesimal time evolution of the Schmidt

coefficient of a two-qubit state, we get

|�(t + δt )〉 = eiHδt |�(t )〉 ≈ (1 − iHδt )|�(t )〉.
The time evolution of the reduced state for the subsystem A is
given by

ρA(t + δt ) = ρA(t ) − iδt trB{[H, |�(t )〉〈�(t )|]}. (19)

Starting from ρA|φ〉 = p|φ〉, then using the Schrödinger equa-
tion, we have

d p

dt
= 2

√
p(1 − p) Im(〈φ, χ |H |φ⊥, χ⊥〉). (20)

As � is to be maximized, we can choose

� = f (p)|h(H, φ, χ )|,
where

f (p) = 2
√

p(1 − p)S′
EE (p) and h(H, φ, χ )

= 〈φ, χ |H |φ⊥, χ⊥〉.
Note that fixing SEE means fixing p and so the maximum
entropy corresponds to a state with some fixed |φ〉 and |χ〉.
For any value SEE of entanglement, the state |φ〉 and |χ〉 for
which maximum entanglement rate �E is obtained does not
depend on SEE , but only on the form of Hamiltonian H .

Let hmax be the maximum value of |h|, i.e.,

hmax = max
||φ||,||χ ||=1

|〈φ, χ |H |φ⊥, χ⊥〉|. (21)

Now we need to drive the two-qubit state with local operators
so that for all time, the corresponding state is the one with the
maximum rate and we would then know how the capacity of
entanglement evolves with time.

Evaluating the capacity for entanglement for general pure
bipartite states in the Schmidt-decomposed form as in Eq. (17)
and using the modular Hamiltonian, we can express it as

CE (�AB) = tr[ρA(log2 ρA)2] − [tr(ρA log2 ρA)]2

= p(1 − p)

[
log2

(
p

1 − p

)]2

. (22)

We can define the rate of capacity of entanglement as

dCE

dt
= dCE

d p

d p

dt
,
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where

dCE

d p
= (1 − 2p)

(
log2

p

1 − p

)2

+ 2 log2
p

1 − p
,

which diverges for p → {0} ∪ {1}.
Let �C denote the rate of capacity of entanglement, i.e.,

�C := dCE (t )
dt . From the earlier result, using the transformed

Hamiltonian, we have

�C = 2
√

p(1 − p)

[
(1 − 2p)

(
log2

p

1 − p

)2

+ 2 log2
p

1 − p

]
|h(H, φ, χ )|. (23)

Thus, it will not diverge with this form for p = 0 or 1.
It should be clear that local terms corresponding to �α, �β in

Eq. (9) give no contribution to hmax with the given Schmidt-
decomposed form of the bipartite state. Trying to determine
hmax in terms of μ1,2,3, we get

h(H, φ, χ ) =
3∑

k=1

μk〈φ|σ A
k |φ⊥〉〈χ |σ B

k |χ⊥〉. (24)

The maximum is reached when |χ〉 = |φ⊥〉. Further utilizing
completeness condition |φ〉〈φ⊥| + |χ〉〈χ⊥| = I , we get the
expression

h(H, φ) =
3∑

k=1

μk −
3∑

k=1

μk〈φ|σk|φ〉2. (25)

It can be further inferred from μ1 � μ2 � μ3 that the maxi-
mum value is reached when |φ〉 = |0〉 or |1〉, which gives us

hmax = μ1 + μ2. (26)

Thus, the state that provides the maximum rate of capacity of
entanglement and the corresponding rate are given by

|�E 〉 = √
p|01〉 + i

√
1 − p|10〉, (27)

�Cmax = dCE

dt

∣∣∣∣
max

= 2(μ1 + μ2)
√

p(1 − p)

×
[

(1 − 2p)

(
log2

p

1 − p

)2

+ 2 log2
p

1 − p

]
. (28)

The maximum rate �Cmax is obtained here for p0 � 0.0045,
which maximizes f (p) to f (p0) � 1.2108 for the correspond-
ing |�max〉. The capacity of entanglement for this maximum
rate is CE (p0) � 0.1306.

It has been shown that if we can allow local operations
which can entangle each qubit with local ancilla, that can
increase the �max for certain kinds of Hamiltonian [11].
We shall begin by generalizing the formulas for multilevel
systems which contain the ancillas and the qubits. Con-
sider a state |�〉AB with the Schmidt decomposition |�〉AB =∑N

n=1

√
λn|φn〉|χn〉. Again, the capacity of entanglement only

depends on the Schmidt coefficients λn � 0. Using the defini-
tion of capacity of entanglement rate in Eq. (16), we have

�̃C = dCE

dt
=

N∑
n=1

∂CE

∂λn

dλn

dt

= 1

N

N∑
n,m=1

[
∂CE

∂λn
− ∂CE

∂λm

]
dλn

dt
. (29)

Using the Schrödinger equation, we find

dλn

dt
= 2

N∑
m=1

√
λnλm Im[〈φn, χn|H |φm, χm〉]. (30)

Now, let us consider one such example where adding ancillas
allows one to increase the capacity of entanglement more
efficiently. Let us consider the case in which the ancillas are
also qubits. Letting λ1 = p and λ2 = λ3 = λ4 = (1 − p)/3,
Eq. (29) simplifies to

�̃ = f̃ (p)h̃(H, φn, χn), (31)

where

f̃ (p) = 2
√

p(1 − p)/3

[
(1 − 2p) log2 3p

1 − p
+ 2 log2

3p

1 − p

]
,

(32)

h̃(H, φn, χn) =
∑
n=2

4Im[〈φn, χn|H |φm, χm〉]. (33)

We have a freedom to choose the phase of states |φn〉 such
that all terms add with the same sign, thus allowing us to re-
place the imaginary parts of the above terms by their absolute
values, i.e., f̃ (p) by | f̃ (p)|. We find that p̃0 � 0.6036, cor-
responding to the capacity of entanglement CE ( p̃0) � 0.5523
maximizing f̃ (p) to | f̃ (p0)| � 1.4459. Further, proceeding to
maximize h̃, we obtain that the maximum value is h̃max =
μ1 + μ2 + μ3, which occurs when |φn〉 and |χn〉 are both
orthogonal, maximally entangled states between the qubit and
the ancilla.

Upon comparing the cases in which ancillas are used to
those in which they are not used, we can either have | f̃ ( p̃0)| �
| f (p0)| or h̃max � hmax. For the case when μ3 �= 0, we can use
ancillas to increase the maximum rate of capacity of entangle-
ment �max as well as � for a given capacity of entanglement
of the state |�〉.

IV. BOUND ON RATE OF ENTANGLEMENT

In this section, we will show that the capacity of en-
tanglement plays an important role in providing an upper
bound for the entanglement rate for the nonlocal Hamiltonian.
Specifically, we will show that the entanglement rate is upper
bounded by the speed of transportation of the bipartite state
and the time average of the square root of the capacity of
entanglement. Also, this sets a quantum speed limit on the
entanglement production and degradation for pure bipartite
states. Thus, the capacity of entanglement has a physical
meaning in deciding how much time a bipartite states takes
to produce a certain amount of entanglement.
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Let us consider a bipartite system initially in a pure state.
Let |�(0)〉AB denote the initial state of the system. We con-
sider the dynamics generated by a nonlocal Hamiltonian HAB.
The time-evolved state at later time t is given by |�(t )〉AB =
UAB(t )|�(0)〉AB, where UAB(t ) = e−iHABt with h̄ = 1.

Now, we apply the Heisenberg-Robertson uncertainty rela-
tion [27] for two noncommuting operators KA and HAB. This
leads to

1
2 |〈�(t )|[KA ⊗ IB, HAB]|�(t )〉| � 	KA	HAB. (34)

Recall that the evolution of the average of any self-adjoint
operator O is given by

ih̄
d〈O〉

dt
= 〈[O, H]〉. (35)

Using Eq. (35) (for O = KA) in Eq. (34), we then obtain

h̄

2

∣∣∣∣d〈KA〉
dt

∣∣∣∣ � 	KA	HAB. (36)

Let �(t ) denote the rate of entanglement. Recall that the
average of the modular Hamiltonian is the entanglement en-
tropy SEE . In terms of the entanglement rate �(t ), the above
equation can be written as

|�(t )| � 2

h̄
	KA	HAB. (37)

The square of the standard deviation of the modular Hamil-
tonian is the capacity of entanglement; therefore, in terms
of the capacity of entanglement, we can write the above
bound as

|�(t )| � 2

h̄

√
CE (t )	HAB. (38)

To interpret the above equation, first note that 2
h̄	HAB is sim-

ply the speed of transportation of the bipartite pure entangled
state on the projective Hilbert space of the composite sys-
tem. If we use the Fubini-Study metric for two nearby states
[28–30], then the infinitesimal distance between two nearby
states is defined as

dS2 = 4[1 − |〈�(t )|�(t + dt )〉|2] = 4

h̄2 	H2
ABdt2. (39)

Therefore, the speed of transportation as measured by the
Fubini-Study metric is given by V = dS

dt = 2
h̄	HAB. Thus, the

entanglement rate is upper bounded by the speed of quantum
evolution [31] and the square root of the capacity of entangle-
ment, i.e., |�(t )| � √

CE (t )V .
It was shown in Ref. [32] that for the ancilla unassisted

case, the entanglement rate is upper bounded by c‖H‖ log2 d ,
where d = min(dimHA, dimHB), c is the constant between
0 and 1, and ‖H‖ is the operator norm of the Hamiltonian
which corresponds to p = ∞ of the Schatten p-norm of H ,
which is defined as ‖H‖p = [tr(

√
H†H )p]

1
p . Now, using the

fact that the maximum value of capacity of entanglement is
proportional to Smax(ρA)2 [13], where Smax(ρA) is the max-
imum value of the von Neumann entropy of the subsystem
which is upper bounded by log2 dA, where dA is the dimension
of Hilbert space of subsystem A, and 	H � ‖H‖, a similar
bound on the entanglement rate can be obtained from Eq. (38).

Thus, the bound on the entanglement rate given in Eq. (38) is
stronger than the previously known bound.

The bound on the entanglement rate can be used to pro-
vide a quantum speed limit for the creation or degradation
of entanglement. The notion of quantum speed limit (QSL)
decides how fast a quantum state evolves in time from an
initial state to a final state [33]. Even though it was discov-
ered by Mandelstam and Tamm [34], over the last decade,
there have been active explorations to generalize the notion
of quantum speed limit for mixed states [35,36] and of re-
sources that a quantum system might possess [37]. Recently,
the notion of a generalized quantum speed limit has been
defined in Ref. [38]. In addition, the quantum speed limit
for observables has been defined and it was shown that the
QSL for state evolution is a special case of the QSL for the
observable [39]. For a quantum system evolving under a given
dynamics, there exist fundamental limitations on the speed
for entropy S(ρ), maximal information I (ρ), and quantum
coherence C(ρ) [40], as well as on other quantum corre-
lations such as entanglement, quantum mutual information,
and Bell-Clauser-Horne-Shimony-Holt correlation [41]. Be-
low, we provide a speed limit bound for the entanglement
entropy which can be applied for the scenario where entangle-
ment can be generated or degraded, based on the capacity of
entanglement. Our bound highlights the nontrivial role played
by the capacity of entanglement in deciding the QSL.

The speed limit for entanglement entropy can be calculated
from Eq. (38) by taking the absolute value on both of the sides
and integrating over time. Thus, we have∫ T

0

∣∣∣∣dSEE (t )

dt

∣∣∣∣dt �
∫ T

0

2

h̄

√
CE (t )	Hdt . (40)

For the time-independent Hamiltonian, we obtain the follow-
ing bound for the quantum speed limit for entanglement:

T � T E
QSL := h̄|SEE (T ) − SEE (0)|

2	H 1
T

∫ T
0

√
CE (t )dt

. (41)

In the case of time-dependent Hamiltonian H (t ), we can apply
the Cauchy-Schwarz inequality in Eq. (40) and obtain the
following inequality:

∫ T

0

∣∣∣∣dSEE (t )

dt

∣∣∣∣dt �
√∫ T

0

2

h̄

√
CE (t )dt

√∫ T

0

2

h̄
	Ht dt . (42)

From the above inequality, we get the bound for the speed
limit for the entanglement entropy change as given by

T � T E
QSL := h̄|SEE (T ) − SEE (0)|

2	H̄
√

1
T

∫ T
0

√
CE (t )dt

, (43)

where 	H̄ = 1
T

∫ T
0

√
〈H (t )2〉 − 〈H (t )〉2 dt is the time-

averaged fluctuation in the Hamiltonian. In both bounds
(time-dependent and time-independent Hamiltonian), it is
clear that the evolution speed for entanglement generation (or
degradation) is a function of the capacity of entanglement CE .
Thus, we can say that CE controls how much time a system
may take to produce a certain amount of entanglement. Now,
one may ask, how tight is the QSL bound for the entanglement
generation of degradation? Here, we illustrate with a specific
example that the quantum speed limit for the creation of
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FIG. 2. T E
QSL vs T with p = 1 for θ = 0.5 and 1.0, which shows

that our speed limit bound is tight.

entanglement is actually tight. Consider the initial state at
t = 0 as given in Eq. (12). The time evolution of the state
is given by Eq. (13). Estimation of the speed limit bound on
the entanglement entropy in Eq. (41) for the considered state
would need the following quantities:

CE (t ) = [1 − η(t )2] tanh−1 [η(t )]2

ln2(2)
, (44)

where η(t ) = (1 − 2p) cos(2θt ), and

	H =θ (1 − 2p), (45)

SEE = − log2

[(
p − 1

2

)
cos(2θt ) + 1

2

]
2

+ log2

[(
1
2 − p

)
cos(2θt ) + 1

2

]
2

+ (1 − 2p) cos(2θt ) tanh−1[(1 − 2p) cos(2θt )]

ln(2)
. (46)

The plot in Fig. 2 for T E
QSL vs T ∈ [0, 0.45] is shown

under unitary dynamics through a general two-qubit nonlo-
cal Hamiltonian H+

AB, beginning with an initial state of the
system |�(0)〉 = |0〉|0〉 [taking p = 1 in Eq. (13)]. Our ex-
ample shows that for the case of θ = μ1 − μ2 = 0.5 and 1.0,
the QSL for the entanglement creation is indeed tight and
attainable.

V. CAPACITY OF ENTANGLEMENT
FOR SELF-INVERSE HAMILTONIAN

In this section, we will explore the dynamics of the ca-
pacity of entanglement for the self-inverse Hamiltonian. Such
Hamiltonians are simpler to handle and provide many inter-
esting insights. The rate of capacity of entanglement for the
self-inverse Hamiltonian has been addressed. It was found
that the inclusion of the ancilla system leads to the enhance-
ment of the entanglement capability in Ref. [11], but for
the Ising Hamiltonian HIsing = σz ⊗ σz, it was shown that
the entanglement capability is ancilla independent [42]. This
independence on ancillas of entanglement capabilities turns
out to be a consequence of the self-inverse property of the
Hamiltonian, HIsing = H−1

Ising. This result was generalized to all
Hamiltonian evolutions of the kind [43]

HAB = XA ⊗ XB, (47)

such that Xi = X −1
i ∈ Hi for i ∈ {A, B}. As a consequence

of the self-inverse property of the Hamiltonian, we have the
time-evolution operator (h̄ = 1),

U (t ) = e−iHt = cos t IA ⊗ IB − i sin t XA ⊗ XB. (48)

Let |�(0)〉AB be the initial state of the bipartite system
AB, which can be expressed in the Schmidt decomposition as
follows:

|�(0)〉AB =
∑

n

√
λn|ψn〉A ⊗ |φn〉B. (49)

Let ρAB(t ) denote the density operator at time t . The time evo-
lution of ρAB(t ) is governed by the Liouville–von Neumann
equation given as

dρAB(t )

dt
= −i[HAB, ρAB(t )], (50)

where HAB is the nonlocal Hamiltonian of the composite
system. The dynamics of the reduce density operator ρB (or
ρA) can be obtained from the above equation by tracing out
A (or B), which is given by

dρB

dt
= −i trA[HAB, ρAB(t )]. (51)

Now, first we will calculate an upper bound on the rate of
capacity of entanglement for unitary evolution and then we
will address the case of the self-inverse Hamiltonian. To cal-
culate an upper bound on CE , first we differentiate both sides
of Eq. (6) with respect to time, which leads to

dCE (t )

dt
= d

dt

(〈
K2

A

〉 − 〈KA〉2
)

= d

dt
{tr[ρA(− log2 ρA)2]} − d

dt
[− tr(ρA log2 ρA)]2

= d

dt
{tr[ρA(− log2 ρA)2]} − 2S(ρA)

d

dt
S(ρA)

= d

dt
{tr[ρA(− log2 ρA)2]} − 2S(ρA)�(t ), (52)

where �(t ) is the rate of entanglement. Let B(H)+ denote the
subset of positive semidefinite operators acting on H. Now,
we use the fact that the logarithm of an operator A ∈ B(H)+
can be represented by

log2 A =
∫ ∞

0
ds

(
1

(s + 1)I − 1

(sI + A)

)
, (53)

where I is the identity operator. We use the above equation to
compute the first terms on the right-hand side of Eq. (52). This
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can be expressed as

d

dt
{tr[ρA(− log2 ρA)2]} = tr

{
d

dt

[
ρA(− log2 ρA)2

]}

= tr

{
[ρ̇A(log2 ρA)2] + ρA

d

dt
(log2 ρA)2

}

= tr{[ρ̇A(log2 ρA)2]} + tr

{
ρA

d

dt

[∫ ∞

0
ds

(
1

(s + 1)I − 1

(sI + ρA)

)]
(log2 ρA)

}

+ tr

{
ρA(log2 ρA)

d

dt

[∫ ∞

0
ds

(
1

(s + 1)I − 1

(sI + ρA)

)]}

= tr{[ρ̇A(log2 ρA)2]} + tr

{
ρA

[∫ ∞

0
ds

(
1

(sI + ρA)
ρ̇A

1

(sI + ρA)

)]
(log2 ρA)

}

+ tr

{
ρA(log2 ρA)

[∫ ∞

0
ds

(
1

(sI + ρA)
ρ̇A

1

(sI + ρA)

)]}

= tr{[ρ̇A(log2 ρA)2]} + 2 tr (ρ̇A log2 ρA). (54)

The second term on the right-hand side of above equation is
the rate of the entropy [44], so we rewrite Eq. (52) as

dCE (t )

dt
= tr[ρ̇A(− log2 ρA)2] + 2 tr(ρ̇A log2 ρA)[1 + S(ρA)].

(55)

Now, we consider the case where ρ is full rank; then, the first
term of the above equation can be simplified as

tr[ρ̇(log2 ρ)2] =
∑

i

〈i|ρ̇|i〉(log2 λi )
2

� k2
max

∑
i

〈i|ρ̇|i〉

= k2
max tr[ρ̇A] = 0, (56)

where kmax is the maximum of the eigenvalues of the modular
Hamiltonian. We then obtain an upper bound on the capacity
of entanglement as

|�C | � |2 tr(ρ̇A log2 ρA)(1 + log2 dA)|
= |2�(t )(1 + log2 dA)|. (57)

Using Eq. (38), we can give an upper bound on the rate of the
capacity of entanglement as given by

|�C | � 2
√

CEV (1 + log2 dA). (58)

Thus, we can see that the rate of entanglement depends on the
evolution speed of the bipartite quantum state, which is given
by V = 2

h̄	HAB.
For the ancilla unassisted case, the entanglement rate �(t )

is upper bounded by c||H || log2 d (see Ref. [32]). Then, the
upper bound on the rate of the capacity of entanglement �C

becomes

|�C | � 2c||H || log2 d (1 + log2 dA). (59)

Now we will find the upper bound on �C for self-inverse
Hamiltonians. The maximum entanglement rate �(t ) for
the self-inverse Hamiltonian H = XA ⊗ XB was calculated in

Ref. [43]. It is given by �(t ) � β, where

β = 2 max
x∈[0,1]

√
x(1 − x) log2

x

1 − x
. (60)

Therefore, the bound on �C can be expressed as

|�C | � 2β(1 + log2 dA). (61)

This bound is independent of the details of the initial state, but
uses the self-inverse nature of the nonlocal Hamiltonian.

VI. CAPACITY OF ENTANGLEMENT FOR MIXED STATES

In the previous section, we used the definition of CE for
pure states. Here, we generalize the definition for the case
of mixed states in such a way that it reduces to the previous
definition for pure states. For this, we use the relative entropy
of entanglement since it reduces to the entanglement entropy
for pure states. The relative entropy of entanglement is defined
in Ref. [45] and further expanded for arbitrary dimensions in
Ref. [46]. This is given by

ER(ρAB) = min
σAB∈SEP

S(ρ||σ ), (62)

where SEP is set of all separable or positive partial transpose
(PPT) states and S(ρ||σ ) = tr(ρ log2 ρ − ρ log2 σ ). Opera-
tionally, the relative entropy of entanglement quantifies the
extent to which a given mixed entangled state can be dis-
tinguished from the closest state which is either separable
or has a positive partial transpose (PPT). Also, this is an
entanglement monotone and is asymptotically continuous.

In the following, we shall denote the state in SEP for which
the the minimum is attained for a given ρAB as ρ∗

AB. Then, we
can write ER(ρAB) as

ER(ρAB) = min
σAB∈SEP

S(ρAB||σAB) = S(ρAB||ρ∗
AB). (63)

Now, we claim that the capacity of entanglement for mixed
states is given by

CE (ρAB) = tr[ρAB(log2 ρAB − log2 ρ∗
AB)2]

− tr[ρAB(log2 ρAB − log2 ρ∗
AB)]2. (64)
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We will now show that this agrees with the definition of
capacity of entanglement for pure states. The relative entropy
of entanglement is given by

ER(ρAB) = tr[ρAB(log2 ρAB − log2 ρ∗
AB)]

= 〈log2 ρAB − log2 ρ∗
AB〉. (65)

For a pure state, the density operator ρAB is given by

ρAB = |�〉AB〈�| =
∑
i, j

√
pi p j |φi〉〈φ j | ⊗ |χi〉〈χ j |AB. (66)

The expression for ρ∗
AB for ρAB is known [47] and given as

follows:

ρ∗
AB =

∑
k

pk|φk〉〈φk| ⊗ |χk〉〈χk|AB. (67)

The first term of Eq. (64) is given by

〈(log2 ρAB − log2 ρ∗
AB)2〉

= AB〈�|[(log2 |�〉AB〈�|)2 + (log2 ρ∗
AB)2

− (log2 |�〉AB〈�| log2 ρ∗
AB

+ log2 ρ∗
AB log2 |�〉AB〈�|)]|�〉AB. (68)

Defining A� = |�〉AB〈�| − I, we get

AB〈�|(log2 |�〉AB〈�|) = AB〈�|
[

A� − (A� )2

2
+ · · ·

]
= 0.

This leads to

AB〈�|(log2 |�〉AB〈�|)2|�〉AB = 0, (69)

where the only surviving term in Eq. (68) is
AB〈�|(log2 ρ∗

AB)2|�〉AB.
Now, we have

(log2 ρ∗
AB)2 =

∑
k

(log2 pk )2|φk〉A〈φk| ⊗ |χk〉B〈χk|,

〈(log2 ρ∗
AB)2〉 =

∑
i, j,k

√
pi p j (log2 pk )2δikδ jk

=
∑

k

pk (log2 pk )2 = 〈(log2 ρA)2〉.

The second term of Eq. (68) is equal to E (ρAB)2 for pure
states. Thus, for ρAB = |�〉〈�|AB, we have

CE = 〈(log2 ρA)2〉 − 〈log2 ρA〉2, (70)

which agrees with the expression for the capacity of entangle-
ment for the pure bipartite states.

It may be worth noting that the capacity of entanglement
for a mixed state can also be expressed as the variance of
the shifted modular Hamiltonian for the joint system. Upon
defining the modular Hamiltonian for the composite state ρAB

and ρ∗
AB as KAB = − log2 ρAB and K∗

AB = − log2 ρ∗
AB, we have

CE = tr[ρAB(KAB − K∗
AB)2] − tr[ρAB(KAB − K∗

AB)]2

= 〈(KAB − K∗
AB)2〉 − 〈KAB − K∗

AB〉2

= 〈
K̃2

AB

〉 − 〈K̃AB〉2, (71)

where K̃AB = KAB − K∗
AB is the shifted modular Hamiltonian

for the composite system. This provides another meaning for
the capacity of entanglement for the mixed state.

Now, we illustrate the capacity of entanglement for a mixed
state using the above definition. For general mixed entangled
states, it is not always easy to find the closest separable state.
However, for those cases where we know the closest separable
state, we can compute the capacity of entanglement.

Let us consider a mixed entangled state as given by

ρAB = λ|φ+〉〈φ+| + (1 − λ)|01〉〈01|, (72)

where |φ+〉 = 1√
2
(|00〉 + |11〉) is one of the four Bell states.

The corresponding closest separable state which minimizes
quantum relative entropy with ρAB [47] is given by

ρ∗
AB = λ

2

(
1 − λ

2

)
(|00〉〈00| + |00〉〈11| + |11〉〈00|

+ |11〉〈11|) +
(

1 − λ

2

)2

|01〉〈01| + λ2

4
|10〉〈10|.

(73)

The expression for the relative entropy of entanglement for
this example is given by

ER(λ) = (λ − 2) ln

(
1 − λ

2

)
+ (1 − λ) ln (1 − λ). (74)

Consider another example of a mixed state,

ρAB = λ|φ+〉〈φ+| + (1 − λ)|00〉〈00|. (75)

The closest separable state minimizing relative entropy for
this case is of the form [47]

ρ∗
AB =

(
1 − λ

2

)
|00〉〈00| + λ

2
|11〉〈11|. (76)

The relative entropy of entanglement in this case can be ana-
lytically found and given as

ER(λ) = s+ ln(s+) + s− ln(s−)

− 2

(
1 − λ

2

)
ln

(
1 − λ

2

)
, (77)

where

s± =
1 ±

√
1 − 2λ

(
1 − λ

2

)
2

.

The detailed expressions for the capacity of entanglement
for ρAB in Eq. (72) and Eq. (75) are very complicated. For
the purpose of illustration, we have provided numerical plots
for the same. From the behavior of the plots in Figs. 3
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FIG. 3. Plot for capacity of entanglement (CE ) and relative en-
tropy of entanglement (ER) vs λ ∈ [0, 1] for ρAB in Eq. (72).

and 4, it can be inferred that for λ ∈ {0, 1}, the cases where
all nonzero eigenvalues of the state are the same and thus the
state becomes either pure or maximally mixed, and for such
flat states, the capacity of entanglement vanishes.

It will be interesting to see if we can generalize all the
results obtained for a pure bipartite state to a mixed state case.
However, we leave these detailed investigations for the mixed
state case for future work. Before we conclude, we will show
that the quantum speed limit for entanglement creation and
degradation for the mixed state ρAB under unitary evolution
can, in fact, be generalized. Consider the mixed state ρAB

which undergoes a unitary evolution, i.e.,

ρAB(0) → ρAB(t ) = UAB(t )ρAB(0)U †
AB(t ), (78)

where UAB(t ) = e− i
h̄ HAB and HAB is the time-independent

Hamiltonian. The equation of motion for the average of the

FIG. 4. Plot for capacity of entanglement (CE ) and relative en-
tropy of entanglement (ER) vs λ ∈ [0, 1] for ρAB in Eq. (75).

observable acting on HA ⊗ HB can be written as

ih̄
d

dt
tr(ρABOAB) = tr(ρAB[OAB, HAB]). (79)

Now, if we take OAB = K̃AB as the shifted modular Hamilto-
nian for the bipartite system, then, using the above equation of
motion and the Robertson uncertainty relation, we have

∣∣∣∣dER(t )

dt

∣∣∣∣ � 2

h̄
	K̃AB	HAB, (80)

where ER(t ) = ER[ρAB(t )] = S[ρAB(t )||ρ∗
AB(t )] is the rela-

tive entropy of entanglement for the time-evolved state and
2
h̄	HAB is the speed of the bipartite mixed state under unitary
evolution with 	H2

AB = tr(ρABH2
AB) − [tr(ρABHAB)]2. Since

the capacity of entanglement for the mixed state based on
the relative entropy of entanglement is CE (ρAB) = 	K̃2

AB,
we have the quantum speed limit for the mixed state as
given by

T � T E
QSL := h̄|ER(T ) − ER(0)|

2	HAB
1
T

∫ T
0

√
CE (ρAB)dt

. (81)

The above formula will reduce to the quantum speed limit
for the pure state case as given in (42). It may be noted that
the derivation for the quantum speed limit for the mixed state
holds as long as the closest separable state is differentiable.
Thus, the minimal time for the entanglement creation for the
mixed state does depend on the speed of the bipartite mixed
state as well as the capacity of entanglement. This result will
have important implications in understanding the dynamics of
entanglement for mixed states.

VII. CONCLUSIONS

Undoubtedly, the study of quantum entanglement for bi-
partite and multipartite states has been one of the prime areas
of research over the last several decades. Even though the
dynamics of entanglement for nonlocal Hamiltonians was ad-
dressed earlier, the question of the dynamics of the capacity
of entanglement has not been addressed. The notion of the
capacity of entanglement is a very useful quantity and this can
be regarded as the quantum information theoretic counterpart
of the heat capacity. For any bipartite pure state, the capacity
of entanglement is the variance of the modular Hamiltonian
in the reduced state of any subsystem. In this paper, we have
studied the dynamics of the capacity of entanglement under
a nonlocal Hamiltonian. Our results answer a very pertinent
question regarding the capacity of entanglement that the sys-
tem can possess when it evolves in time under a nonlocal
Hamiltonian. The capacity of entanglement has another mean-
ing in deciding the upper bound for the entanglement rate.
We have shown that the quantum speed limit for creating
the entanglement is not only governed by the fluctuation in
the nonlocal Hamiltonian, i.e., the speed of transportation
of the bipartite state, but also depends inversely on the time
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average of the square root of the capacity of entanglement.
In addition, we have discussed the capacity of entanglement
for a self-inverse Hamiltonian and found an upper bound for
this case on the rate of capacity of entanglement. We have
also generalized the notion of the capacity of entanglement
for bipartite mixed states based on the relative entropy of
entanglement, which reduces to a known form for the pure
states case. We have provided two simple examples for the
capacity of entanglement for mixed states. Towards the end,
we have generalized the quantum speed limit for the creation
of entanglement for mixed states. The minimal time for the
creation of entanglement for the mixed states depends on the

speed of quantum evolution and the entanglement capacity.
In the future, it will be worthwhile to explore this notion of
the capacity of entanglement for mixed states and multipartite
systems, which will have useful applications in other areas of
physics.
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