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Quantum random access codes (QRACs) provide a basic tool for demonstrating the advantages of quantum
resources and protocols, which have a wide range of applications in quantum information processing tasks.
However, the investigation and application of high-dimensional (d ) multi-input (n) n(d ) → 1 QRACs are still
lacking. Here, we present a general method to find the maximum success probability of n(d ) → 1 QRACs. In
particular, we give the analytical solution for maximum success probability of 3(d ) → 1 QRACs when measure-
ment bases are mutually unbiased bases (MUBs). Based on the analytical solution, we show the relationship
between MUBs and n(d ) → 1 QRACs. First, we provide a systematic method of searching for the operational
inequivalence of MUBs (OI-MUBs) when the dimension d is a prime power. Second, we theoretically prove that,
surprisingly, the commonly used Galois MUBs are not the optimal measurement bases to obtain the maximum
success probability of n(d ) → 1 QRACs, which indicates a breakthrough according to the traditional conjecture
regarding the optimal measurement bases. Furthermore, based on high-fidelity high-dimensional quantum states
of orbital angular momentum, we experimentally achieve two-input and three-input QRACs up to dimension 11.
We experimentally confirm the OI-MUBs when d = 5. Our results open alternative avenues for investigating the
foundational properties of quantum mechanics and quantum network coding.
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I. INTRODUCTION

Quantum resources are known to outperform their classical
counterparts in a large variety of communication tasks. For
instance, quantum superdense coding can be used to trans-
fer two classical bits of information by transmitting a single
two-level quantum system with the aid of entanglement [1].
However, in the absence of entanglement, quantum resources
and protocols might not be better than their classical counter-
parts. For example, the well-known Holevo bound [2] places
a restriction on the amount of classical information that can
be extracted from a quantum state, which might imply that
quantum information is no more powerful than classical infor-
mation. In actuality, quantum random access codes (QRACs)
play a key role in quantum information theory to demonstrate
whether quantum information is more powerful than classical
information. QRACs are communication protocols that enable
the compression of an n-dit string into one qudit, such that one
can recover one of the n dits with high probability (n(d ) → 1
QRACs) [3,4]. QRACs were originally introduced in the con-
text of quantum finite automata [5,6]. Subsequently, QRACs
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have been adapted to quantum communication complexity
[7,8], especially for locally decodable codes [9] and network
coding [10]. QRACs have also been applied for semi-device-
independent (SDI) quantum randomness extraction [11–13] as
well as SDI key distribution [14].

Recently, high-dimensional QRACs have attracted consid-
erable attention. For example, Tavakoli et al. have given a
strategy of 2(d ) → 1 random access codes and QRACs [15],
which is proved to be the optimal strategy in [16,17], showing
that high-level quantum systems provide significant advan-
tages over their classical counterparts. In particular, QRACs
can provide SDI tests for the detection of measurement in-
compatibility [18,19], construct SDI self-tests for mutually
unbiased bases (MUBs) in arbitrary dimensions [17], and
expand to entanglement-assisted QRACs [20].

As shown in previous works [15,17–21], MUBs play a
central role in QRACs. For instance, the maximum success
probability of 2(d ) → 1 QRACs is obtained only if the mea-
surement bases are mutually unbiased; this has been strictly
proven in [17]. Furthermore, 2(d ) → 1 QRACs have been used
to investigate whether a special number of MUBs exist in
a given dimension [21]. However, determining the relation-
ship between n(d ) → 1 QRACs and MUBs is a problem that
remains to be addressed. A natural question is whether the
maximum success probability of n(d ) → 1 QRACs (n � 3)
can be achieved through MUBs, and the answer to this
question remains unknown, even though some work has con-
jectured that MUBs are the optimal strategy [15,21]. The
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FIG. 1. Schematic representation of n(d ) → 1 QRACs. The wall
represents the restricted channel between Alice and Bob; one qudit
and no classical dit can be transmitted per communication. Alice
encodes an n-dit string into a quantum d-level system and sends
it to Bob; Bob randomly performs an orthogonal measurement and
guesses the corresponding dit from Alice.

choice of subsets of MUBs will affect the results of quantum
information tasks; Hiesmayr et al. found detecting entangle-
ment can be more effective with inequivalent MUBs [22].
n(d ) → 1 QRACs can also show the differences, called op-
erational inequivalence of MUBs (OI-MUBs), which proves
at least not all MUBs can achieve the maximum success
probability [21]. But to date, no systematic method has been
presented that could help predict the OI-MUBs.

In this paper, we provide a general solution for obtaining
the maximum success probability of n(d ) → 1 QRACs. To
give a more in-depth description of their properties and ap-
plications, we focus on the case of 3(d ) → 1 QRACs when
measurement bases are MUBs and present the analytical solu-
tion using two ways. We carefully investigate the relationship
between MUBs and n(d ) → 1 QRACs. Following the ana-
lytical solution, we introduce a pattern through which it is
possible to conjecture when OI-MUBs is present with the
dimension d being a prime power. We provide numerical
proof of such operational inequivalence up to dimension 1000
(100) when d is a prime (prime power). We demonstrate that,
surprisingly, the commonly used Galois MUBs are not the op-
timal measurement bases for n(d ) → 1 QRACs. Here Galois
MUBs represent the complete d + 1 MUBs constructed by a
Galois field [23,24]. This may open an alternative direction
for researching the optimal bases. Finally, we experimentally
demonstrate the advantage of n(d ) → 1 QRACs based on the
high-dimensional orbital angular momentum (OAM) states of
photons. In particular, we experimentally realize 2(d ) → 1 and
3(d ) → 1 QRACs up to dimension 11; we also confirm the
OI-MUBs when d = 5.

II. MAXIMUM SUCCESS PROBABILITY
OF n(d )−→1 QRACs

QRACs are communication tasks involving two separated
parties, Alice and Bob. Alice and Bob share a restricted
channel; one qudit and no classical dit can be transmitted
per communication. As shown in Fig. 1, Alice is given an
n-dit string x = x0, x1, . . . , xn−1 chosen uniformly at random
and encodes this n-dit string into a qudit. Bob is given a
number y ∈ Zn (Zn = {0, 1, . . . , n − 1}) chosen uniformly

at random, and Alice does not know the number y. Bob’s task
is to correctly guess the dit xy of Alice.

We focus on standard QRACs, which are different from
sequential measurement QRACs [18]. We care more about the
relationship between MUBs and n(d )−→1 QRACs. Therefore,
we will introduce the analytical solution for QRACs under the
condition of projective measurements [17,21,25].

First, we construct n fixed orthogonal and complete bases
in a d-level system: {|ξ (0)

i 〉}, {|ξ (1)
i 〉}, · · · , {|ξ (n−1)

i 〉} (i ∈ Zd ).
|ξ (μ)

i 〉 is the (i + 1)th state in the (μ + 1)th basis. Then we
find the best encoding strategy to gain maximum success
probability when the bases are fixed.

Alice will encode dits x into a qudit ρ(x). When Bob
wishes to obtain the dit xy, Bob will measure the qudit
using the (y + 1)th basis {|ξ (y)

i 〉} with success probability
Tr(|ξ (y)

xy 〉〈ξ (y)
xy |ρ(x)); in this case, the success probability of

n(d ) → 1 QRACs is

P̄(x) = Tr

[
n−1∑
i=0

pi

∣∣ξ (i)
xi

〉〈
ξ (i)

xi

∣∣ρ(x)

]

= Tr[ ˆ̄P(x)ρ(x)], (1)

where py is the probability that Bob chooses dit xy when
Bob wishes to obtain x0, x1, . . . , xn−1 not evenly. The operator
ˆ̄P(x) = ∑n−1

i=0 pi|ξ (i)
xi

〉〈ξ (i)
xi

| has d eigenvalues and eigenstates
{λi, |�i〉}, λi ∈ [0, 1) (i ∈ Zd ). Then, we determine the
largest eigenvalue λm and the corresponding eigenstate |�m〉.
Now, the success probability is P̄(x) = ∑d−1

i=0 λi〈�i|ρ(x)|�i〉.
When ρ(x) = |�m〉〈�m|, namely, Alice sends a pure state
|�m〉 to Bob, the success probability can reach its maximum
point P̄(x) = λm [17,21,25].

Finally, λm is determined by x, so the maximum success
probability of the n(d )−→1 QRACs when the bases are fixed
is

PQ
nd = 1

dn

d−1∑
x0=0

d−1∑
x1=0

· · ·
d−1∑

xn−1=0

λm(x). (2)

Although the optimal measurement bases are MUBs for
2(d ) → 1 QRACs, the optimal measurement bases need to
be found for the maximum success probability of n(d ) → 1
QRACs.

III. ANALYTICAL SOLUTION FOR 3(d )−→1 QRACs
WHEN MEASUREMENT BASES ARE MUBs

For the case of n = 3, if all bases are mutually unbiased,
meaning that |〈ξ ( j)

i |ξ (m)
k 〉| = 1/

√
d when j �= m, then PQ

3d can
be simplified. As shown in Fig. 1, Alice has three dits, and
Bob wishes to obtain one of them entirely randomly, i.e.,
pi = 1/3 (i ∈ Z3). We construct three fixed MUBs {|ci〉},
{|ei〉}, and {| fi〉} (i ∈ Zd ), where |ci〉 means the (i + 1)th state
in the first basis. Alice encodes x0, x1, x2 ∈ Zd into a d-level
quantum system and sends it to Bob. Here, ˆ̄PM (x0, x1, x2) =
1
3 (|cx0〉〈cx0 | + |ex1〉〈ex1 | + | fx2〉〈 fx2 |). The superscript M rep-
resents that measurement bases are MUBs. There are at most
three nonzero eigenvalues of ˆ̄PM (x0, x1, x2) and correspond-
ing eigenstates must be linear combinations of |cx0〉, |ex1〉, and
| fx2〉. It is difficult to reach these eigenstates. However, in the
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following sections, we can get three states from Eqs. (11) and
(26). It is unnecessary to know how to get these states here;
we only need to know they are all eigenstates of ˆ̄PM (x0, x1, x2)
with nonzero eigenvalues. These eigenstates |�i〉 and corre-
sponding eigenvalues λi of ˆ̄PM (x0, x1, x2) are

λ0 = 1

3

[
1 + 2√

d
cos

Φ

3

]
,

(3)

|�0〉 =
∣∣cx0

〉 + ei( Φ
3 −ϕ01 )

∣∣ex1

〉 + ei(− Φ
3 −ϕ02 )

∣∣ fx2

〉
√

3 + 6√
d

cos Φ
3

,

λ1 = 1

3

[
1 + 2√

d
cos

(
Φ

3
+ 2π

3

)]
,

(4)

|�1〉 =
∣∣cx0

〉 + ei( Φ
3 + 2π

3 −ϕ01 )
∣∣ex1

〉 + ei(− Φ
3 − 2π

3 −ϕ02 )
∣∣ fx2

〉
√

3 + 6√
d

cos
(

Φ
3 + 2π

3

) ,

λ2 = 1

3

[
1 + 2√

d
cos

(
Φ

3
− 2π

3

)]
,

|�2〉 =
∣∣cx0

〉 + ei( Φ
3 − 2π

3 −ϕ01 )
∣∣ex1

〉 + ei(− Φ
3 + 2π

3 −ϕ02 )
∣∣ fx2

〉
√

3 + 6√
d

cos
(

Φ
3 − 2π

3

) . (5)

ϕ01, ϕ02, and ϕ12 are the angles of 〈cx0 |ex1〉, 〈cx0 | fx2〉, and
〈ex1 | fx2〉; for example, eiϕ01/

√
d = 〈cx0 |ex1〉, and

ϕ = ϕ01 − ϕ02 + ϕ12, (6)

Φ = f (ϕ). (7)

Here, f (ϕ) = ϕ − 2kπ if 2kπ − π � ϕ < 2kπ + π, k ∈ Z,
which can be used to transfer the angle ϕ into the range
[−π, π ) by subtracting 2kπ . Φ is a function of x0, x1, and
x2. So λ0 � λ1, λ2. Therefore Alice sends the best quantum
state to Bob and the corresponding success probability is

P̄M (x0, x1, x2) = 1

3

[
1 + 2√

d
cos

Φ

3

]
, (8)

∣∣ψM
x0, x1, x2

〉 = |cx0〉 + ei( Φ
3 −ϕ01 )|ex1〉 + ei(− Φ

3 −ϕ02 )| fx2〉√
3 + 6√

d
cos Φ

3

. (9)

Thus, PQ
3d in Eq. (2) can be simplified to PQM

3d when measure-
ment bases are MUBs:

PQM
3d = 1

3d3

d−1∑
x0=0

d−1∑
x1=0

d−1∑
x2=0

(
1 + 2√

d
cos

Φ(x0, x1, x2)

3

)
.

(10)

Φ cannot be eliminated because Φ carries the subset infor-
mation and PQM

3d is related to the choice of subset. The proof
of PQM

3d > PC
3d (RACs) can be found in Supplemental Material

[26].

IV. ANOTHER WAY TO GET P̄M (x0, x1, x2 )

There is another way to get the maximum success proba-
bility of the 3(d )−→1 QRACs when measurement bases are
MUBs using the perspective of calculus. We first assume
a specific quantum state form and then find the maximum

success probability in this form. We prove the rationality
of the assumption in the process. Our approach may inspire
alternative research tools.

A. Quantum states and success probability

{|ci〉}, {|ei〉}, and {| fi〉} are three fixed MUBs. Alice’s data
are x = x0, x1, x2; we assume the quantum state Alice sent to
Bob is

|ψ〉 = 1

N3d

(∣∣cx0

〉 + ei(θ1−ϕ01 )
∣∣ex1

〉 + ei(θ2−ϕ02 )
∣∣ fx2

〉)
, (11)

where θ1 and θ2 are variables, N3d is a normalization constant,
and it is related to θ1 and θ2. When Bob wants the first,
second, and third data, he performs a measurement in the
bases {|ci〉}, {|ei〉}, and {| fi〉}; the probabilities that the results
are x0, x1, and x2 are Px0 = |〈cx0 |ψ〉|2, Px1 = |〈ex1 |ψ〉|2, and
Px2 = |〈 fx2 |ψ〉|2.

If Bob chooses x0, x1, and x2 randomly, then we can get
the average success probability

P̄M (x0, x1, x2)

= Px0 + Px1 + Px2

3
(12)

= 1

3

{
2 +

[
−3 + 6

d
+ 2

d
cos (θ1 − θ2) + 2

d
cos (θ2 + ϕ)

+ 2

d
cos (θ1 − ϕ)

]
/

[
3 + 2√

d
cos θ1 + 2√

d
cos θ2

+ 2√
d

cos (θ1 − θ2 − ϕ)

]}
. (13)

We define a new symbol q:

P̄M (x0, x1, x2) = 2 + q

3
, (14)

q =
[
−3 + 6

d
+ 2

d
cos (θ1 − θ2) + 2

d
cos (θ2 + ϕ)

+ 2

d
cos (θ1 − ϕ)

]/[
3 + 2√

d
cos θ1 + 2√

d
cos θ2

+ 2√
d

cos (θ1 − θ2 − ϕ)

]
. (15)

We want to know the maximum value of P̄M (x0, x1, x2); in
fact, we are calculating the maximum value of q. We find, if
we replace θ1 with −θ2, and replace θ2 with −θ1, that q does
not change, namely,

q(θ1, θ2, ϕ) = q(−θ2, −θ1, ϕ). (16)

B. Solve ∂q
∂θ1

= 0 and ∂q
∂θ2

= 0

First, we can say the denominator of q is N2
3d and N2

3d > 0
no matter how θ1 and θ2 change because it is the normalization
constant for quantum state |ψ〉. Then we conduct a partial
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derivative operation to q:

∂q

∂θ1
= −2 sin

2θ1 − θ2 − ϕ

2

{
cos

θ2 − ϕ

2

[
6

d
+ 4

d
3
2

cos θ2

]

+ cos
θ2 + ϕ

2

[
6√
d

− 12

d
3
2

− 4

d
3
2

cos (θ2 + ϕ)

]}
/N4

3d .

(17)

Using Eq. (16),

∂q

∂θ2
= + 2 sin

θ1 − 2θ2 − ϕ

2

{
cos

θ1 + ϕ

2

[
6

d
+ 4

d
3
2

cos θ1

]

+ cos
θ1 − ϕ

2

[
6√
d

− 12

d
3
2

− 4

d
3
2

cos (θ1 − ϕ)

]}
/N4

3d .

(18)

The solution of ∂q
∂θ1

= 0 is

sin
2θ1 − θ2 − ϕ

2
= 0 or (19)

cos
θ2 − ϕ

2

[
6

d
+ 4

d
3
2

cos θ2

]
+ cos

θ2 + ϕ

2

[
6√
d

− 12

d
3
2

− 4

d
3
2

cos (θ2 + ϕ)

]
= 0. (20)

The solution of Eq. (19) is

2θ1 − θ2 − ϕ = 2kπ, k ∈ Z. (21)

Clearly, Eq. (20) must have at least one solution. There is
no need to calculate the solutions because none of them can
reach the maximum point in the following steps. We can name
any one of the solutions γ0; then we can write Eq. (20) as

θ2 = γ0. (22)

Then the solution of ∂q
∂θ1

= 0 is

∂q

∂θ1
= 0 →

{
sol1.1: θ2 = 2θ1 − ϕ + 2kπ, k ∈ Z or
sol1.2: θ2 = γ0.

(23)

Using Eq. (16), the solution of ∂q
∂θ2

= 0 is

∂q

∂θ2
= 0 →

{
sol2.1: θ1 = 2θ2 + ϕ + 2kπ, k ∈ Z or

sol2.2: θ1 = −γ0.

(24)

The maximum points must be one of the intersections of
the above four solutions. The solutions are shown in Fig. 2.

C. Find the maximum point

First, we consider the intersections between sol1.1 and
sol2.1:{

θ1 = + ϕ

3 ,

θ2 = − ϕ

3 ,

{
θ1 = + ϕ

3 + 2
3π,

θ2 = − ϕ

3 − 2
3π,

{
θ1 = + ϕ

3 − 2
3π,

θ2 = − ϕ

3 + 2
3π.

(25)

Using Eq. (7), these three intersections are{
θ1 = +Φ

3 ,

θ2 = −Φ
3 ,

{
θ1 = +Φ

3 + 2
3π,

θ2 = −Φ
3 − 2

3π,

{
θ1 = +Φ

3 − 2
3π,

θ2 = −Φ
3 + 2

3π.
(26)

FIG. 2. Solutions of ∂q
∂θ1

= 0 and ∂q
∂θ2

= 0. Brightness of each
position indicates q. Magenta (slant, k = 2), orange (horizontal),
blue (slant, k = 1/2), and cyan (vertical) lines show sol1.1, sol1.2,
sol2.1, and sol2.2, respectively. q of all points on horizontal and
vertical lines are the same. Six red points are intersections and
the first three of them are intersections between magenta (sol1.1)
and blue (sol2.1) lines. Here d = 5; x0, x1, x2 = 0, 0, 1; |ei〉 =

1√
d

∑d−1
j=0 exp(2π i/d )i j |ci〉; and | fi〉 = 1√

d

∑d−1
j=0 exp(2π i/d )i j+ j2 |ci〉.

And now Φ ≈ 1.2566, γ0 ≈ 2.6342.

Actually, these three intersections are shown in Fig. 2 as
points 1, 2, and 3, corresponding to nonzero eigenvalues and
eigenstates in Eqs. (3), (4), and (5), showing the rationality of
the assumption in Eq. (11). We define q1, q2, and q3 as values
of q at the first, second, and third intersection in Eq. (26):

q1 = −1 + 2√
d

cos
Φ

3
, (27)

q2 = −1 + 2√
d

cos

(
Φ

3
+ 2

3
π

)
, (28)

q3 = −1 + 2√
d

cos

(
Φ

3
− 2

3
π

)
. (29)

Here Φ ∈ [−π, π ), so the maximum point among Eq. (26)
is

θ1 = +Φ

3
,

(30)

θ2 = −Φ

3
,

and the corresponding q is

qm1 = −1 + 2√
d

cos
Φ

3
. (31)

Second, we consider all the points on sol1.2, namely, θ2 =
γ0, and then use Eq. (20) to get

∂q

∂θ1

∣∣∣∣
θ2=γ0

= −2 sin 2θ1−θ2−ϕ

2

N4
3d

{
cos

θ2 − ϕ

2

[
6

d

+ 4

d
3
2

cos θ2

]
+ cos

θ2 + ϕ

2

[
6√
d

− 12

d
3
2

− 4

d
3
2

cos (θ2 + ϕ)

]}
= 0. (32)
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The last part always equals zero no matter what θ1 is when
θ2 = γ0; at the same time, the last part does not contain θ1, so
∂nq
∂θn

1
|θ2=γ0 = 0 is always right. So when θ2 = γ0, θ1 has nothing

to do with q; q is constant; in order to calculate the constant,
we can rewrite q as

q =
[−3+ 6

d + 2
d cos (θ2+ϕ)

]+[
4
d cos

(
θ2−ϕ

2

)]
cos

(
θ1− θ2+ϕ

2

)
[
3+ 2√

d
cos θ2

]+[
4√
d

cos
(

θ2+ϕ

2

)]
cos

(
θ1− θ2+ϕ

2

) .

(33)

Now the numerator and denominator both have only one θ1

item, and we rewrite Eq. (20) as[
−3 + 6

d
+ 2

d
cos (θ2 + ϕ)

][
4√
d

cos

(
θ2 + ϕ

2

)]

=
[

3 + 2√
d

cos θ2

][
4

d
cos

(
θ2 − ϕ

2

)]
. (34)

Equation (34) has four parts of Eq. (33) and they all do
not contain θ1; clearly, θ1 has nothing to do with q, so we can
simplify q in the condition of θ2 = γ0 to constant qm2, namely,

qm2 = −3 + 6
d + 2

d cos (γ0 + ϕ)

3 + 2√
d

cos γ0
. (35)

Third, we consider all the points on sol2.2; it is obvious
that when θ1 = −γ0 the value of q is also qm2 because line
θ2 = γ0 and line θ1 = −γ0 has an intersection and q keeps a
fixed value on these two lines.

The maximum value is either qm1 or qm2 and cannot be
another value. Then we need to compare qm1 with qm2; we can
transfer ϕ in qm2 to Φ without changing the value of qm2, so
let us summarize:

qm1 = −1 + 2√
d

cos
Φ

3
, (36)

qm2 = −3 + 6
d + 2

d cos (γ0 + Φ )

3 + 2√
d

cos γ0
. (37)

In the case of θ2 = γ0, if θ1 �= −γ0 and θ1 �= 2γ0 + ϕ +
2kπ (k ∈ Z), q = qm2 but ∂q

∂θ2
�= 0, so qm2 cannot be the maxi-

mum value of q. So the maximum value of q must be qm1.

D. Final analytical solution of QRACs when n = 3

The maximum point is

θ1 = +Φ

3
,

θ2 = −Φ

3
. (38)

The maximum value of q is

qmax = −1 + 2√
d

cos
Φ

3
. (39)

The corresponding P̄M (x0, x1, x2) is

P̄M (x0, x1, x2) = 1

3

(
1 + 2√

d
cos

Φ

3

)
. (40)

Here Φ carries the information of x0, x1, and x2 and bases
{|ci〉}, {|ei〉}, and {| fi〉}.

V. OPERATIONAL INEQUIVALENCE OF MUBS WHEN
DIMENSION IS A PRIME POWER

MUBs play a key role in quantum information processing
and have been used in dense coding, teleportation, entangle-
ment swapping, covariant cloning, and state tomography [24].
It is generally believed that MUBs are maximally incompat-
ible and complementary. However, there are differences even
between different subsets of MUBs [22]. In the latest research,
the OI-MUBs has been discovered [21,27]. At present, very
little is known about the properties of OI-MUBs. Here, we
introduce a pattern from which it is possible to conjecture the
OI-MUBs when the dimension d is a prime power, based on
3(d ) → 1 QRACs.

Now, the set of MUBs in prime power dimension d is said
to be complete because there are d + 1 bases that are all pair-
wise mutually unbiased [23,24]. We can choose a three-basis
subset of MUBs {|ξ (μ)

i 〉} (μ ∈ Zd+1) and call them {|ci〉},
{|ei〉}, and {| fi〉}. Then, we can use Eq. (10) to obtain the
analytical PQM

3d . After calculating the analytical PQM
3d for all

subsets when d � 1000 (100) when dimension d is a prime
(prime power) [26], it is found that the number of different
PQM

3d (N) is no greater than 2 and conforms to

N =
{

2, if d ≡ 1 (mod4),

1, otherwise,
[when d � 1000 (100)]. (41)

Accordingly, we can find a method to conjecture the OI-
MUBs for 3(d ) → 1 QRACs. When d ≡ 1 (mod4), there are
two values of PQM

3d . The larger one is PQM
3d+ and the smaller

one is PQM
3d−, which means that the choice of subset affects

PQM
3d . However, when d ≡ other (mod4), there is only one

PQM
3d+. Our result is obtained using a complete analytical cal-

culation to avoid floating-point errors. We only calculate the
d � 1000 (100) case when dimension d is a prime (prime
power) because of the lack of computational power, and the
computation of the prime power dimension is much more
complex than that of the prime dimension. We conjecture
Eq. (41) is also true when d > 1000 (100). Although the con-
jecture of OI-MUBs is based on the Galois MUBs, we argue
that the conjecture may apply to other completed MUBs.

The maximum success probability of 2(d )−→1 QRACs
depends only on the dimension [15], which means that a
case with three MUBs is the simplest case of operational
inequivalence. Our results clearly show that the dimension
of the Hilbert space plays a central role in the OI-MUBs.
If the dimension modulo 4 remains 0, 2, or 3, this means
that the Hilbert space has better symmetry. Our results may
open alternative avenues for investigating the foundational
properties of quantum mechanics.

VI. GALOIS MUBS ARE NOT THE OPTIMAL
MEASUREMENT BASES

The OI-MUBs already proves that MUBs are not a suffi-
cient condition for maximum success probability of n(d ) → 1
QRACs. Then we attempt to find three orthogonal and com-
plete measurement bases that can achieve a greater success
probability than any three-basis subset of MUBs when n = 3.
It is very difficult to consider all possible MUBs; here we only
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FIG. 3. The relationship between MUBs and 3(d ) → 1 QRACs.
(a–d) PQ

3d for d = 5, 9, 16, and 17, respectively. δ is an independent
variable in Eq. (42) that represents the degree of deviation from
Galois MUBs. The red dashed horizontal line (upper or the only
horizontal line) and blue solid horizontal line (lower horizontal line)
represent PQM

3d+ and PQM
3d−. Each curved line (colorful, without legend)

represents a choice of a three-basis subset of new bases. The PQM
3d+

values for d = 9, 16, and 17 can be surpassed when d � 20.

focus on the Galois MUBs. Fortunately, such bases are not
uncommon in some dimensions. We construct new complete
orthogonal quantum bases which we call the perturbations of
Galois MUBs [27]. First, each quantum state is treated as a
complex column vector, and the complete orthogonal basis
forms a d × d matrix U joined by d column vectors. Then,
we use perturbation to construct a new basis Unew:

Unew = SO(U + δI), (42)

where SO denotes Schmidt orthogonalization, δ is an in-
dependent variable that represents the degree of deviation
from Galois MUBs, and I is the identity matrix. We trans-
form Galois MUBs to new bases and use each three-basis
subset of the new bases to calculate PQ

3d using Eq. (2), as
shown in Fig. 3. Each curved line represents one choice
strategy for selecting a three-basis subset from the d + 1 new
bases.

Then, we transform them with different δ values. For d = 9
or 17, we can observe the phenomenon of OI-MUBs in these
dimensions, and PQM

3d+ can be exceeded. Interestingly, in the
case of d = 9, the best measurement bases we obtained come
from the bases of PQM

3d−, whereas in the case of d = 17 they

come from PQM
3d+. When there is no OI-MUBs, such as d = 16,

we can also exceed PQM
3d+. However, when d = 5, we cannot

find a surpassing point.
When n > 3, the OI-MUBs is more complicated [27]. We

have proved that Galois MUBs are not a necessary condition
for maximum success probability of n(d ) → 1 QRACs using
the method of contradiction. More details can be found in
Supplemental Material [26,28].

FIG. 4. Experimental setup for n(d ) → 1 QRACs. (a) We use
SLM1 to prepare the quantum state |ψ〉 and use SLM2 to measure
the state on an orthogonal basis. We show Alice’s states and the mea-
surement bases in (b) and (c). Legend: BBO, beta barium borate; FC,
fiber coupler; HWP, half-wave plate; PBS, polarizing beam splitter;
SLM, spatial light modulator.

VII. EXPERIMENT

In our experiment, as shown in Fig. 4, a type-II beta barium
borate crystal (9.0 × 7.0 × 1.0 mm3, θ = 42.62◦) is pumped
with a frequency-doubled femtosecond pulse (390-nm
76-MHz repetition rate) from a mode-locked Ti:sapphire laser
to generate single photons. After passing through a 3-nm
interference filter, the photon pairs are separately coupled into
single-mode fibers. The single-photon state is produced by
triggering on one of the two photons.

We perform an experiment based on the high-dimensional
OAM states of photons (although we use OAM, other
high-fidelity high-dimensional quantum systems are also ac-
ceptable for QRACs). The prepared states are encoded in the
OAM of single photons [29,30]. The OAM of single photons
can be used to enable high-capacity optical communication
[31,32] and versatile optical tweezers [33]. As shown in Fig. 4,
a signal photon is projected onto the Gaussian state through
a single-mode fiber and fiber coupler (FC). The Gaussian
diameter of the Gaussian beam after the FC is 2900 μm.
After spatial filtering and expanding with two lenses, the
Gaussian diameter grows to 4450 μm, and the OAM state
of the signal photons is controlled by the first spatial light
modulator (SLM1) to prepare the desired state |ψ〉 for Alice.
Many methods have been used to encode high-dimensional
states with a single phase-only SLM [34–36]. We calculate
the wavefront (including intensity and phase) and adopt a
method [36] of modulating the wavefront that is specifically
calculated to maximize the state fidelity. Then, the light is
passed through a 4 f system to avoid the Gouy phase-shift
effect and reach SLM2. Phase holograms on SLM2 are based
on the phase-only wavefront [37]. We find that even if SLM1
and SLM2 have a deviation of only 25 μm, the fidelity will de-
crease significantly. Therefore, we generate phase holograms
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FIG. 5. Experimental results for QRACs: (a) 2(d ) → 1 and
(b) 3(d ) → 1. The standard deviations are shown as white error bars.
The largest standard deviation is about 0.0047, which is too small to
be visible.

larger than SLMs and move them on the computer instead of
moving a real SLM device. To align two SLMs, we put a CCD
near the final FC and draw l-vortex and g-grating holograms
[ϕ(x, y) = l × angle(x, y) + 2πx/g] on two SLMs, where g
is the same as in the previous method [36]. When l = 5, we
can see a halo on the CCD. Then if we successfully align
two SLMs, there will be a bright spot in the center of the
halo, and the moving hologram will cause the bright spot to
move. Finally, after passing through another 4 f system, the
light is collected by a single-mode fiber with an adjustable
FC and a single-photon detector. The coincidence counting
rate collected by the avalanche photodiodes is approximately
6000 per second if holograms on two SLMs are grating
holograms. When the holograms are preparation and measure-
ment holograms, the coincidence counting rate changes when
d and Alice’s data x change; when d = 5 it is about 1000
per second. The time for each measurement process is 5 s.
We repeat each experiment five times to obtain the standard
deviation, which is almost the same as the standard deviation
calculated by the Monte Carlo algorithm.

We first experimentally investigate high-level QRACs up
to dimension 11 based on the high-fidelity high-dimensional
OAM states. As shown in Fig. 5, we realize 2(d ) → 1 and
3(d ) → 1 QRACs with dimensions of up to 11 (except 10). We
need high-dimensional bases, so we use both the azimuthal
index l and the radial index p of the Laguerre-Gaussian
mode. Let us take d = 11 as an example. We use |l =
0,±2,±4,±6; p = 0〉 and |l = ±1,±3; p = 2〉 as the basic
basis {|ξ (0)

i 〉}; the visibility of {|ξ (0)
i 〉} is 99.25% (namely,

132:1) [28]. Then we construct Galois MUBs [23,24]. Fig-

FIG. 6. Experimental results for the OI-MUBs when d = 5. The
orange (upper) and blue (lower) rectangles represent the experimen-
tal results in the PQM

3d+ and PQM
3d− situations, respectively. The error bars

of PQM
3d+ and PQM

3d− are displayed in the middle of the top edges of
rectangles.

ure 5(a) represents 2(d ) → 1 QRACs; the n = 2 case does not
have OI-MUBs so we do not need to consider the choice of
subset of MUBs. Figure 5(b) represents 3(d ) → 1 QRACs.
For all kinds of dimensions except d = 9, considering the
OI-MUBs, we choose the best subset of Galois MUBs which
can reach the success probability of PQM

3d+. When d = 9,
we choose the bases of the maximum point in Fig. 3(b).
These bases are shown with three decimal places precision
in Supplemental Material [26]. The standard deviations are
shown as white error bars. The largest standard deviation in
our experiment is about 0.0047, too small to be visible in
Fig. 5. We can see the experimental results are in good agree-
ment with the theory and they are shown in Supplemental
Material [26].

Finally, we experimentally verify the OI-MUBs. When
d = 5, PQM

3d+ ≈ 0.6109 and PQM
3d− ≈ 0.5964. We measure the

PQM
3d+ and PQM

3d− individually (as shown in Fig. 6). Excitingly,
our results can be discriminated even when the standard
deviation is considered. For the PQM

3d+, the success proba-
bility we obtain is 0.6004 ± 0.0025, which is larger than
both the theoretical value (PQM

3d−) and the experimental value

0.5887 ± 0.0027 in the PQM
3d− situation. The gap is about

4.33 σ . Although the interference in real experiments leads
to the increase of standard deviation, we can see that it
is feasible to realize the OI-MUBs. The OI-MUBs is a
remarkable phenomenon that cannot be ignored in a real
experiment.

VIII. CONCLUSION

In this paper, we focus on n(d ) → 1 QRACs. The general
method for the maximum success probability of n(d ) → 1
QRACs is given. When measurement bases are MUBs, we
obtain an analytical solution for the maximum success proba-
bility of 3(d ) → 1 QRACs. Based on this analytical solution,
we obtain some interesting results. First, we present a pat-
tern from which it is possible to conjecture the OI-MUBs
when d is a prime power. We provide numerical proof of
such operational inequivalence up to dimension 1000 (100)
when d is a prime (prime power). Then, we find that Galois
MUBs are not the optimal measurement bases in contrast to
the traditional concept. Considering the three-basis subset of
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Galois MUBs cannot cover all the MUBs triplets, it is still
an open question to investigate whether MUBs are the opti-
mal measurement bases. Finally, we experimentally achieve
2(d ) → 1 and 3(d ) → 1 QRACs, with a dimension of up to 11.
In particular, because of our high fidelity, we experimentally
confirm the OI-MUBs when d = 5. The current framework
not only brings light to the study of QRACs and MUBs prop-
erties but also can be extended to multiqudit and sequential
measurement cases. Our results open alternative avenues for
investigating quantum network coding.
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