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Unification of coherence and quantum correlations in tripartite systems
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In quantum resource theories (QRTs), evidence of intrinsic connections between coherence and quantum
correlations, including Bell nonlocality, entanglement, quantum steering, and so on, exists. However, building
these relationships is a vital yet challenging task in multipartite quantum systems. Here, we focus on a unified
framework of interpreting the interconversions among coherence and different quantum correlations in tripartite
systems. In particular, an exact relation between the generalized geometric measure and the genuinely multi-
partite concurrence is derived for tripartite entanglement states. Then we obtain the trade-off relation between
the first-order coherence and the genuine tripartite entanglement by the genuinely multipartite concurrence and
concurrence fill. Furthermore, the trade-off relation between the maximum steering inequality violation and
concurrence fill for arbitrary three-qubit states is found. In addition, we investigate the close relation between
the maximum steering inequality violation and the first-order coherence. The results show that coherence and
quantum correlations are intrinsically related and can be converted to one another in the framework of QRTs.
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I. INTRODUCTION

Coherence and quantum correlations, as two related
properties of a compound system, are known as vital phys-
ical resources in quantum information processing from the
perspective of quantum resource theories (QRTs) [1–3]. Co-
herence is an essential concept to show the traits of a stream
of photons [4], and it characterizes the interference capabil-
ity of the compound system. It plays a key role in various
quantum algorithms and quantum communication protocols
[5,6]. Also it is the main reason why quantum tasks can be
realized faster than classical ones [7]. On the other hand,
quantum correlations, as the description of interdependence
among subsystems, fall into several categories, such as Bell
nonlocality [8], entanglement [9–17], and steering [18–26].
Since both of them can be quantified and characterized by
the QRTs, it is reasonable to investigate whether they can be
quantitatively converted [27–35].

In recent years, many efforts have been made to study
the relation between coherence and quantum correlations
[36–41]. In 2013, Kagalwala et al. experimentally found a
complementary relation between first-order coherence and
Bell nonlocality in the bipartite pure-state case [36]. In
2015, this finding was generalized to the mixed-state case by
Svozilík et al. [37]. They also investigated the conservation
between first-order coherence and the degree of entanglement
by global unitary transformations, which was verified via an
experiment by Černoch et al. in 2018 [39]. Similarly, an-
other complementary relation between first-order coherence
and entanglement was found for two-qubit states in 2019
[40]. In addition, quantum steering is also a quantum cor-
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relation that lies between Bell nonlocality and entanglement
[42]. Steerable states have been shown to have many potential
applications in randomness generation [43], subchannel dis-
crimination [44], quantum information processing [45], and
one-sided device-independent processing in quantum key dis-
tributions [46]. Recently, the relationship between first-order
coherence and the maximum violation of the three-setting
linear-steering inequality was studied in a two-qubit system
[47]. It was later verified experimentally by preparing bipho-
ton polarization-entangled states in an all-optical setup in
the same year [48]. These studies reveal that the coherence
and the different measures of quantum correlations can be
transformed from one another by unitary operations, which
is helpful for exploring the fundamental connections among
these quantum resources.

On the other hand, many indications show that differ-
ent quantum correlations are intrinsically connected [49–53].
For example, in 2020, the shareability of three-setting linear
steering and its relationship with bipartite or tripartite entan-
glement of three-qubit states were investigated by Paul and
Mukherjee [52]. More recently, Dai et al. presented a further
study on the complementary relations between tripartite en-
tanglement and the reduced bipartite steering for three-qubit
states in 2022 [53]. However, it is worth noting that most of
the related studies concern two-qubit systems. Little attention
has been paid to the whole entangled multipartite system.
In fact, investigations of the relationship between coherence
and different quantum correlations in tripartite systems are
important for understanding information transfer and flow in
the framework of QRTs.

In this paper, we establish a unification of coherence and
quantum correlations, including quantum entanglement and
quantum steering, in arbitrary tripartite entanglement states.
First, we establish an exact functional relation between the
generalized geometric measure (GGM) and the genuinely
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multipartite concurrence (GMC) for three-qubit pure states,
although the relationship is restricted by an inequality in the
mixed-state scenario. Then, the trade-off relation between the
first-order coherence and the genuine tripartite entanglement
is found, where the measures of entanglement are quantified
by the GMC and a recently defined faithful tripartite entangle-
ment, concurrence fill [17]. In addition, we find that a trade-off
relation between the maximum steering inequality violation
and concurrence fill exists. Moreover, we present the close
relation between the maximum steering inequality violation
and first-order coherence. Note that the boundary states of all
the above relations consist of the three states: |ψ〉α , |ψ〉m,
and |ψ〉θ . These relations provide evidence that coherence
and different measures of quantum correlations are, indeed,
interconnected and can be converted to one another.

This paper is organized as follows: In Sec. II, we briefly re-
view some measures of coherence and quantum correlations.
In Sec. III, we give the relation between the GGM and GMC.
In Sec. IV, we present the trade-off relations between the
genuine tripartite entanglement and the first-order coherence.
We study the trade-off relation between the maximum steer-
ing inequality violation and concurrence fill in Sec. V. The
close relationship between the maximum steering inequality
violation and first-order coherence is derived in Sec. VI. A
summary is provided in Sec. VII.

II. PRELIMINARIES

Here, we give a brief overview of coherence and different
measures of quantum correlations, including quantum entan-
glement and the steering inequality. We use the GGM, GMC,
and concurrence fill, which have already been generated and
verified by experiments [54–56], as the measures of genuine
tripartite entanglement. The coherence and steering inequality
are quantified by first-order coherence and the three-setting
linear-steering inequality, respectively.

A. GGM

The GGM, as a generalization of the measure defined by
Wei and Goldbart [14], is based on the geometric distance
between the n-partite state |ψ〉 and the set of all multiparty
states |ϕ〉 that are not genuinely entangled. That is [11],

G(|ψ〉) = 1 − max
|ϕ〉

|〈ϕ | ψ〉|2, (1)

where the maximization is done over all separable states |ϕ〉.
An equivalent mathematical expression of the GGM is given
by

G(|ψ〉)=1−max
{
ε2

I:L|I ∪ L={1, 2, . . . , n},I ∩ L=∅}
, (2)

where εI:L is the maximal Schmidt coefficient in the I : L split
of the state |ψ〉. For the arbitrary pure states, ε2

I:L are equal to
the corresponding eigenvalues of the reduced density matrices
ρI as well as ρL.

The GGM is generalized to mixed states ρ via the convex
roof construction [12]

G(ρ) = inf
{pi,|ψi〉}

∑
i

piG(|ψi〉), (3)

where the infimum is over all feasible decompositions ρ =∑
i pi|ψi〉〈ψi|.

B. GMC

For multipartite pure states, Ma et al. [15] defined the GMC
satisfying the necessary conditions for being a multipartite
entanglement measure. It is related to the entanglement of
the minimum bipartite linear entropies, instead of von Neu-
mann entropies. For an n-partite pure state |ψ〉 ∈ H1 ⊗ H2 ⊗
· · · ⊗ Hn with dim(Hi ) = di, i = 1, 2, . . . , n, the GMC is
defined as

C(|ψ〉) = min
μi

√
2
[
1 − Tr

(
ρ2

Aμi

)]
, (4)

where μi donates the elements in the set of all feasible bipar-
titions {Ai|Bi}. The GMC is also generalized to mixed states ρ

via the convex roof construction

C(ρ) = inf
{pi,|ψi〉}

∑
i

piC(|ψi〉). (5)

C. Concurrence fill

For tripartite entanglement states, concurrence fill is intro-
duced as a faithfully genuine entanglement measure based on
the area of an alleged concurrence triangle [17]. In the pro-
posal, the lengths of the three sides are set equal to the squares
of the three bipartite concurrences. From Heron’s formula for
triangle area, the concurrence fill can be defined as

F (|ψ〉) = [
16
3 Q

(
Q − C2

A(BC)

)(
Q − C2

B(AC)

)(
Q − C2

C(AB)

)]1/4
,

(6)

where

Q = 1
2

(
C2

A(BC) + C2
B(AC) + C2

C(AB)

)
. (7)

Q is the half perimeter, which is equivalent to the global
entanglement [57,58]. The coefficient 16/3 guarantees the
normalizing condition that 0 � F123 � 1, and the extra square
root exceeding Heron’s formula ensures local monotonicity
under the local quantum operations assisted by classical com-
munications. Ci( jk) can be calculated as follows [59]:

Ci( jk) = 2
√

det ρi, (8)

where i, j, k ∈ {A, B,C}, i 	= j 	= k, and ρi is the reduced
density matrices of the quantum state ρABC . It can be found
that 0 � Ci( jk) � 1. Concurrence fill can detect the difference
between entanglements of some states, while other genuine
multipartite entanglement measures cannot. In particular, for
three-qubit systems, the GMC is equal to the square root of
the shortest side length of the concurrence triangle.

D. First-order coherence

For the three-qubit arbitrary state ρABC , the first-order co-
herence for each subsystem A, B, or C is defined by its purity
[4]

D(ρi ) =
√

2 Tr
(
ρ2

i

) − 1, (9)

where i ∈ {A, B,C}. When all subsystems are regarded inde-
pendently, the first-order coherence for the state ρABC is given
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by [37]

D(ρABC ) =
√
D(ρA)2 + D(ρB)2 + D(ρC )2

3
, (10)

where 0 � D(ρABC ) � 1. Note that the first-order coherence
is independent of the selection of the reference basis.

E. The three-setting linear-steering inequality violation

Cavalcanti et al. [19] formulated the following linear-
steering inequalities to verify whether a bipartite state is
steerable from Alice to Bob when both of them are able to
operate n dichotomic measurements on their own subsystems:

Fn(ρAB, μ) = 1√
n

∣∣∣∣∣
n∑

k=1

〈Ak ⊗ Bk〉
∣∣∣∣∣ � 1, (11)

where Ak = âk · �σ and Bk = b̂k · �σ , with �σ = (σ1, σ2, σ3)
being the Pauli matrices and âk, b̂k ∈ R3 being unit and or-
thonormal vectors; 〈Ak ⊗ Bk〉 = Tr[ρAB(Ak ⊗ Bk )]; and μ =
{â1, â2, . . . , ân, b̂1, b̂2, . . . , b̂n} is the set of measurement di-
rections.

In the Hilbert-Schmidt representation, any two-qubit state
can be expressed as

ρAB = 1

4

[
I2 ⊗ I2+�a · �σ ⊗ I2+I2 ⊗ �b · �σ +

∑
i, j

ti jσi ⊗ σ j

]
,

(12)

where �a and �b are the local Bloch vectors, ti j =
Tr[ρAB(σi ⊗ σ j )], and TAB = [ti j] is the correlation matrix. For
the three measurement settings, state ρAB is F3 steerable if and
only if [52]

SAB = Tr
(
T T

ABTAB
)

> 1, (13)

where the superscript T represents the transpose of the corre-
lation matrix TAB. Among the three bipartite reduced states of
a three-qubit state ρABC , Smax(ρABC ) is defined as the one with
the maximum steering inequality violation

S (ρABC ) = max {SAB,SAC,SBC}. (14)

III. GMC VERSUS GGM

The exact relation between the GMC and GGM for three-
qubit states is derived in this section.

Theorem 1. For a three-qubit pure state |ψ〉, the GGM and
GMC satisfy the following relation:

[2G(|ψ〉) − 1]2 + C(|ψ〉)2 = 1, (15)

where 0 � G(|ψ〉) � 1/2 and 0 � C(|ψ〉) � 1.
Proof. For a three-qubit pure state |ψ〉, the GGM is given

by

G(|ψ〉) = 1 − max{λ1, λ3, λ5} = min{λ2, λ4, λ6}, (16)

where λ1, λ3, and λ5 are the bigger eigenvalues of the reduced
density matrices ρA, ρB, and ρC , respectively, and λ2, λ4, and
λ6 are the smaller ones. The second equation is obtained from
the trace condition of the reduced density matrices,

λ1 + λ2 = 1, λ3 + λ4 = 1, λ5 + λ6 = 1. (17)

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

C(|ψ )

G(
|ψ

)

FIG. 1. Exact functional relation between the GGM G(|ψ〉) and
the GMC C(|ψ〉) for 105 Haar randomly generated three-qubit pure
states. The x and y axes are dimensionless.

If we assume that

λ2 � λ4, λ2 � λ6, (18)

then we can get the GGM of the state |ψ〉 as

G(|ψ〉) = λ2. (19)

The GMC of three-qubit pure states is given by

C(|ψ〉) = min
i

√
2
[
1 − Tr

(
ρ2

i

)]
, (20)

where i ∈ {A, B,C} and Tr(ρ2
i ) is the purity of the reduced

density matrices. It can be calculated as

Tr
(
ρ2

A

)=λ2
1+λ2

2, Tr
(
ρ2

B

)=λ2
3+λ2

4, Tr
(
ρ2

C

)=λ2
5+λ2

6.

(21)

From Eqs. (17), (18), and (21), we can show that (see Ap-
pendix A)

Tr
(
ρ2

A

)
� Tr

(
ρ2

B

)
, Tr

(
ρ2

A

)
� Tr

(
ρ2

C

)
. (22)

This gives

C(|ψ〉) =
√

2
[
1 − Tr

(
ρ2

A

)]
. (23)

From Eqs. (17), (19), (21), and (23), we can finally obtain the
relation between the GGM and GMC as Eq. (15). The above
relation also holds if we assume λ4 or λ6 is the smallest one
among the eigenvalues λ2, λ4, and λ6. �

In Fig. 1, we plot the exact functional relation between the
GGM and GMC for 105 Haar randomly generated three-qubit
pure states [60]. The results show that the GGM is one quarter
of an elliptic curve with respect to the GMC, whose center
point is located at (0,0.5). The minor axis of the ellipse lies at
the longitudinal axis whose value is 1, and the major axis has
a value of 2.

With Theorem 1, we can prove the following corollary.
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Corollary 1. For a three-qubit mixed state ρ, the relation
between the GGM and GMC is

[2G(ρ) − 1]2 + C(ρ)2 � 1, (24)

where 0 � G(ρ) � 1/2 and 0 � C(ρ) � 1.
Proof. For the three-qubit pure state, the functional relation

in Eq. (15) can be rewritten as

G(|ψ〉) = 1

2
(1 −

√
1 − C(|ψ〉)2) = H (C(|ψ〉)). (25)

It can be found that the function H is monotonic within the
definition domain, and it is convex with respect to C(|ψ〉).
For a mixed state ρ, both G(ρ) and C(ρ) are defined by the
infimum over all feasible decompositions. In fact, they share
the same optimal decomposition

∑
j p j |ψ j〉〈ψ j | because of

the monotonic functional relation between them. Hence, from
Eqs. (3) and (5), we have

H[C(ρ)] = H

[∑
j

p jC(ψ j )

]
�

∑
j

p jH[C(ψ j )]

=
∑

j

p jG(ψ j ) = G(ρ). (26)

Finally, we can obtain the relation in Eq. (24). �

IV. GENUINE TRIPARTITE ENTANGLEMENT
VERSUS FIRST-ORDER COHERENCE

In this section, we present the intrinsic relations between
first-order coherence and genuine tripartite entanglement in-
cluding the GMC and concurrence fill for three-qubit states.
These correlative relations may deepen the understanding of
the interconversions among coherence and different measures
of quantum correlations in the framework of QRTs.

In order to express these relations in a more explicit
manner, here, we introduce three boundary states with a
single parameter. The first one is the generalized Greenberger-
Horne-Zeilinger (GHZ) state, which can exhibit the maximum
first-order coherence value for a fixed amount of genuine
tripartite entanglement, i.e.,

|ψ〉α = cos α|i, j, k〉 + sin α|ī, j̄, k̄〉, (27)

where i, j, k ∈ {0, 1} and the overbar means taking the oppo-
site value. Since their performances are equivalent, we take
the following states as an example in the calculation:

|ψ〉α = cos α|000〉 + sin α|111〉. (28)

The second boundary state is a single-parameter family of
three-qubit pure states with

|ψ〉m = |000〉 + m(|010〉 + |101〉) + |111〉√
2 + 2m2

, (29)

where m ∈ [0, 1]. For m ∈ [0, 1), the state belongs to the GHZ
class, and the state belongs to the W class when m = 1. Inter-
estingly, this class of state is also regarded as the maximally
steering inequality violating states [53], maximally Bell in-
equality violating states [61], and the maximally dense coding
capable states [62].

The third one is a single-parameter family of separable
three-qubit pure states which is located in the upper bound-
ary of the relation between the maximum steering inequality
violation and first-order coherence. It is given by

|ψ〉θ = |i〉(cos θ | j, k〉 + sin θ | j̄, k̄〉), (30)

where i, j, k ∈ {0, 1} and |i〉 also can represent the second or
third qubit. We choose the following states as an example:

|ψ〉θ = cos θ |001〉 + sin θ |100〉. (31)

Note that the above three boundary states always form a trilat-
eral region in the investigation of the unification of different
measures of quantum resources in which all three-qubit pure
states will be included.

A. First-order coherence versus the GMC

The trade-off relation between first-order coherence and
the GMC for three-qubit states is derived in this section.

Theorem 2. If a three-qubit pure state |ψ〉 has the same
value of the GMC with boundary states |ψ〉α and |ψ〉m, the
first-order coherence of these three states satisfies the ordering
D(|ψ〉m) � D(|ψ〉) � D(|ψ〉α ). The trade-off relation of the
GMC and first-order coherence is given by

C(|ψ〉)2 + D(|ψ〉)2 � 1,

C(|ψ〉)2 + 3D(|ψ〉)2 � 1. (32)

Proof. For state |ψ〉, from Eqs. (9) and (10), the square of
its first-order coherence can be obtained as

D(|ψ〉)2 = 2
3

[
Tr

(
ρ2

A

) + Tr
(
ρ2

B

) + Tr
(
ρ2

C

)] − 1. (33)

Assuming that

Tr
(
ρ2

A

)
� Tr

(
ρ2

B

)
, Tr

(
ρ2

A

)
� Tr

(
ρ2

C

)
, (34)

we can obtain

C(|ψ〉)2 = 2
[
1 − Tr

(
ρ2

A

)]
. (35)

From this inequality,

Tr
(
ρ2

B

) + Tr
(
ρ2

C

)
� 2Tr

(
ρ2

A

)
, (36)

we can see that (Appendix B 1)

2
[
1−Tr

(
ρ2

A

)]+ 2
3

[
Tr

(
ρ2

A

)+Tr
(
ρ2

B

)+Tr
(
ρ2

C

)]−1 � 1. (37)

Therefore, for state |ψ〉, substituting Eqs. (33) and (35) into
Eq. (37), we get the upper boundary of the relation between
the GMC and first-order coherence,

C(|ψ〉)2 + D(|ψ〉)2 � 1. (38)

Based on the fact that Tr(ρ2
i ) � 1

2 , where i ∈ {A, B,C}, we
have

Tr
(
ρ2

B

) + Tr
(
ρ2

C

)
� 1. (39)

By this inequality, we can prove that (Appendix B 2)

2
[
1−Tr

(
ρ2

A

)]+2
[
Tr

(
ρ2

A

)+Tr
(
ρ2

B

)+Tr
(
ρ2

C

)]−3 � 1. (40)

Similarly, we obtain the lower boundary of the relation be-
tween the GMC and first-order coherence as

C(|ψ〉)2 + 3D(|ψ〉)2 � 1. (41)
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|ψ
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|ψ α

|ψ m

|ψ θ

FIG. 2. Trade-off relation between the first-order coherence
D(|ψ〉) and the GMC C(|ψ〉) for 105 Haar randomly generated
three-qubit pure states. The red squares lie at the upper boundary
with state |ψ〉α; state |ψ〉m, denoted by blue circles, is located at the
lower boundary, and the green diamonds represent state |ψ〉θ , which
lies at the y axis. The x and y axes are dimensionless.

Moreover, the relations are also valid if we assume Tr(ρ2
B) or

Tr(ρ2
C ) is the largest one among the three purities of subsys-

tems ρA, ρB, and ρC .
The GMC and first-order coherence of states |ψ〉α and

|ψ〉m, from Eqs. (10) and (20), are given by

C(|ψ〉α ) =
√

2(1 − cos4 α − sin4 α), (42)

D(|ψ〉α ) = |cos 2α|, (43)

C(|ψ〉m) = 1 − m2

1 + m2
, (44)

D(|ψ〉m) = 2m√
3(1 + m2)

, (45)

respectively. We can find that

C(|ψ〉α )2 + D(|ψ〉α )2 = 1, (46)

C(|ψ〉m)2 + 3D(|ψ〉m)2 = 1, (47)

which imply that states |ψ〉α and |ψ〉m are the upper and lower
boundary states. �

In Fig. 2, we plot how the first-order coherence changes
with respect to the GMC for 105 Haar randomly generated
three-qubit pure states. The red squares donating state |ψ〉α
are located at the upper boundary, which satisfies the relation
between first-order coherence and the GMC in Eq. (46). The
blue circles at the lower boundary indicate that the two quan-
tum resources of state |ψ〉m fulfill the relation in Eq. (47).
The 105 Haar randomly generated three-qubit pure states are
included in the trilateral region formed by states |ψ〉α , |ψ〉m,
and |ψ〉θ , meaning their first-order coherence and GMC obey
the inequalities in Eq. (32). Moreover, we find the first-order
coherence increases (decreases) with the decrease (increase)

of the GMC, showing a trade-off. rgb]0.00,0,0 The trade-off
relation can be generalized to mixed states by the convexity
properties of the first-order coherence and GMC.

Corollary 2. For an arbitrary three-qubit mixed state ρ, the
trade-off relation of the GMC and first-order coherence is as
follows:

C(ρ)2 + D(ρ)2 � 1. (48)

The upper boundary states are still states |ψ〉α .
Proof. For subsystem ρA of a three-qubit mixed state ρABC ,

the first-order coherence is given by

D(ρA) =
√

2 Tr
(
ρ2

A

) − 1

=
√

2
(
λ2

1 + λ2
2

) − 1

= |2λ1 − 1|, (49)

which is a convex function. Similarly, D(ρB) and D(ρC )
are also convex functions. The first-order coherence of state
ρABC , as the vector composition of D(ρi ) and h(x1, x2, x3) =
[(x2

1 + x2
2 + x2

3 )/3]1/2, is also a convex function [63]. In addi-
tion, Eq. (38) can be rewritten as

D(|ψ〉) �
√

1 − C(|ψ〉)2. (50)

Let U [C(|ψ〉)] =
√

1 − C(|ψ〉)2; then it can be found that U is
a concave and monotonically decreasing function with respect
to C(|ψ〉). Then, we get

D(ρ) �
∑

i

piD(ψi ) �
∑

i

pi

√
1 − C(ψi )2

�

√√√√1 −
[∑

i

piC(ψi )

]2

�
√

1 − C(ρ)2, (51)

i.e.,

C(ρ)2 + D(ρ)2 � 1. (52)

�
To summarize, if the two measures of quantum resources
satisfy the following three conditions, the trade-off relation
between the two quantum resources for pure states can be
generalized to the case in mixed states: (i) the two measures
are convex functions; (ii) the value of one measure is less than
or equal to the function ξ , which depends on another mea-
sure; and (iii) ξ is a concave and monotonically decreasing
function.

B. First-order coherence versus concurrence fill

The trade-off relation between first-order coherence and
concurrence fill for three-qubit pure states is derived in this
section.

Theorem 3. If a three-qubit pure state |ψ〉 has the same
value of concurrence fill with states |ψ〉α and |ψ〉m, the first-
order coherence of these three states satisfies the ordering
D(|ψ〉m) � D(|ψ〉) � D(|ψ〉α ). The trade-off relation of the
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concurrence fill and first-order coherence is given by

F (|ψ〉) + D(|ψ〉)2 � 1,

F (|ψ〉)4 + [3D(|ψ〉)21]2[3D(|ψ〉)4−2D(|ψ〉)2−1]�0,

(53)

where 0 � D(|ψ〉) � 1/
√

3 for the second inequality.
rgb]0.00,0,0The first inequality is also valid for the three-qubit
mixed states.

Proof. For state |ψ〉, substituting Eq. (21) into Eq. (33), its
first-order coherence can be written as

D(|ψ〉)2 = 2
3

(
λ2

1 + λ2
2 + λ2

3 + λ2
4 + λ2

5 + λ2
6

) − 1. (54)

From Eqs. (7) and (8), we can get

Q = 2(λ1λ2 + λ3λ4 + λ5λ6). (55)

Then we can obtain the relation between D(|ψ〉) and Q:

D(|ψ〉)2 = 1 − 2
3 Q. (56)

For simplicity, we define C2
A(BC), C2

B(AC), and C2
C(AB) as a, b, and

c, respectively. By the mean-value inequality, we have

(Q − a)(Q − b)(Q − c) �
(

Q

3

)3

. (57)

Note that the summation of three terms on each side of
the inequality is equal to Q. As a result, we find that
(Appendix C 1)[

16
3 Q(Q − a)(Q − b)(Q − c)

]1/4 + 1 − 2
3 Q � 1. (58)

Substituting Eqs. (6) and (56) into Eq. (58), we have

F (|ψ〉) + D(|ψ〉)2 � 1. (59)

On the other hand, from Eq. (56) and the relation
0 � D(|ψ〉) � 1/

√
3, we can obtain 1 � Q � 3/2. Since

0 � a, b, c � 1, we get Q − 1 � Q − a, Q − b, Q −
c � 2 − Q. Thus, using the mean-value inequality,
we have

(2 − Q)(Q − 1)2 � (Q − a)(Q − b)(Q − c). (60)

Consequently, we can see that (Appendix C 2)

16
3 Q(Q − a)(Q − b)(Q − c) + [

3
(
1− 2

3 Q
)−1

]2

× [
3
(
1− 2

3 Q
)2−2

(
1− 2

3 Q
)−1

]
�0. (61)

In a similar way, we have

F (|ψ〉)4+ [3D(|ψ〉)2−1]2[3D(|ψ〉)4−2D(|ψ〉]2−1)�0.

(62)

The concurrence fills of states |ψ〉α and |ψ〉m, from Eq. (6),
are given by

F (|ψ〉α ) = sin2(2α), (63)

F (|ψ〉m)= (1 − m2)[(1 + 6m2+m4)(3+2m2+3m4)]
1/4

31/4(1 + m2)2 .

(64)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

F(|ψ )

D(
|ψ

)

|ψ α

|ψ m

|ψ θ

FIG. 3. Trade-off relation between the first-order coherence
D(|ψ〉) and the concurrence fill F (|ψ〉) for 105 Haar randomly
generated three-qubit pure states. The red squares lie at the upper
boundary with state |ψ〉α; state |ψ〉m, denoted by blue circles, is
located at the lower boundary, and the green diamonds represent state
|ψ〉θ , which lies at the y axis. The x and y axes are dimensionless.

Together with Eqs. (43) and (45), we can obtain the following
relations:

F (|ψ〉α ) + D(|ψ〉α )2 = 1, (65)

F (|ψ〉m)4+(3D(|ψ〉m)2−1)2

× [3D(|ψ〉m)4−2D(|ψ〉m)2−1] = 0, (66)

which imply that states |ψ〉α and |ψ〉m are the upper and lower
boundary states, respectively.

The functional relation in Eq. (59) can be rewritten as

D(|ψ〉) �
√

1 − F (|ψ〉); (67)

the right side of the inequality is a concave and monotonically
decreasing function. On the other hand, concurrence fill is a
convex function under mixing [17]. Like in Eq. (51), we can
obtain

F (ρ) + D(ρ)2 � 1, (68)

where ρ is an arbitrary three-qubit mixed state. �
Figure 3 plots the relation between the first-order coher-

ence and the concurrence fill for 105 Haar randomly generated
three-qubit pure states. We can see that states |ψ〉α (red
squares) and |ψ〉m (blue circles) are located at the upper and
lower boundaries, respectively, which means that their first-
order coherences and concurrence fills satisfy the relations
in Eqs. (65) and (66), respectively. Together with state |ψ〉θ
on the y axis, they form a trilateral region, which includes all
three-qubit pure states. Also, Fig. 3 shows that a trade-off rela-
tion exists between the first-order coherence and concurrence
fill for arbitrary three-qubit pure states.
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V. THE MAXIMUM STEERING INEQUALITY
VIOLATION VERSUS CONCURRENCE FILL

Quantum steering describes an important trait of the quan-
tum world in which one system can immediately affect
another one by local measurements. The concurrence fill was
introduced as a good triangle measure of tripartite entangle-
ment in 2021 and can detect genuine three-qubit entanglement
faithfully [17]. Here, our aim is to study the relation between
the maximum steering inequality violation and concurrence
fill.

Theorem 4. If an arbitrary three-qubit state ρ has the same
value of concurrence fill as state |ψ〉m, the maximum steering
inequality violation of these two states satisfies the order-
ing S (ρ) � S (|ψ〉m). The trade-off relation of the maximum
steering inequality violation and concurrence fill is given by

48F (ρ)4 + [S (ρ) − 3]2[S (ρ) + 1][S (ρ) − 7] � 0. (69)

Proof. Any three-qubit state ρABC can be written as

ρABC = 1

8

[
I ⊗ I ⊗ I + �A · �σ ⊗ I ⊗ I + I ⊗ �B · �σ ⊗ I

+ I ⊗ I ⊗ �C · �σ +
∑

i j

tAB
i j σi ⊗ σ j ⊗ I

+
∑

ik

tAC
ik σi ⊗ I ⊗ σk +

∑
jk

tBC
jk I ⊗ σ j ⊗ σk

+
∑
i jk

tABC
i jk σi ⊗ σ j ⊗ σk

⎤
⎦. (70)

This gives

Tr
(
ρ2

A

) = 1 + �A2

2
, Tr

(
ρ2

BC

) = 1

4
(1 + �B2 + �C2 + SBC ).

(71)

Similarly, we have

Tr
(
ρ2

B

) = 1 + �B2

2
, Tr

(
ρ2

AC

) = 1

4
(1 + �A2 + �C2 + SAC ),

Tr
(
ρ2

C

) = 1 + �C2

2
, Tr

(
ρ2

AB

) = 1

4
(1 + �A2 + �B2 + SAB).

(72)

If ρABC is a pure state, by the Schmidt decomposition,
we have Tr(ρ2

i ) = Tr(ρ2
jk ) for i 	= j 	= k, i, j, k ∈ {A, B,C}.

From Eqs. (71) and (72), we can write SAB as a function of the
purities of the subsystems,

SAB = 4Tr
(
ρ2

C

) − 2Tr
(
ρ2

A

) − 2Tr
(
ρ2

B

) + 1. (73)

Combining the above equation and Eqs. (8), (17), and (21),
we can obtain (Appendix D 1)

SAB = a + b − 2c + 1. (74)

Similarly, we get

SAC = a + c − 2b + 1,

SBC = b + c − 2a + 1. (75)

Assume that the bipartite steering of the subsystem SAB is the
largest one among SAB, SAC , and SBC , i.e., SAB � SAC, SAB �
SBC , Thus, we get the maximum steering inequality violation

S (|ψ〉) = SAB. (76)

From Eqs. (74) and (75), we have a � c, b � c, and 0 �
a + b − 2c � 2. By these constraints, we can show that
(Appendix D 2)

4(Q − a) + 4(Q − b) � 2[2 − (a + b − 2c)]. (77)

Using the mean-value inequality, we get

4(Q − a)4(Q − b) � [2 − (a + b − 2c)]2. (78)

Like in Eq. (77), we can obtain

4(Q − c) � 2 + a + b − 2c,

4Q � 6 − (a + b − 2c). (79)

As a consequence, we have

4(Q − a)4(Q − b)4(Q − c)4Q � [2 − (a + b − 2c)]2

× (2 + a + b − 2c)[6 − (a + b − 2c)].
(80)

From this inequality, we can see that (Appendix D 3)

48 × 16
3 Q(Q − a)(Q − b)(Q − c)+(a+b−2c+1−3)2

(a+b−2c+1+1)(a+b−2c+1−7) � 0. (81)

Finally, substituting Eqs. (6) and (79) into Eq. (81), we ob-
tain the trade-off relation of the maximum steering inequality
violation and concurrence fill for three-qubit pure states as

48F (|ψ〉)4 + [S (|ψ〉) − 3]2[S (|ψ〉) + 1][S (|ψ〉) − 7] � 0.

(82)

The trade-off relation also holds for the situations in which
the bipartite steering SAC or SBC is the largest one among SAB,
SAC , and SBC . Equation (82) can be denoted by an equivalent
form with

F (|ψ〉) �
[− 1

48 [S (|ψ〉) − 3]2[S (|ψ〉) + 1][S (|ψ〉) − 7]
]1/4

,

(83)

whose right side is still a concave and monotonically decreas-
ing function with respect to S (|ψ〉).

If ρABC is a mixed state, the maximum steering inequality
violation is also a convex function [52]. By a derivation simi-
lar to Eq. (51), we find that Eq. (69) holds for the three-qubit
mixed state.

The maximum steering inequality violation of state |ψ〉m,
from Eq. (14), can be calculated as

S (|ψ〉m) = 1 + 10m2 + m4

(1 + m2)2 . (84)

Together with Eq. (64), we can obtain

48F (|ψ〉m)4+[S (|ψ〉m)−3]2[S (|ψ〉m)+1][S (|ψ〉m)−7] = 0,

(85)

which implies that state |ψ〉m is the upper boundary states. �
In Fig. 4, we plot the relation between the maximum steer-

ing inequality violation and the concurrence fill for 105 Haar
randomly generated three-qubit pure states. We can see that
the state |ψ〉m is located at the upper boundary (blue circles),
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FIG. 4. Trade-off relation between the maximum steering in-
equality violation S(|ψ〉) and the concurrence fill F (|ψ〉) for 105

Haar randomly generated three-qubit pure states. The blue circles at
the upper boundary represent sate |ψ〉m, and states |ψ〉α and |ψ〉θ

are located at the x and y axes, respectively. The x and y axes are
dimensionless.

suggesting that its maximum steering inequality violation and
concurrence fill satisfy Eq. (85). In particular, states |ψ〉α and
|ψ〉θ are on the x and y axes, respectively.

VI. THE MAXIMUM STEERING INEQUALITY
VIOLATION VERSUS FIRST-ORDER COHERENCE

The close relation between the maximum steering inequal-
ity violation and first-order coherence for three-qubit pure
states is derived in this section.

Theorem 5. If a three-qubit pure state |ψ〉 has the same
value of first-order coherence as state |ψ〉m or |ψ〉θ , the maxi-
mum steering inequality violation of these three states satisfies
the ordering S (|ψ〉) � S (|ψ〉m) or S (|ψ〉) � S (|ψ〉θ ). The
relation between the maximum steering inequality violation
and first-order coherence is given by

S (|ψ〉) − 6D(|ψ〉)2 � 1, 0 � D(|ψ〉) <
1√
3
,

S (|ψ〉) + 3D(|ψ〉)2 � 4,
1√
3

� D(|ψ〉) � 1. (86)

Proof. For a three-qubit pure state |ψ〉, we assume that
S (|ψ〉) = SAB. Like in Eq. (39), we have

Tr
(
ρ2

A

) + Tr
(
ρ2

B

)
� 1. (87)

By this inequality, one can show that (see Appendix E 1)

4Tr
(
ρ2

C

) − 2Tr
(
ρ2

A

) − 2Tr
(
ρ2

B

) + 1

− 6
{

2
3

[
Tr

(
ρ2

A

) + Tr
(
ρ2

B

) + Tr
(
ρ2

C

)
] − 1

}
� 1. (88)
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1

2

3

D(|ψ )

S(
|ψ

)

|ψ α

|ψ m

|ψ θ

FIG. 5. The close relation between the maximum steering in-
equality violation S(|ψ〉) and the first-order coherence D(|ψ〉) for
105 Haar randomly generated three-qubit pure states. States |ψ〉m and
|ψ〉θ are located at the left and right upper boundaries, respectively,
and state |ψ〉α is on the x axis. The x and y axes are dimensionless.

From Eqs. (33) and (73), we can obtain

S (|ψ〉) − 6D(|ψ〉)2 � 1. (89)

On the other hand, from the inequality Tr(ρ2
C ) � 1, we can

find that (Appendix E 2)

4Tr
(
ρ2

C

) − 2Tr
(
ρ2

A

) − 2Tr
(
ρ2

B

) + 1

+ 3
{

2
3

[
Tr

(
ρ2

A

) + Tr
(
ρ2

B

) + Tr
(
ρ2

C

)] − 1
}

� 4; (90)

then we have

S (|ψ〉) + 3D(|ψ〉)2 � 4. (91)

The close relation in Eq. (86) holds when S (|ψ〉) = SAC or
S (|ψ〉) = SBC .

The maximum steering inequality violation and first-order
coherence of the state |ψ〉θ , from Eqs. (10) and (14), are

S (|ψ〉θ ) = 2 − cos(4θ ), (92)

D(|ψ〉θ ) =
√

2 + cos(4θ )

3
. (93)

Together with Eqs. (45) and (84), we can obtain

S (|ψ〉m) − 6D(|ψ〉m)2 = 1, (94)

S (|ψ〉θ ) + 3D(|ψ〉θ )2 = 4, (95)

which imply that states |ψ〉m are the upper boundary states for
0 � D(|ψ〉) < 1/

√
3 and states |ψ〉θ are the upper boundary

states for 1/
√

3 � D(|ψ〉) � 1. �
Figure 5 plots the relation between the maximum steer-

ing inequality violation and the first-order coherence for 105

Haar randomly generated three-qubit pure states. The max-
imum steering inequality violation increases at first and then
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FIG. 6. The close relation between the maximum steering in-
equality violation S(ρ ) and the first-order coherence D(ρ ) for
105 Haar randomly generated three-qubit mixed states. The state
|ψ〉θ is located at the upper right boundary. The x and y axes are
dimensionless.

decreases with the increase of first-order coherence. The max-
imum steering inequality violation approaches its maximum
of 3 when the first-order coherence gets close to the critical
value 1/

√
3. States |ψ〉m and |ψ〉θ are located at the upper

left and right boundaries, respectively. The 105 Haar randomly
generated three-qubit pure states are contained in the trilateral
region.

Corollary 3. For the three-qubit mixed state ρ, the trade-off
relation between the maximum steering inequality violation
and first-order coherence is

S (ρ) + 3D(ρ)2 � 4, (96)

with 1/
√

3 � D(ρ) � 1.
We plot the relation between the maximum steering in-

equality violation and the first-order coherence for 105 Haar
randomly generated three-qubit mixed states in Fig. 6. We
can see that state |ψ〉θ is located in the upper right bound-
ary (green diamonds), which is the same as in Fig. 5. For
1/

√
3 � D(ρ) � 1, the bound shows that there is a trade-off

relation between the maximum steering inequality violation
and the first-order coherence for the three-qubit mixed states.

VII. SUMMARY

In summary, we proposed a general framework for unifying
coherence and different measures of quantum correlations,
including genuine tripartite entanglement and quantum steer-
ing, for arbitrary tripartite entanglement states. First of all, a
one-to-one mapping (equality) exists between the GGM and
GMC for three-qubit pure states. Subsequently, the trade-off
relations between first-order coherence and genuine tripar-
tite entanglement were established for the three-qubit states,
where the genuine tripartite entanglement is quantified by the
GGM, GMC, and concurrence fill. For the pure states, the
results showed that the first-order coherence is constrained

to a range formed by two inequalities for a fixed amount of
genuine tripartite entanglement. The upper boundary states
of the trade-off relation are state |ψ〉α , which possesses
the maximum first-order coherence value, and |ψ〉m is the
lower boundary state. However, only the upper boundary and
the corresponding inequality are still valid for mixed states.
Moreover, we investigate the trade-off relation between the
maximum steering inequality violation and concurrence fill.
Differently, in this case, the |ψ〉m state takes the maximum
steering inequality violation for a given concurrence fill. In
addition, we presented the close relation between the maxi-
mum steering inequality violation and first-order coherence.
For pure states, it was found that the upper boundary of
the maximum steering inequality violation increases at first
and then decreases with the increase of first-order coherence.
When a critical value of 1/

√
3 of the first-order coherence

is reached, the corresponding maximum steering inequality
violation is its maximum, 3. The upper left boundary state
is state |ψ〉m, and the upper right state is another boundary
state, |ψ〉θ . Both of them have the maximum steering inequal-
ity violation for a fixed value of first-order coherence. But
only the upper right boundary and corresponding inequality
can be generalized to mixed states. For these relations, the
bounds allow us to quantify the maximum (minimum) value
of one for a given value of the other. Studying the distribution
and transformation of coherence and quantum correlations in
QRTs is of great significance.
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APPENDIX A: SUPPLEMENTARY PROOF
OF GMC VERSUS GGM

Here, we give the proof of Eq. (22). From the Eqs. (17) and
(21), we can obtain

Tr
(
ρ2

A

) = λ2
1 + λ2

2 = 2λ2
2 − 2λ2 + 1. (A1)

Similarly, we get

Tr
(
ρ2

B

) = 2λ2
4 − 2λ4 + 1, Tr

(
ρ2

C

) = 2λ2
6 − 2λ6 + 1.

(A2)

Note that the right-hand sides of these equations take the same
form as the function with 2λ2 − 2λ + 1, which decreases
monotonically in the interval where λ ∈ [0, 0.5]. Since λ2, λ4,
and λ6 are the smaller eigenvalues of the reduced density ma-
trices ρA, ρB, and ρC , respectively, we have 0 � λ2, λ4, λ6 �
0.5. Assuming that λ2 � λ4 and λ2 � λ6, we get

Tr
(
ρ2

A

)
� Tr

(
ρ2

B

)
, Tr

(
ρ2

A

)
� Tr

(
ρ2

C

)
. (A3)

In addition, we can obtain

1
2 � Tr

(
ρ2

i

)
� 1, (A4)

where i ∈ {A, B,C}.
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APPENDIX B: SUPPLEMENTARY PROOF OF
FIRST-ORDER COHERENCE VERSUS GMC

1. Proof of Equation (37)

To begin with, considering the inequality

Tr
(
ρ2

B

) + Tr
(
ρ2

C

)
� 2Tr

(
ρ2

A

)
, (B1)

we have

− 4
3 Tr

(
ρ2

A

) + 2
3 Tr

(
ρ2

B

) + 2
3 Tr

(
ρ2

C

)
� 0. (B2)

Then, we can obtain

1 − 2Tr
(
ρ2

A

) + 2
3 Tr

(
ρ2

A

) + 2
3 Tr

(
ρ2

B

) + 2
3 Tr

(
ρ2

C

)
� 1. (B3)

Finally, we get

2
[
1−Tr

(
ρ2

A

)]+ 2
3

[
Tr

(
ρ2

A

)+Tr
(
ρ2

B

)+Tr
(
ρ2

C

)]−1 � 1. (B4)

2. Proof of Equation (40)

To begin with, from the inequality

Tr
(
ρ2

B

) + Tr
(
ρ2

C

)
� 1, (B5)

we have

−2Tr
(
ρ2

A

)+2Tr
(
ρ2

A

)+2Tr
(
ρ2

B

) + 2Tr
(
ρ2

C

)
� 2. (B6)

Then, we can see that

2 − 2Tr
(
ρ2

A

)+2Tr
(
ρ2

A

)+2Tr
(
ρ2

B

) + 2Tr
(
ρ2

C

) − 3 � 1. (B7)

Finally, we get

2
[
1−Tr

(
ρ2

A

)]+2
[
Tr(ρ2

A)+Tr(ρ2
B)+Tr

(
ρ2

C

)]−3 � 1. (B8)

APPENDIX C: SUPPLEMENTARY PROOF OF
FIRST-ORDER COHERENCE VERSUS

CONCURRENCE FILL

1. Proof of Equation (58)

Based on the inequality

(Q − a)(Q − b)(Q − c) �
(

Q

3

)3

, (C1)

we have

16

3
Q(Q − a)(Q − b)(Q − c) � 16

(
Q

3

)4

. (C2)

Then, we get[
16
3 Q(Q − a)(Q − b)(Q − c)

]1/4 � 2
3 Q. (C3)

Finally, we obtain[
16
3 Q(Q − a)(Q − b)(Q − c)

]1/4 + 1 − 2
3 Q � 1. (C4)

2. Proof of Equation (61)

Using the inequality

(2 − Q)(Q − 1)2 � (Q − a)(Q − b)(Q − c), (C5)

we have
16
3 Q(Q − a)(Q − b)(Q − c) � 16

3 (Q − 1)2(2 − Q)Q

= − 1
3 (2Q − 2)24(Q − 2)Q

= − 1
3 (2 − 2Q)2(4Q2 − 8Q)

= − 1
3 (3 − 2Q − 1)2(4Q2 − 12Q + 9 + 4Q − 9)

= − 1
3

[
3
(
1 − 2

3 Q
) − 1

]2[
(3 − 2Q)2 − 6 + 4Q − 3

]
=−[

3
(
1− 2

3 Q
)−1

]2[
3
(
1− 2

3 Q
)2−2

(
1− 2

3 Q
)−1

]
. (C6)

Finally, we obtain

16
3 Q(Q − a)(Q − b)(Q − c) + [

3
(
1− 2

3 Q
)−1

]2

× [
3
(
1− 2

3 Q
)2−2

(
1− 2

3 Q
)−1

]
�0. (C7)

APPENDIX D: SUPPLEMENTARY PROOF OF THE
MAXIMUM STEERING INEQUALITY VIOLATION

VERSUS CONCURRENCE FILL

1. Proof of Equation (74)

From Eq. (8), we have

a ≡ C2
A(BC) = 4 det ρA = 4λ1λ2. (D1)

Similarly, we find

b = 4λ3λ4, c = 4λ5λ6. (D2)

Using Eq. (73), we obtain

SAB = 4Tr
(
ρ2

C

) − 2Tr
(
ρ2

A

) − 2Tr
(
ρ2

B

) + 1

= 4
(
λ2

5 + λ2
6

) − 2
(
λ2

1 + λ2
2

) − 2
(
λ2

3 + λ2
4

) + 1

= 4(1 − 2λ5λ6) − 2(1 − 2λ1λ2) − 2(1 − 2λ3λ4) + 1

= 4λ1λ2 + 4λ3λ4 − 8λ5λ6 + 1

= a + b − 2c + 1. (D3)

2. Proof of Equation (77)

Given

Q = 1
2 (a + b + c), (D4)

where 0 � a, b, c � 1, we obtain a + b � 2. Then, we have

4c � 4 − 2a − 2b + 4c. (D5)

This gives

2b + 2c − 2a + 2a + 2c − 2b � 4 − 2(a + b − 2c). (D6)

The above equation can be rewritten as

4

(
a

2
+ b

2
+ c

2
− a

)
+ 4

(
a

2
+ b

2
+ c

2
− b

)

� 2[2 − (a + b − 2c)]. (D7)

Therefore, we obtain

4(Q − a) + 4(Q − b) � 2[2 − (a + b − 2c)]. (D8)

3. Proof of Equation (81)

By using the inequality

4(Q − a)4(Q − b)4(Q − c)4Q

� [2 − (a + b − 2c)]2(2 + a + b − 2c)

× [6 − (a + b − 2c)], (D9)
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we have

162Q(Q − a)(Q − b)(Q − c)

� −(a + b − 2c − 2)2(a + b − 2c + 2)(a + b − 2c − 6)

= −(a + b − 2c + 1 − 3)2(a + b − 2c + 1 + 1)

× (a + b − 2c + 1 − 7). (D10)

Thus, we get

48 × 16
3 Q(Q − a)(Q − b)(Q − c) + (a + b − 2c + 1 − 3)2

× (a + b − 2c + 1 + 1)(a + b − 2c + 1 − 7) � 0.

(D11)

APPENDIX E: SUPPLEMENTARY PROOF OF THE
MAXIMUM STEERING INEQUALITY VIOLATION

VERSUS FIRST-ORDER COHERENCE

1. Proof of Equation (88)

Based on the inequality

Tr(ρ2
A) + Tr

(
ρ2

B

)
� 1, (E1)

we have

−6Tr
(
ρ2

A

) − 6Tr
(
ρ2

B

) + 6 � 0. (E2)

Then, we can see that

4Tr
(
ρ2

C

) − 2Tr
(
ρ2

A

) − 2Tr
(
ρ2

B

) − 4Tr
(
ρ2

A

)
− 4Tr

(
ρ2

B

) − 4Tr
(
ρ2

C

) + 6 � 0. (E3)

Finally, we obtain

4Tr
(
ρ2

C

) − 2Tr
(
ρ2

A

) − 2Tr
(
ρ2

B

) + 1

− 6
{

2
3 [Tr

(
ρ2

A

) + Tr
(
ρ2

B

) + Tr
(
ρ2

C

)
] − 1

}
� 1. (E4)

2. Proof of Equation (90)

From the inequality

Tr
(
ρ2

C

)
� 1, (E5)

we have

6Tr
(
ρ2

C

) − 2Tr
(
ρ2

A

) − 2Tr
(
ρ2

B

) + 2Tr
(
ρ2

A

) + 2Tr
(
ρ2

B

)
� 6.

(E6)

Then, we can see that

4Tr
(
ρ2

C

) − 2Tr
(
ρ2

A

) − 2Tr
(
ρ2

B

) + 1 + 2Tr
(
ρ2

A

)
+ 2Tr

(
ρ2

B

) + 2Tr
(
ρ2

C

) − 3 � 4. (E7)

Finally, we obtain

4Tr
(
ρ2

C

) − 2Tr
(
ρ2

A

) − 2Tr
(
ρ2

B

) + 1

+ 3
{

2
3

[
Tr

(
ρ2

A

) + Tr
(
ρ2

B

) + Tr
(
ρ2

C

)] − 1
}

� 4. (E8)
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and B. Dakić, Nat. Phys. 15, 935 (2019).

[57] D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273 (2002).
[58] G. K. Brennen, Quantum Inf. Comput. 3, 619 (2003).
[59] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61,

052306 (2000).
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