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Steering-based randomness certification with squeezed states and homodyne measurements

Marie Ioannou,1,* Bradley Longstaff ,2,* Mikkel V. Larsen,2 Jonas S. Neergaard-Nielsen ,2 Ulrik L. Andersen,2

Daniel Cavalcanti,3,4 Nicolas Brunner,1 and Jonatan Bohr Brask 2

1Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
2Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, Fysikvej,

2800 Kongens Lyngby, Denmark
3Bitflow, Carrer de Piquer 23, 08004 Barcelona, Spain

4Algorithmiq Ltd, Kanavakatu 3 C, FI-00160 Helsinki, Finland

(Received 7 February 2022; accepted 22 September 2022; published 13 October 2022)

High-quality randomness, certified to be unpredictable by eavesdroppers, is key to secure information
processing. Quantum mechanics enables randomness certification with minimal trust in the devices used, by
exploiting quantum nonlocality. However, such full device independence is challenging to implement. We present
a scheme for quantum randomness certification based on quantum steering. The protocol is one-sided device
independent, providing high security, but requires only states and measurements that are simple to realize on
quantum optics platforms—squeezed vacuum states and homodyne detection. This ease of implementation is
demonstrated experimentally and implies that gigahertz random bit rates should be attainable with current
technology. Furthermore, our scheme is immune to the detection loophole and represents the closest to full
device independence that can be achieved using purely Gaussian states and measurements.
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I. INTRODUCTION

Randomness is an important resource in science and
technology for simulations and information processing. In
particular, random numbers that are unpredictable by any
adversary are key to cryptographic security [1]. Random
numbers can be generated from hard-to-predict physical pro-
cesses, and pseudorandom-number generators, implemented
in software, can expand short random seeds into longer
sequences that appear random. However, classical physics
is fundamentally deterministic, as are software algorithms.
Therefore guaranteeing security based on classical random-
number generation requires assumptions about the knowledge
and computational resources available to potential eavesdrop-
pers. Such assumptions may be difficult to justify as the
adversaries might not be known.

Randomness generation based on quantum physics pro-
vides an alternative free of this limitation [2–4]. For quantum
systems, there exist measurements whose outcomes cannot
be predicted even given a complete quantum-mechanical de-
scription of the system and measurement device. This implies
that security can be guaranteed based only on the user’s own
knowledge, as long as the adversary is bound by quantum
mechanics. That is, the user need only trust their own charac-
terization of the randomness-generation device. For example,
randomness can be generated by detecting the output path of
a single photon impinging on a beam splitter [5]. When the
beam splitting ratio and other characteristics of the setup are
known, the unpredictability of the outcome can be certified
relative to any quantum adversary, regardless of their compu-
tational power or available resources.

*These authors contributed equally to this work.

Remarkably, exploiting the nonlocality [6,7] of quantum
mechanics allows randomness certification even with almost
uncharacterized devices. In setups violating a Bell inequal-
ity, randomness can be certified device independently, i.e.,
without making any assumptions about the inner workings
of the devices used [8,9]. This represents a very strong
form of security, as the devices can be largely untrusted,
and it has been demonstrated in several experiments [9–14].
However, it is also more challenging to implement than the
device-dependent approach because loophole-free Bell viola-
tion requires low noise and high detection efficiencies. This
motivates the search for trade-offs, where full device indepen-
dence is relaxed in order to gain ease of implementation, while
still maintaining high security. Many works have explored this
semi-device-independent setting in prepare-and-measure se-
tups without nonlocality, by allowing source or measurement
devices to be partially characterized; see, e.g., Refs. [15–29].
An alternative approach is to exploit Einstein-Podolsky-Rosen
steering [30–32], which is a form of nonlocality intermediate
between full Bell nonlocality and quantum entanglement. In a
bipartite steering scenario, the device of one party is untrusted
while that of the other party is characterized. This setting is
thus one-sided device independent and has been considered
for applications in quantum cryptography [33,34] and ran-
domness generation [35–37]. While experiments on quantum
key distribution have been demonstrated [38,39], the practical
implementation of these ideas for quantum random-number
generation (QRNG) is mostly unexplored [40,41].

Here, we develop a steering-based quantum randomness-
certification protocol that can be implemented with simple
light sources and measurements. The setup requires only
squeezed light and homodyne detection and can tolerate real-
istic levels of loss and noise. It is thus readily implementable
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FIG. 1. Setup for steering test and randomness certification using Gaussian states and measurements, consisting of a source of squeezed,
entangled states and two parties, Alice and Bob, who perform homodyne measurements. The source emits either a two-mode squeezed vacuum
or a single-mode squeezed vacuum split on a balanced beam splitter. Alice measures one of two conjugate quadratures, according to a binary
input x, and applies periodic binnings into oA outcomes a. Bob either performs full state tomography or measures mB different quadratures,
according to input y, and applies a nonperiodic binning into oB outcomes b. For certifying steering and randomness, Alice’s device and
the source state are untrusted, while Bob’s device is assumed to be well characterized. Randomness is extracted from Alice’s measurement
outcome, for one of her inputs.

with existing technology, which we demonstrate by apply-
ing our protocol to data from the experiment of Ref. [42].
Randomness is certified, and we estimate that a rate of 70
kbits/s could be extracted. In a dedicated setup, significantly
higher rates are expected. Fast squeezing sources, operating
in the terahertz range, and homodyne detection in the giga-
hertz range have been realized [43]. Combined with a higher
entropy per round, this should enable secret bit rates in the gi-
gahertz range. We note that the scheme is free of any detection
loophole, because (unlike single-photon detection) homodyne
detection always provides an output and no data are discarded.
Furthermore, the setup uses only Gaussian states and measure-
ments. Bell nonlocality, and hence full device independence,
is impossible with only Gaussian resources (this follows from
the positivity of the Gaussian Wigner functions and Fine’s
theorem [44]). Thus our protocol in this sense provides the
closest to device independence one may hope for in this
setting.

Our work exploits entangled squeezed states, which are
infinite dimensional, and homodyne measurements, which
have continuous outcomes. Steering has been demonstrated
with such resources [45–50]. However, for quantifying ran-
domness it is convenient to work with measurements with a
finite number of outcomes, where powerful methods based on
semidefinite programming can be applied [51]. This can be
achieved by coarse-graining the homodyne outcomes into a
finite number of bins. To guide the choice of binning, we note
that, as the dimension grows, a bipartite maximally entangled
state in finite dimensions approaches a two-mode infinitely
squeezed vacuum state. In finite dimensions, Skrzypczyk
and Cavalcanti [37] found that optimal steering-based ran-
domness generation is achieved by performing mutually
unbiased measurements on maximally entangled states. The
optimal measurements are conjugate, i.e., related by a Fourier
transform. This suggests that randomness can be obtained
by measurements of conjugate quadratures on two-mode
squeezed states. In Ref. [52], Tasca et al. identified coarse
grainings of homodyne measurements that preserve mutual
unbiasedness. One may therefore expect that adopting this
binning scheme will enable steering and randomness cer-

tification even at finite squeezing. Our results confirm this
intuition.

II. CERTIFIED RANDOMNESS FROM STEERING

We consider a bipartite setup, as illustrated in Fig. 1. An en-
tangled state ρ̂ is distributed to two parties, Alice and Bob. For
the purpose of certifying steering and randomness, Alice and
the source are untrusted, while Bob’s device is well character-
ized. In each round, Alice chooses one of mA measurements
each with a number oA of outcomes. We denote her input
(choice) x and output (outcome) a. Thus x and a can take mA

and oA different values, respectively. Bob performs either full
state tomography or some fixed set of measurements. In the
former case, the information available after many repetitions
consists of the conditional input-output probabilities of Alice
P(a|x) and the conditional states of Bob ρ̂a|x, or equivalently,
in the assemblage of un-normalized states σ̂a|x = P(a|x)ρ̂a|x.
A precise definition of steering was given in Ref. [32]. An
assemblage is said to be steerable if it does not admit a local-
hidden-state (LHS) model

σ̂a|x =
∫

�

π (λ)P(a|x, λ)ρ̂λ dλ, (1)

where π (λ) is a probability distribution over λ, which can be
thought of as a classical common cause that determines both
the output a and the quantum state ρ̂λ of Bob. A steerable as-
semblage cannot be explained in terms of a classical common
cause, and, in particular, ρ̂ must then be entangled. Further-
more, a key observation from the point of view of randomness
certification is that the lack of a LHS model implies that one
cannot have P(a|x) ∈ {0, 1} for all a, x, i.e., P(a|x) cannot
be completely deterministic [36]. In other words, if Bob’s
assemblage is steerable, then there must be some randomness
in Alice’s measurement outcomes. Note that randomness is
extracted from the untrusted party and that only steering from
Alice to Bob is required.

The amount of certifiable randomness can be quantified in
terms of the maximal probability for an eavesdropper (Eve) to
correctly predict the output given knowledge of the input and
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other available side information (in particular, we allow Eve to
be entangled with the source, but we do assume rounds to be
independent and identically distributed with respect to Eve).
We consider randomness to be generated for a particular input
x∗ and denote the corresponding guessing probability pg(x∗).
By the leftover hash lemma [53], the asymptotic number of
almost uniformly random bits extractable per round is given
by the min-entropy Hmin(x∗) = − log2 pg(x∗). The guessing
probability can be computed via the following optimization
problem [36,51]:

max
{σ̂ e

a|x}
tr

[∑
e

σ̂ e
a=e|x∗

]
, (2a)

such that
∑

e

σ̂ e
a|x = σ̂ obs

a|x ∀a, x, (2b)

∑
a

σ̂ e
a|x =

∑
a

σ̂ e
a|x′ ∀e, x �= x′, (2c)

σ̂ e
a|x � 0 ∀a, x, e. (2d)

This is equivalent to optimizing over all strategies of Eve that
are compatible with the observed assemblage σ̂ obs

a|x (2b) and
with no-signaling from Alice to Bob and Eve (2c) [36]. Note
that (2a)–(2d) constitute a semidefinite program (SDP) and
can be solved efficiently numerically [54].

Performing full state tomography can be demanding ex-
perimentally, and it is then desirable to restrict Bob to some,
ideally small, set of mB measurements with oB outcomes. In
this case, the available observation from the experiment is
not the assemblage, but the conditional probabilities P(ab|xy),
where y and b label Bob’s input and output, respectively. Ran-
domness can still be certified, and the guessing probability can
again be computed via an SDP. Assuming that Bob performs
positive-operator-valued measures (POVMs) with elements
M̂b|y, the guessing probability is again given by the optimiza-
tion (2a)–(2d), except that the condition (2b) is replaced by the
requirement that Eve’s strategy must reproduce the observed
probabilities,

∑
e tr[M̂b|yσ̂ e

a|x] = P(ab|xy) ∀a, b, x, y.

III. GAUSSIAN PROTOCOL

We now determine the amount of randomness certifiable
in a setup using squeezed light and homodyne detection. The
source distributes either a two-mode squeezed (TMS) vacuum
state or a single-mode squeezed (SMS) vacuum state split on
a balanced beam splitter (see Fig. 1). We let qA, pA and qB, pB

denote conjugate quadratures for Alice and Bob, respectively.
The initial states are chosen such that in the split single-mode
case, qA + qB is squeezed, and in the two-mode case, both
qA + qB and pA − pB are squeezed. Alice makes mA = 2 mea-
surements of qA and pA (note that the local oscillator required
for homodyne detection does not open up any loophole as it is
untrusted). Following Ref. [52], her results are binned into oA

outcomes, resulting in POVMs

M̂a|x =
∫
R

fa(z, Tx ) |z〉x〈z| dz, (3)

where x = q, p is the input, |z〉x are x-quadrature eigenstates,
and fa(z, Tx ) is a periodic mask function

fa(z, Tx ) =
{

1 for asx � z mod Tx < (a + 1)sx

0 otherwise. (4)

Here, Tx is the period, sx = Tx/oA is the width of the bins (see
Fig. 1), and Tp = 2π/sq to ensure mutual unbiasedness. We
take a ∈ {0, . . . , oA − 1}.

Bob either performs tomography or performs a fixed set
of measurements. In principle, optimal measurements could
be determined (at least numerically) from the dual of the
SDP (2a)–(2d) for tomography, which provides an optimal
steering inequality. However, it is not clear that these mea-
surements can be realized in practice, or how they might be
approximated. Instead, we let Bob perform binned homodyne
measurements as well: specifically, mB quadrature measure-
ments along directions in phase space equally spaced between
qB and pB. He applies a binning consisting of oB − 1 intervals
dividing the range [−r, r] evenly, and the last bin constitutes
everything outside this range. We found that setting r = 5σ ,
where σ 2 is the largest variance in the (Gaussian) entangled
initial state (i.e., the largest diagonal entry of the covariance
matrix), works well for our parameter values. The central
binned region is then sufficiently wide to capture the variation
induced by Alice’s measurements while also admitting suffi-
ciently narrow bins for Bob’s outcomes to reveal this variation
without oB being intractably large.

We model detector inefficiencies and other losses by ficti-
tious beam splitters with transmittivity η between the source
and each party. We take the losses to be symmetric for Alice
and Bob, and we consider both pure loss, with vacuum enter-
ing the other port of the beam splitters, and noise, modeled
by replacing the vacuum with thermal states. We compute the
observed data [σ̂a|x or P(ab|xy)] starting from the covariance
matrix of the joint Gaussian state, including loss and noise. A
derivation of the covariance matrix is provided in Appendix A.
In order to implement the SDPs for the guessing probability,
we need to work in finite dimensions. We therefore calculate
the Fock-space representation of the state and measurement
operators, applying a cutoff in photon number, and compute
the data from there. The cutoff is chosen so as to be suffi-
ciently large to not affect the final results; see Appendix B.
We then run the SDPs given above to determine the guessing
probability and min-entropy in each case. Finally, we optimize
over Alice’s binning period Tq.

The results are summarized in Fig. 2. We observe several
interesting features. First, randomness can be generated at
moderate levels of squeezing, with results shown for −4 dB
for the TMS source and −6 dB for split SMS. Second, a
significant amount of randomness can be certified even for
sizable loss and the entropy is nonzero above η � 0.55 for
the TMS source and η � 0.75 for split SMS. Third, allowing
for added noise corresponding to 1% of the vacuum variance
(0.01 shot-noise units; see Appendix A) does not dramati-
cally decrease the performance. These numbers indicate that
implementation of our protocol is well within reach of con-
temporary experimental techniques. Finally, performing just
a few binned homodyne measurements for Bob is almost
as good as tomography. For mB = 6 measurements, Hmin is
within a few percent of the full-tomography result, and with
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FIG. 2. Optimal min-entropy vs transmission efficiency, for the two-mode squeezed (TMS) and the split single-mode squeezed (SMS)
vacuum source with and without noise (0.01 shot-noise units). Hmin is maximized over Alice’s binning period in the range Tq ∈ [2, 10]. In
all cases, Alice has a choice of mA = 2 observables, q and p, binned to oA = 8 outcomes. Bob performs tomography (tomo.; black curve) or
measures in mB = 2, 4, 6 different directions equally spaced between q and p, binned to oB = 16 outcomes. For TMS the squeezing is −4 dB,
and for SMS it is −6 dB.

just mB = 2 one obtains about half of the optimal entropy.
This shows that the protocol already performs well in the
simplest setting of just two measurements per party.

IV. EXPERIMENTAL RESULTS

Indeed, we can provide a proof-of-principle demonstration
of the practicality of the protocol by applying it to existing
experimental data, showing that randomness can in fact be
certified in a setup that has already been realized. In Ref. [42],
Larsen et al., implemented a two-mode squeezed vacuum
source by temporal multiplexing in fiber and characterized
it via homodyne measurements of the two output modes.
Assigning the two modes to Alice and Bob, respectively,
an appropriate subset of the characterization measurements
corresponds to q, p quadrature for each party, i.e., to the case
of two settings per party, mA = mB = 2. Postprocessing the
data, we can then apply binnings according to the strategies
outlined above and estimate the joint probabilities P(ab|xy).
For Bob’s binning, we use r = 5. Each data set (for a given
combination of quadratures) contains 16 000 measurements,
and we calculate Pexpt(ab|xy) from the frequencies of the
outcomes.

Owing to finite statistics, the distribution Pexpt(ab|xy) is
signaling and hence cannot be used directly as a constraint in
the SDP for computing Hmin (because the SDP is then always
infeasible as the distribution cannot be obtained from any
quantum strategy for Eve). Instead, we construct an idealized
theoretical model of the experiment and obtain an approxi-
mation of the initial Gaussian state ρ̂G. We then compute the
probability distributions Ptheory(ab|xy) = tr[M̂a|x ⊗ M̂b|yρ̂G],
which are guaranteed to be no-signaling, and use these in
the SDP. Finally, we extract the corresponding dual variables
and use them together with the experimental distributions
Pexpt(ab|xy) to obtain a lower bound on the min-entropy of
the experimental data (see Appendix C for details).

The resulting optimal min-entropy is shown in Fig. 3 as
a function of the number of outputs for Alice. We see that
the experimentally certified lower bound on the min-entropy
is in good agreement with the idealized theoretical model.
The model predicts that about 0.17 bits of randomness per

round can be certified with oA = 12 and oB = 16, with a
lower bound of about 0.14 bits of randomness per round.
While Hmin might increase further, for computational reasons
we cannot employ larger numbers of outputs. The observed
squeezing (in the relevant temporal mode) is −3.88 dB in
qA + qB and −3.76 dB in pA − pB, and the overall efficiency
is 68%. Furthermore, the repetition rate of the experiment was
500 kHz, from which we get an approximate extracted random
bit rate of ∼70 kbits/s. These results clearly show that our
scheme is feasible in practice. We expect that significantly
higher Hmin could be attained in a dedicated experiment. In
particular, it should be possible to significantly improve the
overall efficiency to around 90% and to lower phase noise,

FIG. 3. Results obtained from experimental data of Ref. [42].
Min-entropy vs Alice’s number of outputs. The optimal values of
Hmin from the idealized theoretical model (black dots) and the lower
bounds on Hmin from the experimental data (pink circles) are pic-
tured. Alice and Bob both measure q and p, and randomness is
extracted from Alice’s q measurement. Hmin is maximized over
Alice’s binning period in the range Tq ∈ [2, 10]. Bob has oB = 16
outcomes.
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thus improving the squeezing level, by avoiding the use of
optical switching and fiber delays. Also, fast sources and
detectors should enable gigahertz repetition rates [43], leading
to gigahertz-range secret bit rates.

V. CONCLUSION AND OUTLOOK

In conclusion, we presented a scheme for quan-
tum random-number certification at the one-sided device-
independent security level which can be realized using purely
Gaussian resources, namely, squeezed states and homodyne
detection. The scheme is robust to realistic levels of loss and
noise and can certify a significant amount of randomness
(min-entropy approaching 1) for moderate squeezing levels
well below 10 dB. It is hence feasible to implement with
standard technology, as we also have shown by applying the
protocol to existing experimental data from Ref. [42], provid-
ing a proof of principle.

One interesting future direction would be an experiment
designed specifically for this protocol, which would likely
perform significantly better. Spatial separation of the par-
ties could also be implemented. A more thorough analysis
accounting for finite-size effects would be required for an ac-
curate calculation of the entropy. In particular, to certify more
randomness than consumed (i.e., to achieve randomness ex-
pansion), the inputs should be biased, with x∗ occurring more
often while allowing P(ab|xy) to be estimated sufficiently
well. This trade-off can be made rigorous in a finite-size
analysis. Ideally, real-time randomness extraction should also
be applie.

Note added. We note that a complementary work demon-
strating steering-based randomness certification with discrete
variables appeared recently [55].
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APPENDIX A: GAUSSIAN STATES WITH NOISE
AND LOSS

Consider a continuous-variable system of d bosonic
modes. Associated with each mode is a pair of creation and
annihilation operators that satisfy the canonical commutation
relations [â j, â†

k] = δ jk , [â j, âk] = 0 and [â†
j , â†

k] = 0. The
corresponding quadrature operators for each mode are defined
as

q̂ j = 1√
2

(â†
j + â j ), p̂ j = i√

2
(â†

j − â j ) (A1)

and fulfill the commutation relations [q̂ j, p̂k] = iδ jk . By
definition, a Gaussian state has a Wigner function of the

form

W (z) =
√

det G

πd
e−(z−Z )·G(z−Z ), (A2)

where z = (q, p) ∈ Rd × Rd are canonical phase-space coor-
dinates, Z is a vector of expectation values Zk = 〈ẑk〉 with
ẑ = (q̂1, . . . , q̂d , p̂1, . . . , p̂d ), and G is a real, symmetric,
and positive definite matrix. A Gaussian state is therefore
completely characterized by the first moments Z and the co-
variances of the quadrature operators

(G−1) jk = 〈ẑ j ẑk + ẑk ẑ j〉 − 2〈ẑ j〉〈ẑk〉. (A3)

The matrix elements of a Gaussian state in the Fock basis
can be expressed in terms of Z , G, and multidimensional
Hermite polynomials [56], where the latter can be generated
recursively [57]. The Gaussian states ρ̂ in this paper have first
moments Z equal to zero. In the following, we assume Z = 0.

We model noise and loss by fictitious beam splitters with
transmittivity η between the source and each party. Thermal
states of mean photon number n̄ enter the other port of the
beam splitters. The noise and losses are thus assumed to be
symmetric for Alice and Bob. The case of pure loss is obtained
by setting n̄ = 0.

Before the beam splitters the total state is ρ̂ ⊗ ρ̂th ⊗ ρ̂th,
where ρ̂ is a two-mode Gaussian state produced by the source
and each ρ̂th is a thermal state with mean photon number n̄.
The corresponding Wigner function is Wρ (z)Wth(zt1 )Wth(zt2 ),
where Wρ (z) is a Gaussian with Gρ and Wth(zt ) is a Gaus-
sian with Gth = (1 + 2n̄)−1I. By combining the phase-space
coordinates of the thermal states into zt = (qt , pt ) ∈ R2 ×
R2, it can be shown that the beam splitters perform the
transformations

z → √
ηz +

√
1 − ηzt , (A4)

zt → √
ηzt −

√
1 − ηz. (A5)

Integrating out the zt coordinates of the transformed state
yields a Gaussian Wigner function with first moments equal
to zero and

G = ηGρ + (1 − η)Gt (A6)

− η(1 − η)(Gt − Gρ )[ηGt + (1 − η)Gρ]−1(Gt − Gρ ),

where Gt = Gth ⊕ Gth. This is the initial state with noise and
loss applied.

The mean photon number is chosen such that the added
noise corresponds to 1% of the vacuum variance (i.e., 0.01
shot-noise units), which is the case when n̄ = [200(1 − η)]−1.

APPENDIX B: FINITE DIMENSIONS

In order to numerically solve the SDPs we need to work
in finite dimensions. We use the Fock-space representation
and truncate both the two-mode squeezed (TMS) and the
single-mode squeezed (SMS) vacuum states at a given photon
number. In the following, we show that if this cutoff is taken
to be sufficiently large, then the min-entropy is unaffected.
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FIG. 4. Orthogonality parameter ε as a function of the squeezing
parameter s and the cutoff in photon number m.

The TMS state in the Fock basis is given by

|TMS〉 = 1

cosh(s̃)

∞∑
n=0

tanhn(s̃) |nn〉 , (B1)

where s̃ is the squeezing parameter and s, expressed in deci-
bels, is defined as s = 10 log10(e−2s̃). The normalized state
after a cutoff at m photons has the form

|TMS, m〉 =
√

1 − tanh2(s̃)

1 − tanh2(m+1)(s̃)

m∑
n=0

tanhn(s̃) |nn〉 . (B2)

The deviation of the truncated state from the true state can
be quantified in terms of the overlap 〈TMS|TMS, m〉 = 1 − ε.
Figure 4 illustrates the relation between the deviation ε, the
squeezing s (decibels), and the cutoff m.

It is computationally expensive to apply a large cutoff.
Indeed, in the SDP (2a)–(2d) of the main text, the dimen-
sion of the optimization variables σ̂ e

a|x ∈ C(m+1)×(m+1) and the
positivity constraints (2d) are bottlenecks of the optimization.
Hence it is desirable to keep m as small as possible, while also
minimizing the error in computing Hmin. In Fig. 5 we observe
that the numerical calculations of Hmin stabilize at sufficiently
high cutoff numbers. Note that while we considered the TMS
state in these plots, the same behavior holds for the SMS state.

APPENDIX C: A LOWER BOUND ON THE MIN-ENTROPY

Here, we provide details on how to lower-bound the min-
entropy of the experimental data.

First we obtain an approximation of the initial Gaussian
state using an idealized theoretical model of the experiment.
To this end, we adapt the derivations in the supplementary
information of Refs. [42,58] to find the quadrature squeezings

Var[ẑ] =
∫
R

∫
R

f (t ) f (t ′)〈ẑ(t )ẑ(t ′)〉dtdt ′, ẑ = q̂, p̂. (C1)

FIG. 5. Bound on the min-entropy Hmin as a function of the
cutoff m in the Fock basis for different squeezing parameters. Alice’s
measurement parameters are oA = 8 and Tq = 3.

Here,

f (t ) = 1√
N

sin(ωt )e−t2/2σ 2
(C2)

is the temporal mode function, chosen to optimize the mea-
sured squeezing, with σ = 270 ns and ω = 2π × 2.72 MHz,
and N is a normalization factor defined by

∫
R f 2(t )dt = 1.

The quadrature autocovariance functions 〈ẑ(t )ẑ(t ′)〉 are given
by

〈q̂(t )q̂(t ′)〉 = 1

2
δ(t − t ′) + ηγ ν

γ − ν
e−(γ−ν)|t−t ′ |, (C3)

〈p̂(t ) p̂(t ′)〉 = 1

2
δ(t − t ′) − ηγ ν

γ + ν
e−(γ+ν)|t−t ′ |, (C4)

where η = 0.68, γ = 2π × 8.1 MHz, and ν = 2π ×
5.2 MHz are the overall efficiency, the OPO decay rate,
and the pump rate, respectively.

From this we are able to calculate the matrix

G =

⎛
⎜⎜⎝

g1 g2 0 0
g2 g1 0 0
0 0 g1 −g2

0 0 −g2 g1

⎞
⎟⎟⎠, (C5)

with g1 = 1.38 and g2 = 1.2597, which completely charac-
terizes the Gaussian state (the first moments are zero). Using
this state, together with the POVMs for Alice’s and Bob’s
measurements, the probability distributions Ptheory(ab|xy) =
tr[M̂a|x ⊗ M̂b|yρ̂G] can be computed.

Next we derive the dual of the SDP (2a)–(2d) in the main
text. Recall that the condition (2d) must be replaced when Bob
performs POVMs with the elements M̂b|y. We shall simply
quote the result. However, a similar calculation can be found
in Appendix C of Ref. [36]. In the dual formulation, given the
data P(ab|xy), the guessing probability can be computed via
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FIG. 6. Lower bound on the min-entropy vs Fock-basis cutoff,
for several values of Alice’s outputs oA. The measurement settings at
each value of oA correspond to the maximum values of Hmin in Fig. 3
of the main text.

the following optimization:

min
{ξabxy},{Ge

x}

∑
a,b,x,y

ξabxyP(ab|xy), (C6)

such that
∑
b,y

ξabxyM̂b|y − δaeδxx∗ Î

+ δxx∗
∑

x′
Ge

x′ − Ge
x � 0 ∀a, e, x, (C7)

where ξabxy ∈ R and the Ge
x are Hermitian matrices. Note that

strong duality holds, and the optimal value of the dual is equal
to the optimal value of the primal. After inserting the theoreti-
cal distributions Ptheory(ab|xy) into the dual SDP, the resulting
optimal dual variables ξabxy can be used to obtain an upper
bound on the guessing probability of the experimental data
u = ∑

a,b,x,y ξabxyPexpt (ab|xy). This then yields a lower bound
on the min-entropy of the experimental data hl = − log2(u).

The Gaussian state (C5) is quite spread out in phase space;
therefore we take the Fock-basis cutoff to be m = 24. In
Fig. 6 we illustrate that the lower bound on the min-entropy
of the experimental data is fairly well converged with this
choice. While there are some small fluctuations, there is very
little change between the cutoff numbers m = 19 and m = 24.
We are unable to go higher due to numerical limitations.
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