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Noise thresholds for classical simulability of nonlinear boson sampling
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Boson sampling, a computational problem conjectured to be hard to simulate on a classical machine, is a
promising candidate for an experimental demonstration of quantum advantage using bosons. However, inevitable
experimental noise and imperfections, such as loss in the interferometer and random counts at the detectors, could
challenge the sampling task from entering the regime where quantum advantage is achievable. In this work we
introduce higher-order nonlinearities as a means to enhance the computational complexity of the problem and
the protocol’s robustness against noise, i.e., to increase the noise threshold that allows us to perform an efficient
classical simulation of the problem. Using a phase-space method based on the negativity volume of the relevant
quasiprobability distributions, we establish a necessary nonclassicality condition that any experimental proof of
quantum advantage must satisfy. Our results indicate that the addition of single-mode Kerr nonlinearity at the
input-state preparation level, while retaining a linear-optical evolution, makes the boson-sampling protocol more
robust against noise and consequently relaxes the constraints on the noise parameters required to show quantum
advantage.
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I. INTRODUCTION

Boson sampling is a well-defined computational problem,
first introduced by Aaronson and Arkhipov [1] and conjec-
tured to be computationally hard to simulate on a classical
computer, that consists of sampling from the output dis-
tribution of N photons undergoing evolution via a passive
linear-optical network (LON). A passive interferometer does
not contain active optical elements that alter the total photon
number; that is, the network comprises only beam splitters,
phase shifters, and mirrors. The hardness of the task stems
from the fact that the transition amplitude between the initial
state and the measurement outcome involves the computa-
tion of the permanent of a complex matrix [2], a problem
that is believed to be #P-hard [3]. The best-known classical
algorithm for computing matrix permanents, i.e., Ryser’s for-
mula, scales exponentially with the dimension of the problem
[4]. Under some plausible complexity-theoretic assumptions,
simulating boson sampling—even approximately—has been
proven to be a classically intractable computational task, and
for this reason, it is a promising candidate to experimentally
show quantum advantage, i.e., the ability to outperform any
classical computer on a specific task. In fact, the advancement
that photonic quantum technologies have seen in recent years
[5] has brought proving the quantum advantage within reach
with current technological capabilities.

Several variants of the original task which lie in the same
complexity class have been considered, mostly focusing on
using different classes of input states such as photon-added
coherent states [6], generalized cat states [7], and photon-
added or photon-subtracted squeezed vacuums [8]. Most
notably, Gaussian boson sampling (GBS) [9] constitutes a

more experimentally feasible candidate to prove quantum ad-
vantage [10], as it does not require single-photon generation,
but rather exploits squeezed light as the initial state. Addition-
ally, GBS has application in counting the perfect matchings of
graphs [11], measuring graph similarity [12], and simulating
vibronic molecular spectra [13].

However, inevitable noise in experimental realizations of
boson sampling might render the task classically efficiently
simulable. The effect of noise in boson sampling and its
connection to efficient the classical simulability of the re-
lated computational problem have been extensively explored,
considering partial photon distinguishability, losses, mode
mismatching, and random counts of the detectors [14–22].
In some cases one is able to provide sufficient conditions for
efficient classical simulations of boson-sampling experiments
that are expressed in the form of inequalities that involve the
noise parameters at play [14,15]. A possible way to make the
realization of boson sampling more robust against noise and
defects is to enhance the computational complexity of the task
and thus relax the constraints on noise parameters required for
an experimental demonstration of quantum advantage. In this
context, when we say that a boson-sampling protocol becomes
more robust against noise, we mean that the noise thresholds
sufficient for an efficient classical simulation to be feasible do
increase.

It was recently suggested [23] that we should introduce
nonlinear photon-photon interactions into the boson-sampling
framework as a way to increase the task’s complexity. In
Ref. [23] the authors considered Fock states as the input, and
the nonlinearity was introduced within the otherwise linear
evolution. They provided an upper bound on complexity us-
ing a simulation method that allows us to effectively induce
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nonlinear gates using linear-optical elements, auxiliary
modes, and photons and postselection on photodetection mea-
surement outcomes.

We introduce single-mode nonlinear gates in a noisy
Gaussian boson-sampling problem as a way to increase its
computational complexity and to relax the constraints on
the maximum threshold of noise parameters necessary to
prove quantum advantage. These higher-order nonlinearities
are introduced at the state-preparation level because, as we
show in the next sections, the techniques we employ to com-
pute these thresholds require the initial state to undergo a
linear-optical evolution. To this end, we use the formalism
introduced by Rahimi-Keshari et al. [15], who presented gen-
eral sufficient conditions for the efficient classical simulation
of a generic quantum optics experiment, with boson sampling
being a special case. This formalism is particularly helpful
in studying how noise and imperfections, e.g., photon loss
and subunit efficiency of the photodetectors, affect the clas-
sical intractability of boson-sampling tasks. The method is
based on expressing the output probability distribution as a
function of ordered phase-space quasiprobability distributions
(PQDs) of the input state, the output measurements, and the
transition function associated with the specific quantum pro-
cess. If for specific operator orderings all of these PQDs are
non-negative, then an efficient classical simulation is feasi-
ble. This result further identifies negativity as a necessary
condition and as a resource to achieve quantum speedup
[24,25].

Previous works studying boson-sampling protocols with
nonclassical input states mostly focused on proving, using an
array of case-dependent techniques, that such tasks are at least
as hard to simulate as boson sampling [6–9]. In this paper we
approach the problem from a different angle. We introduce
noise in the system, in the form of loss and nonideal detec-
tion, and gauge the enhancement in complexity due to the
introduction of nonlinear gates by probing an increase of the
noise thresholds sufficient for an efficient classical simulation
to be feasible. Our results show how adding single-mode Kerr
nonlinearities at the state-preparation level makes the boson-
sampling task more robust to the inevitable experimental noise
and imperfections that may jeopardize achieving quantum
advantage. In particular, in order to carry out analytical calcu-
lations, we consider a specific family of discrete values of the
Kerr parameter that, in turn, leads to generalized squeezed cat
states or superpositions of vacuum states squeezed in different
directions as initial states.

This paper is structured as follows. In Sec. II we revise
some key facts about the phase-space formalism of quantum
mechanics, including the concepts of characteristic functions
and ordered PQDs, and outline Rahimi-Keshari et al.’s suf-
ficient condition for an efficient classical simulation of a
generic quantum optics experiment. In Sec. III we introduce
our model of the nonlinear noisy boson-sampling problem
and outline the techniques used to compute noise thresholds
for efficient classical simulability. Sections IV and V are
dedicated to investigating how two closely related families of
initial states, both containing self-Kerr nonlinearities, are able
to increase these noise thresholds. Last, in Sec. VI we draw
conclusions and give some final remarks.

II. SUFFICIENT CONDITIONS FOR EFFICIENT
CLASSICAL SIMULATION OF QUANTUM OPTICS

A generic bosonic experiment is described in terms of an
M-mode input state ρin, an M-mode quantum process de-
scribed by a CP map E , and a measurement on the output state
ρout = E (ρin ) described by a positive operator-valued measure
(POVM). The POVM elements {�n} satisfy the condition∑

n �n = I, where I is the identity operator on the M-mode
Hilbert space. The output probability distribution p(n) of the
experiment is thus given by the Born rule p(n) = Trρout�n.
In Ref. [15], a sufficient condition for efficient classical sim-
ulability of the experiment was established based on the
well-developed theory of s-ordered phase-space quasiproba-
bility distributions (s-PQDs). In particular, the s-PQD of a
generic M-mode quantum state ρ is defined as

W (s)
ρ (β) =

∫
d2Mξ

π2M
�(s)

ρ (ξ)eβξ†−ξβ†

, (1)

where �(s)
ρ (ξ) is the s-ordered characteristic function of ρ,

�(s)
ρ (ξ) = TrρD(ξ)e

ξsξ†

2 . (2)

Here, s = diag(s1, . . . , sM ) is a diagonal matrix containing the
M ordering parameters s j ∈ R, and D(ξ) is the usual M-mode
displacement operator,

D(ξ) = eξa†−aξ†

, (3)

with a = (a1, . . . , aM ) being the vector of annihilation op-
erators. The Husimi Q function, the Wigner function, and
the Glauber-Sudarshan P function are obtained for s = −IM ,
s = 0, and s = IM , respectively, where IM denotes the M × M
identity matrix. The definition of s-PQD is then straight-
forwardly extended to any Hermitian operator, such as the
elements of a POVM. It is worth noting that the s-PQD of
a Hermitian operator is a real function and that the s-PQD of
a quantum state is also normalized to 1. It is then possible to
express the output probability distribution of outcomes p(n) in
terms of quasiprobability distributions of the input state and of
the POVM elements as

p(n) =
∫

d2Mβ

∫
d2Mα πMW (−s)

�n
(β)T (s,t )

E (α,β)W (t )
ρin

(α).

(4)
Here, W (−s)

�n
is the (−s)-PQD of the POVM element �n, W (t )

ρin

is the t-PQD of the input state, and T (s,t )
E is the transition

function associated with the quantum process E . The latter is
defined as

T (s,t )
E (α,β) =

∫
d2Mζ

π2M
e

ζsζ†

2 eβζ†−ζβ†
∫

d2Mξ

π2M
e− ξtξ†

2

× eξα†−αξ†

TrE (D†(ξ))D(ζ). (5)

One can show that

E (D†(ξ)) = e
ξξ†

2

∫
d2Mγ

πM
eγξ†−ξγ†E (|γ〉〈γ|). (6)

Hence, the action of the LON on a coherent-state input, i.e.,
E (|γ 〉〈γ |), is everything we need in order to compute the
transition function. We are now ready to enunciate a sufficient
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condition for efficient classical simulation of the sampling
problem outlined above. If there exist values of s and t such
that the PQD of the input, the PQD of the POVM, and the
transition function are all non-negative and well behaved (i.e.,
they do not diverge more severely than a δ function), then a
classical simulation of the sampling problem can be carried
out efficiently. We point out that this formalism allows us to
consider only exact simulations; that is, with this simulation
strategy the samples are drawn according to p(n) and not from
an approximation of this probability distribution. We also
stress the fact that this condition is only sufficient and, indeed,
there might be other efficient simulation methods where this
condition is not satisfied.

III. THE MODEL

Our model consists of a modification of GBS. The latter
is a sampling problem where M single-mode squeezed states
are injected in an M × M linear-optical interferometer and are
then measured with on-off photodetectors at its output ports.
The s-PQD of a generic M-mode Gaussian state ρ reads

W (s)
ρ (β) = 2M

πM

1√
det σ − s̃

e−2(β−α)ᵀ(σ−s̃)−1(β−α), (7)

where σ and α are, respectively, the covariance matrix and the
vector of the first moments of ρ and s̃ is an ordering matrix
defined as

s̃ =
M⊕

j=1

s jI2. (8)

Note that the conventions we use are such that for a single-
mode coherent state |α〉 the covariance matrix is the identity
matrix σ = I2 and the vector of the first moments reads α =
(Reα, Imα).

The s-PQD of a Gaussian state is well defined and has the
Gaussian form in Eq. (7) as long as

σ − s̃ � 0; (9)

otherwise, the s-PQD becomes a more singular δ function and
does not allow for efficient sampling. It thus follows that the s-
PQD of a coherent state |α〉 is well behaved for s � 1 and that
the s-PQD of a squeezed vacuum S(ξ ) |0〉 is properly defined
for s � e−2r (r > 0). Here, the complex squeezing parameter
is ξ = reiφ . We recall that the single-mode squeezing operator
is defined as

S(reiφ ) = e
r
2 (eiφa†2−e−iφa2 ), (10)

where a and a† are bosonic operators.
It is well known that ideal GBS is not classically efficiently

simulable [9]. This is not necessarily true anymore if we
introduce noise to the system and thus consider a realistic
experimental implementation of the sampling problem.

An M-mode passive LON is associated with an M × M
transfer matrix L satisfying LL† � I, which describes how
the input modes are linearly mixed by the interferometer. For
a lossless LON L is simply a unitary matrix. Hence, a lossy
LON takes an M-mode coherent state |γ〉 to another coherent
state, i.e.,

E (|γ〉〈γ|) = |γL〉〈γL|. (11)

This expression stems from a simple model in which we
consider M additional environmental modes in the vacuum
state that interact with the system’s actual M modes via a
lossless 2M-mode LON, whose unitary transfer matrix U is
given by

U =
(

L N
P Q

)
. (12)

Equation (11) then follows from tracing out the degrees of
freedom of the environment, i.e.,

E (|γ〉〈γ|) = TrU |γ, 0〉〈γ, 0|U†

= Tr|γL, γN〉〈γL, γN| = |γL〉〈γL|, (13)

where U is the unitary operator associated with the larger
2M-mode interferometer. L is a submatrix of U ; hence, the
unitarity of the latter guarantees that L†L � I. If one further
assumes that all paths in the network suffer the same amount
of loss, then L is simply a unitary matrix multiplied by a
factor

√
ηL with 0 � ηL � 1. In Appendix B we describe

how thermal noise can be added to our model and how the
conclusions of this work are affected by it.

We also consider noisy on-off photodetection characterized
by subunit efficiency ηD and by a random count probability
pD. Following Ref. [15], the POVM elements of this measure-
ment are given by

�0 = (1 − pD)
∞∑

m=0

(1 − ηD)m|m〉〈m|, (14)

�1 = I − �0, (15)

where 0 � ηD � 1 and 0 � pD � 1. By noting that �0 is an
un–normalized thermal state one obtains the following (−s)-
PQD:

W (−s)
�0

(β) = 1 − pD

π

1

1 − ηD
(

1−s
2

) exp

[ −ηD|β|2
1 − ηD

(
1−s

2

)
]
, (16)

which is non-negative—and properly defined—for s � 1 −
2
ηD

. Since �0 + �1 = I, we also have that

W (−s)
�1

(β) = 1

π
− W (−s)

�0
(β). (17)

One then easily proves that W (−s)
�1

is non-negative for

s � 1 − 2pD

ηD
≡ s. (18)

Hence, the noisy photodetection (−s)-PQD is non-negative
for s � s. If we then consider M identical photodetection
measurements at the end of our LON, the (−s)-PQD of the
measurement is just the product of the (−s j)-PQD of the
single-mode measurements, i.e.,

W (−s)
�n

= �M
k=1W

(−sk )
�nk

. (19)

Consequently, the total (−s)-PQD is non-negative for sk �
s ∀ k.

The last thing that we need to consider is the transition
function T (s,t )

E associated with a LON described by the transfer
matrix L. In Ref. [15], Rahimi-Keshari et al. proved that it
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has the form of a multivariate Gaussian function, and hence is
non-negative and well behaved, if and only if

IM − L†L − s + L†tL � 0. (20)

In Appendix B we show how this inequality is modified once
thermal effects are taken into account.

If the input state t-PQD is non-negative for t � t and the
(−s)-PQD of the measurement is non-negative for s � s, then
Eq. (20) is satisfied if and only if

IM − L†L − s + L†tL � 0. (21)

If we further consider a lossy LON described by the transfer
matrix L = √

ηLU and identical noisy detection at each output
port as outlined above, i.e., s = sI = (1 − 2pD

ηD
)I, it is then

possible to recast the previous condition as(
2pD

ηD
− ηL

)
IM + ηLt � 0. (22)

We can now compute t for different input states and use the
previous inequality to compute noise thresholds sufficient for
classical simulability.

As a first example we might consider input coherent states,
i.e., t = IM . As expected, inequality (22) tells us that such a
sampling problem is efficiently classically simulable even in
the absence of noise, as this problem is equivalent to sampling
from an M-mode coherent state. On the other hand, if we
consider M single-mode squeezed vacuum states as input, i.e.,⊗M

j=1 S(r) |0〉, then Eq. (9) implies that the input state t-PQD
is well defined and non-negative for t < t = e−2rIM . Hence,
in this scenario, the sampling problem can be simulated effi-
ciently if the noise parameters satisfy

pD

ηD
� ηL

2
(1 − e−2r ). (23)

We stress, once again, that these noise thresholds for efficient
classical simulation provide only a sufficient condition. We
also point out that Eq. (23) is consistent with the condition
for classical simulability of noisy Gaussian boson sampling
obtained in Ref. [14]. In that work the authors proved that a
sufficient condition for the existence of an efficient classical
simulation of a noisy GBS experiment as described above, up
to error ε, is given by

sech

{
1

2
�

[
ln

(
1 − 2qD

ηLe−2r + 1 − ηL

)]}
> e−ε2/4M, (24)

where qD = pD

ηD
and �(x) = max (x, 0) is the ramp function.

We now aim to tackle the following question. How do
these noise thresholds for efficient classical simulation change
when higher-order nonlinearities are introduced in the model?
Answering this question will tell us if, with the addition of
higher-order nonlinearities, we can afford to allow more noise
in a hypothetical experimental setup but still have a sampling
problem that is not efficiently classically simulable. There is
obviously a lot of freedom in how to introduce nonlinearities
in a boson-sampling protocol. In fact, they can be added to the
input-state preparation stage, within the evolution or as part of
the measurement. However, it is clear that if we want to apply
condition (22) in this new setting, we still need to retain a

linear-optical interferometer. We will thus add the nonlinear
operations at the input-state preparation level.

As a simple example of this paradigm, we consider single-
mode Kerr nonlinearities, i.e., U (χ ) = e−iχa†2a2

, where χ ∈
R is the Kerr parameter. Using Baker-Campbell-Hausdorff
identities, one easily displays the action of U (χ ) on the an-
nihilation operator a (we provide the proof in Appendix C),
namely,

U †(χ )aU (χ ) = e−2iχa†aa. (25)

Equation (25) shows that the Kerr transformation is an energy-
dependent phase rotation of the mode. In the following
sections we consider two closely related classes of initial
states: S(r)U (χ ) |α〉 and U (χ )S(r) |0〉.

IV. INPUT STATE S(r)U (χ) |α〉
Let us consider a sampling problem like the one described

in the previous section, where the M-mode input state is now
given by M copies of S(r)U (χ ) |α〉. The strategy to obtain
the noise thresholds for efficient classical simulability remains
the same: compute the t-PQD of the initial state, find the
value t for which the function is non-negative for every t � t ,
and, finally, use Eq. (22) to compute the desired threshold.
We remind the reader that since the input state is a tensor
product of identical states, we have t = tIM . Unfortunately,
one soon realizes it is not possible to obtain an analytical,
easy-to-use, closed formula for the t-PQD of S(r)U (χ ) |α〉
for a generic value of χ . A way around this is to consider dis-
crete values of the Kerr parameter, specifically χ = π

m with m
being an integer. Notice how this corresponds to discrete-time
Kerr-type interactions. In this scenario, U (χ ) |α〉 produces a
superposition of coherent states (catlike states) that lie on a
circumference in the phase space [26]. In fact, the operator

U (χ = π/m) ≡ U (m) = e−i π
m n̂(n̂−1) (26)

has nice periodic properties that allow for a useful Fourier
representation of the operator which, in turn, leads us to

|ψm〉 ≡ U (m) |α〉 =
m−1∑
q=0

f (o)
q

∣∣αe− 2π iq
m

〉
, m = odd, (27)

|ψm〉 ≡ U (m) |α〉 =
m−1∑
q=0

f (e)
q

∣∣αe− 2π iq
m + iπ

m
〉
, m = even. (28)

The coefficients that appear in the sums are given by

f (o)
q = 1

m

m−1∑
k=0

e
2π iq

m ke− iπ
m k(k−1), (29)

f (e)
q = 1

m

m−1∑
k=0

e
2π iq

m ke− iπ
m k2

. (30)

For example, with m = 2 one obtains the well-known Yurke-
Stoler cat state up to a phase shift, namely,

|ψ2〉 = 1√
2

|iα〉 + i√
2

|−iα〉 . (31)

We point out that Ref. [7] presents evidence that boson
sampling using arbitrary superpositions of coherent states as
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input is likely to implement a classically hard problem. It
is also worth noting that for m = 1, i.e., χ = π , we have
U (χ = π ) = e−iπ n̂(n̂−1) = I. Hence, unlike squeezing, Kerr
nonlinearity does not always produce a nonclassical effect on
a classical initial state.

Hence, our input state is a superposition of squeezed co-
herent states

S(r)U (m) |α〉 =
m−1∑
q=0

f (o)
q S(r)

∣∣αe− 2π iq
m

〉
, m = odd, (32)

S(r)U (m) |α〉 =
m−1∑
q=0

f (e)
q S(r)

∣∣αe− 2π iq
m + iπ

m
〉
, m = even.

(33)

Consequently, the t-PQD of the input state S(r)U (χ ) |α〉 is
readily obtained once we have the t-PQD of S(r) |α〉〈γ | S†(r).
One can prove that the t-ordered characteristic function of this
operator reads

φ(t )(ξ ) = TrS(r) |α〉〈γ | S†(r)D(ξ )e
t
2 |ξ |2

= e
1
2 {−|ξμ−ξ∗ν+α−γ |2+[γ ∗(ξμ−ξ∗ν+α)+α∗(ξμ−ξ∗ν)−c.c.]}

× e
t
2 |ξ |2 , (34)

where μ = cosh(r) and ν = sinh(r). In order to obtain
Eq. (34) one has to use S†(r)D(ξ )S(r) = D(ξμ − ξ ∗ν) and
the well-known composition rule of consequent displacement
operators, i.e.,

D(α)D(β ) = D(α + β )e
1
2 (αβ∗−α∗β ). (35)

We can then Fourier transform the characteristic func-
tion and obtain an analytical expression for the t-PQD of
S(r) |α〉〈γ | S†(r) and, in turn, the t-PQD of our input state.
The last step to obtain the desired noise thresholds consists
of finding the value t for which the t-PQD of the initial state
is non-negative for all t � t . This is achieved by numerically
computing the volume of negativity N of the t-PQD as a
function of the ordering parameter t , i.e.,

N (t ) =
∫

d2β |W (t )(β)| − 1. (36)

We have strong numerical evidence that the t-PQD of
S(r)U (m) |α〉 becomes non-negative for t � t = −1 ∀α ∈
C, ∀ r > 0 and m � 2. Figure 1 displays, with a specific ex-
ample, the typical features of the negativity volume associated
with the input state S(r)U (χ = π/m) |α〉 t-PQD. Finally,
using t = −1 in Eq. (22) yields the sufficient condition for
efficient classical simulability

pD

ηD
� ηL. (37)

Recall that, without Kerr nonlinearity, the threshold was pD

ηD
�

ηL

2 (1 − e−2r ). Hence, more noise is needed to simulate the
nonlinear system, which suggests that the Kerr nonlinearity
does, indeed, increase the complexity of the sampling prob-
lem. In Appendix B we discuss how this result is affected once
we consider finite-temperature effects. Note that the t-PQD
with t = −1, i.e., the Husimi Q function, is non-negative by

FIG. 1. The negativity volume N (t ) of the t-PQD associated
with the input state S(r = 0.2)U (χ = π/3) |α = 1〉. As can be seen
from the inset, the function reaches zero for t = −1. Similar plots
and behavior, i.e., negativity volume approaching zero monotonically
at t = −1, are obtained for every r > 0, α ∈ C and for every integer
m > 1.

definition for every state ρ. In fact, we can show that

W (−1)
ρ (β ) ≡ Qρ (β ) = 1

π
〈β| ρ |β〉 . (38)

This means that a sampling experiment like the one described
above, i.e., lossy LON and noisy detection, is actually clas-
sically efficiently simulable for every input state if pD

ηD
� ηL.

Hence, we have proved that, using the Rahimi-Keshari general
method of simulation, a noisy sampling problem as described
above with S(r)U (m) |α〉 as the input state requires the “max-
imum” amount of noise in order to be classically efficiently
simulable.

V. INPUT STATE U (χ)S(r) |0〉
We can now focus on another closely related class of initial

states, namely, U (χ )S(r) |0〉. For generic values of the Kerr
parameter χ , we once again encounter difficulties in the an-
alytical calculation of the characteristic function in a closed
formula. However, like for the previous model, if we consider
χ = π

m and apply U (m) to a squeezed vacuum state S(r) |0〉,
we obtain a quantum superposition of squeezed vacuum states
[26]

U (m)S(r) |0〉 =
m−1∑
q=0

f (o)
q S

(
re− 4π iq

m
) |0〉 , m = odd, (39)

U (m)S(r) |0〉 =
m−1∑
q=0

f (e)
q S

(
re

−4π iq+2π i
m

) |0〉 , m = even. (40)

The coefficients f (o)
q and f (e)

q are still given by Eqs. (29)
and (30), respectively. Recalling how the annihilation operator
transforms under the single-mode squeezing unitary operation
(10),

S†(reiφ )aS(reiφ ) = μa + eiφνa†, (41)
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FIG. 2. The negativity volume N (t ) of the t-PQD associated
with the input state U (χ = π/3)S(r = 1) |0〉. As can be seen from
the inset, the function reaches zero for t = −1. Similar plots and
behavior, i.e., negativity volume approaching zero monotonically for
t = −1, are obtained ∀ r > 0 and either odd m > 1 or even m > 4.

where μ = cosh(r) and ν = sinh(r), the t-PQD of Eqs. (39)
and (40) is readily obtained once we have the t-PQD of
S(reiφ )|0〉〈0|S†(reiψ ). As outlined in Appendix A, we find the
characteristic function of this dyadic

φ(t )(ξ ) = TrS(reiφ )|0〉〈0|S†(reiψ )D(ξ )e
t
2 |ξ |2 (42)

to have the following form:

φ(t )(ξ ) = μ̃− 1
2 e− 1

2 |ξμ−ξ∗νeiφ |2+ ν̃
2μ̃

e−iφ̃ (ξμ−ξ∗νeiφ )2− i�
4 + t

2 |ξ |2
. (43)

Here, μ = cosh(r), ν = sinh(r), μ̃ = cosh(r̃), and ν̃ =
sinh(r̃). The remaining parameters r̃, φ̃, and � are defined
by Eqs. (A3) and (A4), respectively. A Fourier transform of
the characteristic function yields the analytical expression of
the t-PQD of S(reiφ )|0〉〈0|S†(reiψ ). With this we straight-
forwardly obtain the t-PQD of the initial state, numerically
compute its volume of negativity, and find the threshold value
t for which the t-PQD is non-negative ∀ t < t . We once again
find strong numerical evidence that the t-PQD of U (χ =
π/m)S(r) |0〉 becomes non-negative for s � t = −1 ∀ r > 0
and either odd m > 1 or even m > 4. Figure 2 displays, with a
specific example, the typical features of the negativity volume
associated with the input state U (χ = π/m)S(r) |0〉 t-PQD.
The reason for this unusual behavior is that U (m)S(r) |0〉
with m = 2 or m = 4 are Gaussian states and, as such, their
t-PQD is non-negative by definition for every value of the
ordering parameter t for which the function is well defined
and the negativity volume is strictly zero. In particular, one
finds that in these two cases t = e−2r , i.e., the result one
obtains for a squeezed vacuum with squeezing parameter r;
hence, the Kerr nonlinearity does not provide any advantage
in these scenarios. However, these two “anomalies” vanish
if we add displacement to our initial state and thus consider
U (χ )S(r) |α〉, as we will show for m = 2 shortly. [Note how
this choice would also constitute a fairer comparison to the
other state we considered, namely, S(r)U (χ ) |α〉.] First of
all, we show that U (2)S(r) |0〉 = S(−r) |0〉. This can easily be

seen by expanding the squeezed vacuum on the Fock basis,

S(r) |0〉 = 1√
cosh r

∞∑
n=0

[tanh r]n

√
(2n)!

2nn!
|2n〉 , (44)

and using U (2) |2n〉 = (−1)n |2n〉.
This in turn means that U (2)S(r)U (2)† = S(−r). With this

identity we can write

U (2)S(r) |α〉 = U (2)S(r)U (2)†U (2) |α〉 = S(−r)U (2) |α〉 ,

(45)
and we immediately realize that this state is just the squeezed
cat state we already discussed in the previous section. Hence,
if we add the displacement to the initial state, we once again
obtain t = −1 even for m = 2. We expect the same to happen
∀ m > 1, given the catlike structure of U (m)S(r) |α〉.

VI. CONCLUSIONS

In this work we have investigated the possibility of
introducing higher-order nonlinearities into the Gaussian
boson-sampling framework to enhance the computational
complexity of the task and consequently increase the ineffi-
ciencies that allow for a classical simulation to be feasible.
Using a phase-space formalism based on the negativity of the
relevant PQDs, we have established a necessary nonclassi-
cality test that any experimental demonstration of quantum
advantage must satisfy. This sufficient condition for an ef-
ficient classical simulation for noisy boson sampling is
formulated in terms of inequalities that involve the noise pa-
rameters characterizing the system. In this paper we have used
noise to gauge how inefficient it is to simulate a given boson-
sampling task classically. Our results indeed suggest that the
addition of single-mode Kerr nonlinearity at the input-state
preparation level, while retaining a linear-optical evolution,
makes the protocol more robust to noise and relaxes the con-
straints on the noise parameters required to show quantum
advantage. A possible limitation of the formalism we em-
ployed is that it only allows us to make predictions about the
existence of efficient classical exact simulations. Future ef-
forts might focus on approximate simulation methods of noisy
boson-sampling tasks in the presence of nonlinear operations
as well as studying the role of thermal effects in a general
multimode setting. Another interesting direction for future re-
search is investigating the role of other classes of higher-order
nonlinearities, different from single-mode Kerr operations, in
increasing the computational complexity of boson-sampling
problems.
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APPENDIX A

Here, we outline the techniques employed in the calcula-
tion of the characteristic function of S(reiφ )|0〉〈0|S†(reiψ ):

φ(t )(ξ ) = TrS(reiφ )|0〉〈0|S†(reiψ )D(ξ )e
t
2 |ξ |2

= 〈0| S†(reiψ )D(ξ )S(reiφ ) |0〉 e
t
2 |ξ |2

= 〈0| S†(reiψ )S(reiφ )S†(reiφ )D(ξ )S(reiφ ) |0〉 e
t
2 |ξ |2 .
(A1)

We can then use S†(reiφ )D(ξ )S(reiφ ) = D(ξμ − ξ ∗νeiφ ).
Before moving on, it is useful to show how to compose two

single-mode squeezing operations. Let us consider a generic
single-mode squeezing operation S(ξi ) with squeezing param-
eter ξi = rieiφi , and let us define ζi

.= tanh(ri )eiφi . We can then
prove [27] the following identity:

S(ξ1)S(ξ2) = S(ξ3)ei�(ξ1,ξ2 )( a†a+1/2
2 ), (A2)

where

ζ3 = ζ1 + ζ2

1 + ζ ∗
1 ζ2

(A3)

and

�(ξ1, ξ2) = −i ln

(
1 + ζ1ζ

∗
2

1 + ζ ∗
1 ζ2

)
. (A4)

Recall that su(1, 1) generators {K+, K−, K0} satisfy the com-
mutation rules [28]

[K−, K+] = 2K0, [K0, K±] = ±K±. (A5)

The single-mode bosonic representation of this algebra is
given by

K+ = a†2

2
, K− = a2

2
, K0 = 1

2

(
a†a + 1

2

)
. (A6)

An easy way to verify the squeezing composition rule (A2) is
to use the following matrix representation of su(1, 1):

K+ =
(

0 1
0 0

)
, K− =

(
0 0

−1 0

)
,

K0 =
(

1/2 0
0 −1/2

)
. (A7)

Using the properties of the su(1, 1) algebra, one can also prove
the following well-known decomposition of the single-mode
squeezing operator:

S(reiφ ) = e
νeiφ

2μ
a†2

μ−a†a−1/2e− νe−iφ

2μ
a2

. (A8)

Hence, using Eq. (A2), we can write

S(−reiφ )S(reiψ ) = S(r̃eiφ̃ )ei�( a†a+1/2
2 ), (A9)

where r̃, φ̃, and � are defined by Eqs. (A3) and (A4), respec-
tively. Using Eq. (A8), we then finally obtain the characteristic
function of S(reiφ )|0〉〈0|S†(reiψ ) displayed in Eq. (43) of the
main text.

APPENDIX B

In order to take thermal effects into account we consider
a modification of the loss model described in the main text,
where each of the M additional environmental modes are now
in a thermal state. It then follows that the action of the lossy
LON is now described by the map

E ′(|γ〉〈γ|) = TrU |γ〉〈γ| ⊗ ν⊗M
th U†, (B1)

where U is, once again, the unitary operator associated with
the larger 2M-mode interferometer. νth represents a thermal
state, i.e.,

νth = 1

1 + n

(
n

1 + n

)a†a

, (B2)

where n is the mean number of photons and a and a† are
the annihilation operator and creation operator of the mode,
respectively. We remind the reader that the action of the quan-
tum channel E on an M-mode coherent state is all we need
to compute the transition function T (s,t )

E and that the latter is
independent of the input states and the final measurements.

In order to make the calculations easier, let us consider the
single-mode M = 1 case, i.e., a toy model where the lossy
LON is just a beam splitter, characterized by transmittivity
(cos θ )2 = ηL, that couples a coherent state |γ 〉 with a ther-
mal state νth(k), and we then trace over the environmental
degrees of freedom. Here, k > 1 is the value of the quadrature
variances of the thermal state and can also be expressed as
k = 2n + 1, where n is the mean number of photons.

First, it is useful to see what happens in the zero-
temperature case; that is, we specialize Eq. (11) for a single
mode and obtain

E (|γ 〉〈γ |) = |γ cos θ〉〈γ cos θ | ≡ |γ̃ 〉〈γ̃ |, (B3)

where we defined γ̃ = γ cos θ . Hence, in this scenario, the
transfer matrix is simply a real number L = cos θ = √

ηL.
Moving onto the finite-temperature case, using the Gaus-

sian formalism, we easily show that

E ′(|γ 〉〈γ |) = Trenv{U (θ )(|γ 〉〈γ | ⊗ νth )U†(θ )}
= D(γ̃ )νth(λ)D†(γ̃ ), (B4)

where U (θ ) is now the beam-splitter unitary operator, λ =
(cos θ )2 + k(sin θ )2 is a real parameter strictly greater than
1, and the trace is taken over the environmental degrees of
freedom. We can then compute

TrE ′(|γ 〉〈γ |)D(ζ ) = TrD(γ̃ )νth(λ)D†(γ̃ )D(ζ )

= eζ γ̃ ∗−ζ ∗γ̃ Trνth(λ)D(ζ ). (B5)

The trace in the last expression is evaluated by exploiting the
P-function representation of the thermal state, i.e.,

TrE ′(|γ 〉〈γ |)D(ζ ) = Tr
∫

d2βP(β )|β〉〈β|D(ζ )

= e− λ
2 (ζ 2

1 +ζ 2
2 ), (B6)

where

P(β ) = 2

π (λ − 1)
e− 2

λ−1 (β2
1 +β2

2 ) (B7)

042413-7



BRESSANINI, KWON, AND KIM PHYSICAL REVIEW A 106, 042413 (2022)

is the P function of νth(λ). Now plugging Eq. (B6) into Eq. (6)
and using the identity

∫
d2βeζβ∗−ζ ∗β = π2δ(2)(ζ ), (B8)

we obtain

TrD†(ξ )D(ζ ) = πδ(2)(ξ − ζ cos θ )e
|ζ |2

2 (cos2 θ−λ). (B9)

Substituting this last expression into Eq. (5) yields the transi-
tion function T (s,t )

E ′ :

T (s,t )
E ′ (α, β ) =

∫
d2ζ

π2
e− |ζ |2

2 (t cos2 θ−s+λ−cos θ )

× eζ (α∗ cos θ−β∗ )−ζ ∗(α cos θ−β ). (B10)

Hence, the function is well behaved and has Gaussian form as
long as

t (cos θ )2 − s + λ − (cos θ )2 � 0. (B11)

On the other hand, inequality (20) for a single mode reads

t (cos θ )2 − s + 1 − (cos θ )2 � 0. (B12)

Hence, we have obtained a very similar inequality where
thermal effects are entirely accounted for in the parameter
λ > 1. Note that the zero-temperature expression is retrieved
for λ = 1. We can finally use the technique outlined in the
main text to compute the noise thresholds that allow for an ef-
ficient simulation of the sampling task on a classical machine.
In particular, we find

pD

ηD
� ηL + 1 − λ

2
. (B13)

If we then express λ in terms of n and ηL, we obtain
pD

ηD
� ηL − n(1 − ηL ). (B14)

The term n(1 − ηL ) represents the correction to the results we
presented in main text [Eq. (37)] for the M = 1 case when
temperature effects are taken into account. As expected, the
additional thermal noise has the effect of reducing the noise
in the detection, which is sufficient to efficiently simulate the
task on a classical machine. We also notice that if

n � ηL

1 − ηL
, (B15)

then the right-hand side of inequality (B14) becomes negative,
and the sampling problem becomes classically simulable even
with ideal detectors. This is, indeed, expected, as we know
that boson sampling with thermal state inputs—or any other
classical input state—is efficiently simulable. As a result, we
envision a transition in the computational complexity of the
problem as the temperature of the environment grows.

APPENDIX C

Here, we provide the proof to obtain the identity (25). We
exploit the Baker-Campbell-Hausdorff formula

eABe−A = B + [A, B] + 1

2!
[A, [A, B]] + · · · (C1)

with the following substitutions:

A = iχa†2a2, B = a. (C2)

We then obtain

U †(χ )aU (χ ) = a − 2iχ (a†a)a + (−2iχ )2

2!
(a†a)2a + · · ·

=
∞∑

n=0

(−2iχa†a)n

n!
a = e−2iχa†aa. (C3)
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