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Fast-forwarding quantum simulation with real-time quantum Krylov subspace algorithms
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Quantum subspace diagonalization (QSD) algorithms have emerged as a competitive family of algorithms that
avoid many of the optimization pitfalls associated with parameterized quantum circuit algorithms. While the vast
majority of QSD algorithms have focused on solving the eigenpair problem for ground-state, excited-state, and
thermal observable estimations, there has been a lot less work in considering QSD algorithms for the problem
of quantum dynamical simulation. In this work, we propose several quantum Krylov fast-forwarding algorithms
capable of predicting long-time dynamics well beyond the coherence time of current quantum hardware. Our
algorithms use real-time evolved Krylov basis states prepared on a quantum computer and a multireference
subspace method to ensure convergence towards high-fidelity, long-time dynamics. In particular, we show that
the proposed multireference methodology provides a systematic way of trading off circuit depth with classical
postprocessing complexity. We also demonstrate the efficacy of our approach through numerical implementations
for several quantum chemistry problems, including the calculation of the autocorrelation and dipole moment
correlation functions.
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I. INTRODUCTION

Quantum simulation remains one of the most promising
applications of quantum computation due its potential
impact on high-energy physics, cosmology, condensed-matter
physics, atomic physics, and quantum chemistry. While the
vast majority of quantum-simulation-based algorithms have
been designed for the fault-tolerant quantum computing era
[1–6], the current generation of noisy intermediate-scale
quantum (NISQ) [7] computers limits the types of algorithms
that could be implemented in the near term [8–11]. Variational
quantum algorithms (VQAs) with parameterized quantum
circuits have emerged as one of the leading methodologies
capable of dealing with these constraints, and within
this context, several NISQ-friendly quantum simulation
algorithms have been proposed. These include the subspace
variational quantum simulator [12], iterative approaches
[13–15], and fast-forwarding approaches such as variational
fast-forwarding [16], variational Hamiltonian diagonalization
[17], and fixed-state variational fast-forwarding [18]. The
overarching idea in all of these methods consists of using
a variational wave function, |ψ (θ)〉 = U (θ) |0〉, defined
with respect to a parameterized quantum circuit U (θ) and
using a quantum-classical computer feedback loop to solve
the optimization problem. In recent years, however, it has
been shown that a wide variety of optimization problems
relevant to VQAs can display nonconvexity and vanishing
gradients, which can lead to fundamental optimization
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challenges [19–23]. In addition, these algorithms suffer from
large measurement overheads which can lead to long run
times [9,10].

In this regard, quantum subspace diagonalization (QSD)
methods have emerged as an alternative approach to the
conventional parameterized quantum circuit methodology
[24–29]. QSD methods express the variational wave func-
tion as a linear combination of nonorthogonal quantum states
that are independently prepared on a quantum computer.
By design, this formulation solves a convex optimization
problem that avoids the challenges associated with con-
ventional VQAs and parameterized quantum circuits (i.e.,
NP-hardness and barren-plateau phenomena [20,22]). While
the vast majority of QSD algorithms have been applied
to ground-state [25,27,28,30], excited-state [26,31,32], and
finite-temperature [33] observable estimations, there has been
a lot less work in applying QSD algorithms to the problem
of quantum dynamical simulation. We should note, however,
that in classical-computer-based quantum dynamics simula-
tions there is a long history of the use of QSD, including the
pioneering work on the iterative Lanczos method by Park and
Light [34].

To the best of our knowledge, the only work to con-
sider the quantum dynamical simulation problem using QSD
methods is that of Lim et al. [35], in which the authors pro-
posed a quantum subspace diagonalization method where the
nonorthogonal states are constructed from the set of cumula-
tive K-moment states, CSK = S0 ∪ S1 ∪ S2 · · · ∪ SK , where
Sp = {Uip · · ·Ui2Ui1 |φo〉}. Here, it is assumed that the Hamil-
tonian can be written as a sum of unitaries Ui and |φo〉 can
be prepared efficiently on a quantum computer. If the set of
unitaries Ui is tensor products of Pauli operators, the problem
of finding the subspace matrices reduces to a measurement
of the quantum state |φo〉 in different Pauli bases and, by
construction, avoids the use of a Hadamard test.
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In this paper, we build off the work by Lim et al. [35]
and Stair et al. [27] and propose a multireference quantum
Krylov fast-forwarding (QKFF) algorithm for quantum dy-
namical simulation. In particular, we show that the addition
of multireference states provides a route towards high-fidelity,
long-time quantum simulation with a small number of Trotter
steps. Our approach provides a controlled trade-off between
quantum complexity, defined with respect to circuit depth, and
classical complexity, defined with respect to the postprocess-
ing complexity (i.e., solving a large system of equations on a
classical computer). Combined with the multifidelity estima-
tion (MFE) protocol proposed in our previous work [31], our
approach avoids the Hadamard test with the added benefit of
using an ultracompact wave-function representation [30] that
is not classically tractable. To demonstrate the potential of
our approach, we present numerical experiments for various
physical problems, including the calculation of the autocor-
relation function and two-time dipole moment correlation
function.

II. QUANTUM KRYLOV FAST-FORWARDING

Quantum dynamical simulation aims to solve the time-
dependent Schrödinger equation (h̄ = 1 throughout),

i ∂t |ψ (t )〉 = Ĥ |ψ (t )〉 , (1)

which describes the dynamics of a general many-body Hamil-
tonian Ĥ written as the sum of N-qubit Pauli terms, Ĥ =∑L

i hiP̂i, where hi is a weighting coefficient and P̂i is a gen-
eral tensor product of N Pauli operators, P̂i = ⊗Ni

k=1σ̂
(mk )
ik

,
with mk denoting the qubit number and ik acting as a la-
bel for the type of Pauli operator {Î, σ̂x, σ̂y, σ̂z}. We assume
that the Hamiltonian is time independent but do not impose
any type of restrictions on the locality of the Hamiltonian,
thereby making this approach applicable to a wide variety
of physical problems of interest. The multireference quantum
Krylov method proceeds by approximating the wave function
|ψ (t )〉 by a linear combination of nonorthogonal quantum
states,

|ψ (t )〉 ≈ |ψK (t )〉 =
M−1∑
n=0

R∑
r=1

cnr (t ) |φnr〉 , (2)

where M corresponds to the single-reference Krylov sub-
space dimension and R corresponds to the total number of
reference states. The choice of nonorthogonal states |φnr〉
ultimately leads to a wide variety of hybrid quantum-classical
algorithms with various algorithmic trade-offs [31]. In this
work, we will consider the real-time evolved Krylov ba-
sis states which form an order-M Krylov subspace, KM =
span{|r〉 , e−iĤτ |r〉 , e−iĤ2τ |r〉 , . . . , e−iĤ (M−1)τ |r〉}, where |r〉
corresponds to the rth reference state and the (n, r)
nonorthogonal state is given by |φnr〉 = e−iĤnτ |r〉.

Substituting Eq. (2) into Eq. (1) and multiplying from the
left by 〈φn′r′ |, we obtain the quantum subspace Schrödinger
equation,

i S∂t c(t ) = Hc(t ), (3)

where c(t ) is a RM × 1 column vector of time-dependent
expansion coefficients, while H and S are RM × RM subspace

matrices defined as [H]n′r′,nr = 〈φn′r′ |Ĥ |φnr〉 and [S]n′r′,nr =
〈φn′r′ |φnr〉, respectively. Fast-forwarding is achieved by solv-
ing the quantum subspace Schrödinger equation, Eq. (3),
with respect to the expansion coefficients c(t ). Numerically,
the solution can be obtained in a variety of different ways,
including the use of linear multistep methods and Runge-
Kutta methods [36], which becomes relevant when the system
size becomes large. However, to obtain a better theoreti-
cal understanding, we focus on the formal solution, written
succinctly as

c(t ) = e−iS−1Ht c(0), (4)

where the initial condition column vector c(0) is given by
c(0) = S−1d(0) and d(0) = (〈φ01|ψ (0)〉 , 〈φ11|ψ (0)〉 , . . . ,

〈φ(M−1)R|ψ (0)〉)T . Note that d(0) corresponds to the first col-
umn of the overlap matrix S if the first reference state is
equal to the initial state |ψ (0)〉. The evaluation of the matrix
exponential in (4) provides an estimate of the complex-valued
expansion coefficients c(t ) for arbitrary times t , allowing for
fast-forwarded predictions well beyond the coherence time of
the quantum hardware. It is worth noting that the overlap ma-
trix S can be poorly conditioned, as demonstrated in previous
works [27,31], requiring special considerations when taking
the matrix inverse. As suggested by Klymko et al. [30], we
use singular-value decomposition [37,38] of S, coupled with
zeroing out singular values that fall below a threshold when
the inverse is constructed (see also Appendix A).

While a single-reference-based QKFF algorithm could be
used in practice, we found that such an approach is severely
limited in predicting long-time dynamics with a small number
of Trotter steps. As a result, our main contribution corre-
sponds to the proposal of a multireference, selected quantum
Krylov fast-forwarding (SQKFF) algorithm for predicting
long-time quantum dynamics with high fidelity, as summa-
rized in Fig. 1. The algorithm starts with a single reference
state which is equal to the initial quantum state supplied by the
user. The projected subspace matrix elements ([H]n′r′,nr and
[S]n′r′,nr) are then estimated on the quantum computer using
either the Hadamard test or MFE protocol [31]. A classical
computer is then used to find the solution to the quantum
subspace Schrödinger equation. If a stopping criterion is met,
the SQKFF algorithm terminates; otherwise, the algorithm
continues by selecting additional reference states based on a
selection process that we will discuss later. Once the new ref-
erence states are selected, the previous three steps are repeated
until the stopping criterion is met.

a. Reference selection process. The reference selection
process is critical for the SQKFF algorithm. While many
choices exist, we propose a simple approach that requires
negligible circuit depth when compared to the Trotterized cir-
cuits required for real-time Hamiltonian simulation. Here, the
basic idea corresponds to performing transition-probability
measurements based on the user-defined initial state |ψ (0)〉.
The transition-probability measurement procedure consists of
two substeps: (1) preparing the Mth Krylov subspace state,
|φM−1,1〉 = e−iĤ (M−1)τ |ψ (0)〉, on the quantum computer and
(2) performing sampling measurements in the Pauli Z ba-
sis (see Fig. 1). The frequency of the measured bit strings
will follow an underlying transition-probability distribution,
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FIG. 1. Overview of the selected quantum Krylov fast-forwarding (SQKFF) method.

p(x) = | 〈x|e−iĤ (M−1)τ |ψ (0)〉 |2. Assuming K total samples,
the bit strings with the largest observed transition probabil-
ities, nx/K , are added to the reference pool R(R), where nx

refers to the number of times the xth bit string was observed.
While a complete determination of p(x) scales exponen-
tially with system size, we have found that relatively modest
sampling suffices; typically, K on the order of hundreds or
thousands of samples provided good estimates. Individual
bit strings are added as reference states iteratively until our
stopping criterion is met. To ensure that the superposition of
bit strings preserves any symmetries inherent in the under-
lying Hamiltonian, a separate subspace Hamiltonian can be
constructed with the sampled bit strings which is then diago-
nalized on the classical computer. The resulting eigenvectors
will provide the numerical values for the amplitudes of the bit
strings, ensuring that all of the Hamiltonian symmetries are
preserved.

b. Stopping criterion. A pragmatic stopping condition is to
specify some maximum time Tmax of physical interest and an
acceptable tolerance ε for some desired dynamical property
such as the magnitude of a correlation function. If for times
t � Tmax the addition of more reference states yields changes
no greater than ε in the dynamical property, then stop.

III. TIME-DEPENDENT OBSERVABLES

The solution to the projected subspace Schrödinger equa-
tion provides an estimate of the complex-valued coefficients
c(t ). Once these coefficients have been determined, it is then
possible to calculate a wide variety of time-dependent observ-
ables through additional postprocessing that may or may not
require additional calls to the quantum computer. In the fol-
lowing, we consider three different time-dependent quantities
that are relevant to quantum chemistry, nuclear physics, and
materials-science calculations: (1) the autocorrelation func-
tion, (2) time-dependent local and global observables, and (3)
two-time correlation functions.

(1) The autocorrelation function, C(t ) = 〈ψ (0)|ψ (t )〉, is
perhaps the only time-dependent quantity that does not re-
quire any additional calls to the quantum computer based on
the quantum Krylov method that we have outlined above.
In general, we can write the approximate autocorrelation

function as C(t ) = ∑
n cn(t ) 〈ψ (0)|φn〉 = d†(0) · c(t ), which

is clearly expressed in terms of quantities that originate from
the SQKFF algorithm.

(2) Time-dependent observables are often desirable for pre-
dicting physical quantities such as charge densities and order
parameters. Based on the linear combination of nonorthogo-
nal state expression from Eq. (2), a general time-dependent
observable may be written as

O(t ) = 〈ψ (t )|Ô|ψ (t )〉
=

∑
k′,k

c∗
k′ (t )ck (t ) 〈φk′ |Ô|φk〉 , (5)

where we used the single index k = nr to simplify the no-
tation. Based on Eq. (5), it is clear that the fast-forwarded
prediction for O(t ) might require additional calls to the quan-
tum computer for evaluating the matrix elements, [O]n′r′,nr =
〈φn′r′ |Ô|φnr〉. Assuming that the observable Ô is expressed
as a linear combination of Pauli words, Ô = ∑Lo

i oiP̂i, this
implies that additional calls would be required for Pauli words
that do not coincide with the Pauli words from the original
Hamiltonian decomposition, Ĥ = ∑L

i hiP̂i. In the worst case,
this would require an additional O(Lo(RM )2) calls to the quan-
tum computer, where Lo is equal to the total number of Pauli
terms for observable, Ô.

(3) Last, we consider the evaluation of two-time correla-
tion functions of the form 〈A(t + τ )B(t )〉, which are used for
the calculation of two-particle correlation functions, Green’s
functions, and dipole moment correlation functions relevant
to many different types of spectroscopies [39–44]. A general
two-time correlation function between observables Â and B̂
may be written as

〈A(t + τ )B(t )〉 = 〈ψ (t + τ )|Âe−iĤτ B̂|ψ (t )〉
=

∑
k′,k

c∗
k′ (t + τ )ck (t ) 〈φk′ |Âe−iĤτ B̂|φk〉 . (6)

While ck (t ) and c∗
k′ (t + τ ) are readily obtained from the

original SQKFF algorithm evaluated with respect to the
initial condition |ψ (0)〉, it is clear from Eq. (6) that
the fast-forwarded prediction for the two-time correla-
tion function 〈A(t + τ )B(t )〉 requires the evaluation of
〈φk′ |Âe−iĤτ B̂|φk〉, which in turn requires a fast-forwarded
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prediction of the time-evolved quantum state |ψ̃ (τ )〉 =
e−iĤτ B̂ |φk〉 = ∑

k′′ ck′′ (τ ) |φk′′ 〉, leading to the evaluation of
〈φk′ |Âe−iĤτ B̂|φk〉 = ∑

k′′ ck′′ (τ ) 〈φk′ |Â|φk′′ 〉. This shows that
an observable estimate of 〈φk′ |Â|φk′′ 〉 would also be required
for the evaluation of the two-time correlation function when
Â 	= B̂. This implies that in the most general case, without
additional simplifications, two separate runs of the SQKFF
algorithm will be required for the prediction of two-time cor-
relation functions. The first run will provide a fast-forwarded
prediction for |ψ (t )〉 = e−iĤt |ψ (0)〉, while the second run
will provide a fast-forwarded prediction of |ψ̃ (τ )〉. For many
physical problems of interest, however, it will be possible to
reduce this requirement.

To illustrate this point, we consider the calculation
of the two-time dipole moment correlation function,
〈μ̂ξ (t + τ )μ̂(t )〉 = 〈	G|μ̂ξ (t + τ )μ̂ξ (t )|	G〉, where |	G〉
corresponds to the ground-state wave function of an
electronic structure Hamiltonian Ĥ and the dipole
moment operator, μ̂ξ = ∑

pq μξ
pqa†

paq, is defined in the
fermionic second quantized spin-orbital basis (additional
details of the dipole moment correlation function and
its evaluation are discussed in Appendix B). The dipole
moment correlation function is a fundamental quantity of
interest for chemistry and materials science because of its
relation to the linear absorption spectrum. Details of this
relationship can be found in Appendix C. To compute
the two-time dipole moment correlation function, we first
require preparing the ground-state wave function on the
quantum computer. The preparation of the ground state
can proceed in several ways and may certainly represent
a challenge of its own. Here, we outline two methods that
are amenable to near-term quantum computing. The first
method assumes the use of a separate quantum Krylov
diagonalization algorithm for ground-state energy estimation
[26,27,30,31], which is able to express the ground-state
wave function as a linear combination of nonorthogonal
states, |ψG〉 ≈ ∑MG−1

n=0 cn |φn〉, where the coefficients cn are
notably different from those in Eq. (2). Assuming that we
have MG nonorthogonal states in order to represent the
ground-state wave function, the total run time of the SQKFF
algorithm will increase by a multiplicative factor of M2

G.
The second methodology does not suffer from the increased
run time and relies on using the results of a variational
quantum eigensolver algorithm to find the approximate
ground-state wave function, |ψG〉 ≈ |ψ (θ)〉 = U (θ) |0〉⊗N ,
where U (θ) represents the parameterized quantum circuit
unitary. Assuming that the approximate ground-state
wave function from either method is written as |	̃G〉, it
is then possible avoid the requirement of running two
separate SQKFF algorithms by using the commonly used
approximation |ψ (t )〉 = e−iĤt |	̃G〉 ≈ e−iẼGt |	̃G〉, where
ẼG is the ground-state energy that would have been
estimated from either method. Once this approximation
is invoked, the two-time dipole moment correlation function
becomes 〈μ̂ξ (t + τ )μ̂(t )〉 = eiẼGτ 〈	̃G|μ̂ξ e−iĤτ μ̂ξ |	̃G〉.
This line of reasoning shows that only a single SQKFF
run will be required for the fast-forwarded prediction of
|ψ̃ (τ )〉 = e−iĤτ μ̂ξ |	̃G〉.

IV. NUMERICAL EXPERIMENTS

In Fig. 2, we compare the single-reference QKFF and
multireference SQKFF algorithms for prototypical quantum
chemistry Hamiltonians consisting of a H2O molecule with
fixed bond angle φ = 104.45 [Fig. 2(a)], a BeH2 molecule
[Fig. 2(b)], and a linear hydrogen chain [Fig. 2(c)]. In all
three cases, the bond length is chosen to be equal to 1.85 Å.
Details of the quantum chemistry Hamiltonian, basis sets,
and active space selection for these systems are given in
Appendix A of our previous work [31]. It is important to
note that due to various symmetries inherent in the quantum
chemistry Hamiltonian, the dynamics will be constrained to
a symmetry sector that is smaller than the full Hilbert space.
The dimension of the symmetry sector will be equivalent to
the full configuration interaction (CI) space

( n
ηα

)( n
ηβ

)
, where

n corresponds to the number of spatial orbitals and ηα (ηβ)
corresponds to the number of α (β) electrons. For H2O, BeH2,
and H6 with active spaces (number of electrons, number of
spatial orbitals) of (8,6), (4,6), and (6,6) under a closed-
shell configuration, the full CI space will have dimensions(6

4

)(6
4

) = 225,
(6

2

)(6
2

) = 225, and
(6

3

)(6
3

) = 400, respectively.
Here, we focus on the fast-forwarded prediction of the au-
tocorrelation function, C(t ) = 〈ψ (0)|ψ (t )〉, using numerical
state vector simulations with ideal time-evolution circuits.
Future work will provide a more detailed analysis of the
Trotter error, shot-noise error, and other hardware noise ef-
fects. For Figs. 2(a) and 2(b), the fast-forwarded prediction
used the Krylov subspace dimension, M = 6, while Fig. 2(c)
used the maximum Krylov dimension, M = 10. For all
simulations, the single-determinant Hartree-Fock state was
used as the initial state unless otherwise specified. In general,
we found similar behavior for different single-determinant
and bit-string initial states as well as more complicated initial
states such as the dipole moment ground-state wave function
used in Fig. 5 below. A more general analysis of the fast-
forwarding prediction capabilities of the SQKFF algorithm
based on the initial state is left for future work.

Reference states were added with the selection process
discussed above. The top four rows display the explicit
time-evolved correlation function with a different number of
reference states. The bottom row displays the infidelity of the
true wave function with respect to the QKFF wave function,
where the state fidelity is defined as F (t ) = |〈ψ (t )|ψK (t )〉|2.
From the top row of Fig. 2, it is clear that the single-reference
fast-forwarded prediction (red line) matches the true corre-
lation function (black line) for only extremely short times.
As additional reference states are added, we observe that the
predicted autocorrelation function more closely aligns with
the true correlation function. We emphasize that this increased
fidelity does not require additional circuit depth and requires
only additional calls to the quantum computer to estimate the
projected subspace matrix elements [H]n′r′,nr and [S]n′r′,nr .

Before continuing, it is useful to understand the percentage
of full CI space required to generate these long-time predic-
tions. In all cases, we define this percentage as RM/

( n
ηα

)( n
ηβ

)
(recall that R is the number of reference states and M is the
Krylov subspace dimension). For H2O, we get percentages
of 2.7%, 16%, 29.3%, and 42.7% for the four cases con-
sidered in Fig. 2(a). For BeH2, the percentages correspond
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FIG. 2. Fast-forwarding of the autocorrelation function, Cn(τ ) = 〈ψ (0)|ψ (nτ )〉, for (a) the H2O molecule, (b) the BeH2 molecule, and
(c) the H6 hydrogen chain. The top four rows denote the absolute value squared of the autocorrelation function for various numbers of reference
states. The bottom row displays the infidelity of the true wave function |ψ (t )〉 with respect to the SQKFF predicted wave function, |ψK (t )〉. In
all cases, a time step size of τ = 0.1 a.u. was used. For (a) and (b), the fast-forwarded prediction used the Krylov subspace dimension, M = 6,
while (c) used the maximum Krylov dimension, M = 10. In all cases, the single-determinant Hartree-Fock state was used as the initial state.

to 2.7%, 8%, 13.3%, and 21.2% for the four cases con-
sidered in Fig. 2(b). For H6, the percentages correspond to
2.5%, 25%, 50%, and 75%. In all cases, these percentages
serve to illustrate the point that while our method works as
intended, the convergence tends to be quite slow with regard to
the number of reference states required. Future work will ex-
plore alternative approaches for reference-state selection that
may improve upon this convergence, although it is important
to note that, in general, fast-forwarding will be constrained by
certain no-go theorems [45,46] and our method merely serves
to extract the most information from a small number of time
steps n required for a maximum prediction time Tmax.

In this regard, the route towards high-fidelity, long-time
quantum simulation can be achieved in two distinct ways:
(1) increasing the Krylov subspace dimension M or (2) in-
creasing the number of reference states R. Ultimately, this
leads to a trade-off between quantum and classical complexity
for obtaining reliable high-fidelity, long-time predictions. In
Fig. 3, we highlight this trade-off by calculating the state
fidelity for the water molecule as a function of the Krylov
dimension M on the y axis and the number of reference states
R on the x axis. In all cases, we chose the singular-value
threshold ε = 1 × 10−9. In general, however, the singular-
value threshold should be optimized for different numbers
of reference states and Krylov subspace dimensions since it
affects the fidelity prediction. These plots merely serve to pro-

vide a proof of concept of the quantum-classical complexity
trade-off. In Fig. 3, it is shown that high fidelities above 90%
can be achieved by increasing either of the two independent
axes. In the near term, in which quantum hardware provides
a severe limit on the gate depth, this plot illustrates how
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Quantum complexity corresponds to circuit depth. Classical com-
plexity is proportional to the number of reference states.
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FIG. 4. Noise robustness of the SQKFF algorithm for the same molecular systems as in Fig. 2. For each of the molecular systems, the
calculations were performed using a total of (a) 16, (b) 8, and (c) 30 reference states with time step size τ = 0.1 a.u. Additive complex
Gaussian noise with zero mean and standard deviation σ = {10−3, 10−5, 10−7, 10−9} is included for all of the matrix elements of H and
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(c) ε = {10−1, 10−3, 10−5, 10−7, 10−9} was used for each of the noise standard deviation parameters.

additional resources can be allocated to a classical computer in
order to improve quantum dynamical simulation with higher
accuracy.

In addition to the quantum-classical trade-off shown in
the previous plot, we also studied the noise robustness of
the SQKFF algorithm. In Fig. 4, we plot the infidelity of the
H2O, BeH2, and H6 molecules with the same parameters as in
Fig. 2 (black lines). To study the effect of random noise, we
included additive Gaussian noise with zero mean and stan-
dard deviation σ = {10−3, 10−5, 10−7, 10−9}, shown in red.
The magnitude of the standard deviation ultimately controls
the digit precision of the projected subspace matrix elements
[H]n′r′,nr and [S]n′r′,nr . For all three molecular systems, we
found that the fidelity could still remain close to 90% at
long times even with Gaussian noise as large as σ = 10−3,
which highlights the noise robustness of the SQKFF algorithm
relevant for near-term quantum hardware.

Finally, we test the SQKFF algorithm for the predic-
tion of the two-time dipole moment correlation function,
〈μ̂ξ (t + τ )μ̂(t )〉 = eiẼGτ 〈	̃G|μ̂ξ e−iĤτ μ̂ξ |	̃G〉, where, as dis-
cussed previously, only a single run of the SQKFF algorithm
is required. We emphasize that these plots serve as a proof
of concept for this algorithm; however, based on the re-
sults in Appendix C, we would recommend using a standard
quantum Krylov method for ground- and excited-state en-
ergy estimation [25–28,30,31] or excited-state variational
quantum eigensolver methods [43,47,48] for the purpose
of reconstructing the oscillator strength spectrum with cur-
rent quantum hardware, especially when only low-lying
excited-state energies and oscillator strengths are desired. The
advantage of this algorithm would correspond to its black-
box nature, where zero knowledge is required to estimate the
ground- or excited-state energies for the physical system of in-
terest. In Fig. 5(a), we plot the infidelity of the dipole moment
propagated wave function, |μ(t )〉 = e−iĤt μ̂ |	G〉, with respect
to the quantum Krylov wave function for the linear H6 hydro-
gen chain with the same parameters as in Fig. 2. In Fig. 5(b),
we plot the oscillator strength absorption spectrum, which is
defined as the Fourier transform of the time-evolved dipole
moment correlation function (see Appendix C for details). To
ensure that we obtain a stable and well-defined absorption

spectrum, we added finite linewidth to the correlation function
discussed in Eq. (C1) in Appendix C, which results in an
additional e−γ t multiplicative factor, where γ corresponds to
the finite linewidth. For all of the numerical experiments,
we chose a linewidth equal to γ = 1.5 × 10−2 atomic units.
Here, we observe the same general trends from the auto-
correlation function prediction shown in Fig. 2. While the
single-reference QKFF algorithm provides an accurate predic-
tion of the first transition peak [see top panel of Fig. 5(b)], it
is not able to accurately predict the higher-energy transition
peaks, as highlighted by the black line. As more reference
states are added, however, we find that the absorption spec-
trum more closely aligns with the true absorption spectrum
with minor deviations at very high energies. Ultimately, this
illustrates that the SQKFF algorithm works well for the
prediction of a wide variety of time-dependent observables
ranging from the autocorrelation function to the two-time
correlation function relevant for a wide variety of physical
applications.

V. CONCLUDING REMARKS

To conclude, we have shown that real-time quantum
Krylov subspace algorithms can be used to fast-forward quan-
tum simulation well beyond the coherence time of current
quantum hardware. We developed a theory quantum Krylov
fast-forwarding and proposed a selected quantum Krylov
fast-forwarding algorithm that is capable of providing an
estimate of time-dependent quantum states, which works es-
pecially well when the initial state contains a polynomial
number of eigenstates [18,46]. We validated the algorithm
with numerical experiments focusing on the calculation of the
autocorrelation and dipole moment correlation functions for
various molecules. While our work provides a way to study
a wide range of time-dependent phenomena with near-term
quantum hardware, there remains many important avenues
of research for improving the SQKFF algorithm. For in-
stance, while we provided evidence of the noise robustness
of the SQKFF algorithm, further work should elaborate on
the effects of Trotter error, shot noise, and other realis-
tic hardware imperfections. Furthermore, while our results
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FIG. 5. (a) Infidelity of the dipole moment propagated wave function |μ(t )〉 = e−iĤt μ̂ |	G〉 compared to the SQKFF prediction for a linear

H6 hydrogen chain. (b) Oscillator strength absorption spectrum with energy in Hartree energy units Eh with different numbers of reference
states R = {1, 10, 20, 30}. In all cases, a Krylov dimension size of M = 6 was used along with the time step size τ = 0.1 a.u.

indicate that adding reference states provides a way to achieve
long-time, high-fidelity quantum dynamics simulations, the
subspace dimension of the proposed algorithms required
relatively large subspaces when compared to the symmetry-
projected subspaces inherent in the chemical systems. Even
for these modest systems, the choice of individual bit strings
as reference states resulted in relatively slow convergence,
and therefore, alternative approaches may be required for
larger systems. Further work should focus on providing a
systematic study of the choice of the selection process and
reference states in order to improve the SQKFF algorithm’s
performance. Additional work should also aim to develop
and extend this algorithm so that it becomes applicable to
time-dependent Hamiltonians.
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APPENDIX A: SINGULAR-VALUE DECOMPOSITION

For completeness, we outline the approach taken for the
construction of the inverse of the complex (Hermitian) overlap

matrix S based on singular-value decomposition (SVD) as
suggested in Ref. [30]. The complex SVD of S is [37,38]

S = UDV†, (A1)

where U and V are unitary matrices, D is a diagonal ma-
trix with real elements (called the singular values), D =
diag(d1, d2, . . . , dK ), and † denotes the Hermitian conjugate
(or conjugate transpose). In the present case, the dimension
of all matrices is K × K , where K = MR, as discussed in the
main text. As the matrix S becomes ill conditioned owing to
linear dependencies in the Krylov vectors, one or more of the
{dj} can become quite small relative to the largest singular
values. If a small positive threshold ε is introduced, one can
set to zero all the {d j} in D that are � ε and still obtain an
excellent description of S via Eq. (A1).

The appropriate inverse of S is then computed as

S−1 = VD−1U†, (A2)

where D−1 = diag(1/d1, 1/d2, . . . , 1/dK ), but such that
whenever d j is zero, the corresponding 1/d j is also set to
zero. This well-established approach in numerical analysis,
although slightly nonintuitive, effectively represents S and
S−1 in a lower-dimension space that is not ill conditioned.
For the majority of the simulations in Sec. IV of the main
text, a threshold of ε = 1 × 10−9 was used unless specified
otherwise.

APPENDIX B: DIPOLE MOMENT OPERATOR

The dipole moment coefficients μpq consist of one-
electron integrals which can be defined explicitly as μpq =∫

dσ φ∗
p(σ )(−er)φq(σ ), where σ is a generalized coordinate
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consisting of the spatial and spin degrees of freedom, σ =
(r, s), while the function φ(σ ) represents a one-electron spin
orbital. These quantities can be calculated using standard
PYTHON packages such as PYSCF [49].

APPENDIX C: RELATION TO THE LINEAR
ABSORPTION SPECTRUM

Consider Fermi’s golden-rule expression for the line-shape
function for incident radiation polarized in the ξ th direction
(ξ ∈ {x, y, z}, h̄ = 1):

Iξ (ω) =
∑
i, f

ρi|〈ψi|μ̂ξ |ψ f 〉|2δ(E f − Ei − ω), (C1)

where Ei and E f correspond to the energies of the initial and
final electronic states and ω is the frequency of the incident
radiation. Here, ρi is the Boltzmann factor for describing a
system initially in thermal equilibrium. At zero temperature,
the Boltzmann factor is equal to 1 for the ground-state |ψG〉
and 0 everywhere else, reducing the above equation to

Iξ (ω) =
∑

f

|〈ψG|μ̂ξ |ψ f 〉|2δ(E f − EG − ω). (C2)

Using δ(ω) = ∫ ∞
−∞ e−iωt dt , we make the following simplifi-

cations:

I (ω) =
∫ ∞

−∞
e−i(E f −EG−ω)t

∑
f

|〈ψG|μ̂ξ |ψ f 〉|2 dt

=
∫ ∞

−∞
ei(EG+ω)t

∑
f

〈ψG|μ̂ξ e−iĤt |ψ f 〉 〈ψ f |μξ |ψG〉 dt

=
∫ ∞

−∞
ei(EG+ω)t 〈ψG|μ̂ξ e−iĤtμξ |ψG〉 dt

=
∫ ∞

−∞
ei(EG+ω)t 〈μξ (0)|μξ (t )〉 dt, (C3)

where |μξ (t )〉 = e−iĤt μ̂ξ |ψG〉. An absorption spectrum or os-
cillator strength can then be extracted from the real part of the
line-shape function,

f (ω) = 2

3
ω

∑
ξ

Re[Iξ (ω)]. (C4)

This result shows how the dipole moment autocorrelation
function is related to absorption spectrum. It should be noted
that the initial state should ideally correspond to the electronic
ground-state wave function.
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