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Limit theorems and localization of three-state quantum walks
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In this article, we undertake a detailed study of the limiting behavior of a three-state discrete-time quantum
walk on a one-dimensional lattice with generalized Grover coins. Two limit theorems are proved and conse-
quently we show that the quantum walk exhibits localization at its initial position for a wide range of coin
parameters. Finally, we discuss the effect of the coin parameters on the peak velocities of probability distributions
of the underlying quantum walks.
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I. INTRODUCTION

Quantum walks, the quantum analog of classical random
walks [1], represent a universal model for quantum computa-
tion [2,3]. Besides being a useful primitive to design quantum
algorithms [4–7], quantum walks also provide a useful frame-
work to model transport in quantum systems [8–10]. Just
as in the classical scenario, quantum walks can be defined
in both discrete time and in continuous time [11–13]. Of-
ten for several of the aforementioned applications, studying
the long-time behavior of both discrete-time and continuous-
time quantum walks is extremely crucial. Quantum evolutions
are unitary and hence quantum walks do not naturally con-
verge to a limiting distribution, unlike classical random walks.
However, for a quantum walk, one can define the limiting
distribution as the long-time average probability distribution
of finding the walker in each node of the graph. This long-time
behavior of quantum walks has been fundamental to demon-
strate the speedup of several quantum algorithms [4,14,15],
to prove the equivalence between the circuit and Hamiltonian
models of quantum computing [16,17], and also to under-
stand the phenomenon of mixing of quantum walks [1,18–20].
Consequently, it is important to develop a more comprehen-
sive understanding of the limiting distributions of the various
quantum walks and to highlight the features that distinguish
them from their classical counterparts.

Localization has been widely studied in the context of
discrete-time quantum walks and its precise definition varies
across articles (for example, see Refs. [21–26] and the ref-
erences therein). The probability of finding the walker at a
fixed lattice point converges to zero after infinite long time
in the case of a Hadamard walk on a line with two inner
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states [27]. In this paper our goal is to study the limiting
distribution and the localization phenomena for the coined
three-state discrete-time quantum walk on a line. We consider
two distinct families of parametrized coin operators which we
introduced in Ref. [28]: one that includes the widely used
Grover coin as a special case, while the other does not. In
particular, for this graph, we demonstrate, localization on a
general family of coins that does not include the Grover coin.

Inui et al. derived the first long-time limit theorem for
the three-state quantum walk on a line with a Grover coin
(generally referred to as the Grover walk) and showed that
the probability of finding the particle at the origin does not
converge to zero after infinite time steps, demonstrating lo-
calization [23]. On the other hand, the three-state quantum
walk with an asymmetrical jump and three-state quantum
walk on a triangular lattice, both using the Grover coin, do
not exhibit localization [22,29]. The probability of staying
at the initial position also vanishes for some special set of
escaping initial states in the case of a two-dimensional Grover
walk on the Cartesian lattice, leading to partial trapping [21].
Furthermore, there exists quantum coins for such escaping
states (corresponding to strong trapping) [25]. In Ref. [30],
the authors have classified explicitly the coins leading to the
trapping effect for a walk on a two-dimensional square lattice
based on the existence or nonexistence of an escaping state.

Attempts have been made to generalize the Grover walk
in the literature by considering parametric coin operators
that contain the Grover matrix for some specific values of
the parameters [21,28,31,32]. Discrete-time quantum walks
with a generalized Grover coin are generally referred to
as generalized Grover walks (GGWs). One of the endeav-
ors of the community has been to understand the dynamics
of GGWs in order to distinguish them from their classical
counterparts [28,33,34]. The dependence of the underlying
quantum walk dynamics on the values of the coin parameters
has been explored in Ref. [35]. The limit distribution of a
four-state quantum walk with a parametric coin has been in-
vestigated in Ref. [33]. The authors of Ref. [36] have provided
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analytical results for the asymptotic value of the return
probability and discuss the localization of a two-state one-
dimensional Discrete-time coined quantum walks (DTQWs)
as t → ∞. In Ref. [31] Štefaňák et al. have introduced two
families of parametric coin operators: one by deforming the
eigenvalues and the other by deforming the eigenvectors of
the Grover coin. Furthermore, in Ref. [37] Štefaňák et al. have
presented a rigorous analysis of the limiting behavior of these
coined walks and the role of eigenstates for the localization
phenomena. In Ref. [34] we have explored the localization
property of four state quantum walks on two-dimensional
lattices with generalized Grover coins.

In terms of GGWs, it is undoubtedly challenging to find the
parametric coin matrices that preserve the property of Grover
walks. With an appropriate choice of coin operator from the
generalized coin collections, the result regarding localiza-
tion at a position may help us to design effective quantum
algorithms based on the corresponding quantum walk [38].
Furthermore, it is interesting to ask whether it is indeed possi-
ble to study the long-time dynamics of discrete-time quantum
walks using a class of parametric coin operators that do not
include the Grover coin. Can such quantum walks exhibit lo-
calization? In this article, we make inroads towards answering
these questions by considering two families of parametric or-
thogonal coin operators of dimension 3 × 3. Mathematically,
these coin operators are a linear sum of permutation matrices
and hence they can have convenient quantum circuit repre-
sentation [39]. These coins have been used recently to study
properties of quantum walks dynamics such as periodicity of
evolution [28]. In this article, we derive the long-time-limit
probability distributions and study the localization of three-
state DTQWs with these families of parametric coin operators.
Using this limiting value of the probability measure we are
able to justify localization phenomena at a vertex for a given
initial state.

Furthermore, the spread of the quantum walk wave func-
tion on a line can be modeled using the theory of wave front
propagation [40–42]. In this framework, Ref. [31] analyzed
the peak velocities of the wave functions of two GGWs and
explored the dependence of the coin parameter on the rate
of propagation of the walk through the line. Furthermore,
the localization of the wave function is dependent on the
eigenvalues of the evolution operator that are independent of
the wave number (constant). These correspond to the peak
of the probability distribution which does not propagate, en-
suring localization. Based on the constant eigenvalues of the
evolution operator, a necessary and sufficient condition is
obtained in Ref. [26] for quantum walks on infinite lattices,
corresponding to a periodic transition operator that does not
localize at a vertex.

In this article, following Ref. [37], we also find the peak
velocities of the wave function as a function of the parameters
corresponding to the general families of coin operators that
we have considered. We revisit the localization phenomena
from the aspect of zero traveling velocity of one of the peaks.
Consequently, we obtain new families of 3 × 3 generalized
Grover coin operators, preserving localization, which is differ-
ent from the two classes mentioned in Ref. [31]. This answers
a question posed by Štefaňák et al. in Ref. [31]. In this work
we note that the permutation coins play a key role in the

behavioral changes of probability distribution at a time and
sign changes of group velocities. These observations make the
proposed walk intriguingly different from the existing GGWs
in the literature.

The organization of this paper is as follows: In Sec. II
we formally define the quantum walk we consider, namely,
three-state DTQWs on a line with parametric coin operators.
We present two limit theorems on probability distributions at
infinite time steps and establish the localization property in
Sec. III. In Sec. IV we determine the right- and left-traveling
peak velocities of the probability distribution as a function of
coin parameter and discuss the impact of the peak velocities
on the localization phenomena of the walks. Finally, we con-
clude this article with some problems that can be considered
in the near future.

II. THREE-STATE WALK ON A LINE AND GENERALIZED
GROVER COINS

In this section we review three-state quantum walks on a
line [23,31] and we briefly discuss generalized Grover coins
of dimension 3 × 3 that were recently introduced in the liter-
ature [28].

Discrete time coined quantum walks (DTQWs) are defined
on the Hilbert space H = Hp ⊗ Hc, where Hp is the position
space and Hc is the coin space. The Hilbert space Hp is
considered as separable and is isomorphic to l2(Z), the Hilbert
space of all square summable functions on Z. Hence the
superposition of the canonical basis vectors subject to the unit
norm condition form the position state vector |m〉 ∈ Hp for
the position m ∈ Z [13]. Otherwise, in a more conventional
way we can say that Hp = Span{|m〉 |m ∈ Z} [31,43].

At every step the intrinsic behavior of the quantum particle
allows it to move to the right or to the left or stay at its
current position. Hence the dimension of Hc is three, which
is the number of internal degrees of freedom (called chirality)
of the particle at each step. The vector of the standard basis
assigned to each of these three displacements spans the space
Hc, i.e., Hc = Span{|1〉 , |2〉 , |3〉}, where {|l〉 | l = 1, 2, 3} is
the canonical ordered basis of C3. Thus the total state space
H = Span{|m〉 ⊗ |l〉 | m ∈ Z, l ∈ {1, 2, 3}} and is isomorphic
to l2(Z) ⊗ C3 [44].

One single step of a DTQW is described by a unitary
operator U = S(I ⊗ C), where I is the identity operator acting
on Hp, C is the coin operator acting on the space Hc while S
is the conditional shift operator, allows the walker to transition
into the next step, controlled by the state of the coin register.
The operator S, acting at a particle in position m ∈ Z results
in

S =
∑
m∈Z

(|m − 1〉 〈m| ⊗ |1〉 〈1| + |m〉 〈m| ⊗ |2〉 〈2|

+ |m + 1〉 〈m| ⊗ |3〉 〈3|).
The state vector |ψ (t )〉 ∈ H of the walker after t time steps is
given by

|ψ (t )〉 = U |ψ (t − 1)〉 = Ut |ψ (0)〉
=
∑
m∈Z

∑
l∈{1,2,3}

ψl (m, t ) |m〉 ⊗ |l〉 , (1)
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where the product state of initial position state and initial
coin state is the initial state vector |ψ (0)〉 ∈ H and ψl (m, t )
is the probability amplitude at time t and at the position m,
with coin state |l〉 , l ∈ {1, 2, 3}. Then at time t and at m ∈ Z
the probability amplitude vector for chirality state being left,
center, or right is

|ψ (m, t )〉 = [ψ1(m, t ), ψ2(m, t ), ψ3(m, t )]T . (2)

Therefore we write

|ψ (t )〉 = [. . . , |ψ (−1, t )〉 , |ψ (0, t )〉 , |ψ (1, t )〉 , . . .]T .

Now for a complex-valued function f ∈ l2(Z), its dis-
crete Fourier transform f : I → C is defined as f (k) =∑

m∈Z f (m)eimk ∈ L2(I), where I = [−π, π ] and L2(I) is the
Hilbert space consisting of all square integrable functions on
I. Thus the Fourier transform from l2(Z) to L2(I) extends to

the Fourier transformation of |ψ (m, t )〉 as

|�(k, t )〉 =
∑
m∈Z

|ψ (m, t )〉 eikm, (3)

where |�(k, t )〉 = [�1(k, t ), �2(k, t ), �3(k, t )]T , �l (k, t ) =∑
m∈Z ψl (m, t )eikm, l = 1, 2, 3 for k ∈ I. The inverse Fourier

transformation is given as

|ψ (m, t )〉 = 1

(2π )

∫
[−π,π]

e−ikm |�(k, t )〉 dk.

Now we obtain the time evolution of |ψ (m, t )〉 from Eqs. (1)
and (2) as

|ψ (m, t + 1)〉 = |1〉 〈1|C |ψ (m − 1, t )〉 + |2〉 〈2|C |ψ (m, t )〉
+ |3〉 〈3|C |ψ (m + 1, t )〉 ,

where C is the coin operator. Then the following holds
from (3):

|�(k, t + 1)〉 =
∑
m∈Z

[|1〉 〈1|C |ψ (m − 1, t )〉 + |2〉 〈2|C |ψ (m, t )〉 + |3〉 〈3|C |ψ (m + 1, t )〉]eimk

=
∑
m∈Z

eik |1〉 〈1|C |ψ (m − 1, t )〉 ei(m−1)k + |2〉 〈2|C |ψ (m, t )〉 eimk + e−ik |3〉 〈3|C |ψ (m + 1, t )〉 ei(m+1)k

= (eik |1〉 〈1|C + |2〉 〈2|C + e−ik |3〉 〈3|C) |�(k, t )〉
= diag(eik, 1, e−ik )C |�(k, t )〉 .

Let Ũ (k) = D(k)C for D(k) = diag(eik, 1, e−ik ). Then from above the time evolution in momentum space is given as [43,45]

|�(k, t )〉 = Ũ (k) |�(k, t − 1)〉 = Ũ t (k) |�(k, 0)〉 . (4)

Let the eigenvalues of the unitary operator Ũ (k) be of the form eiw j (k) with the corresponding eigenvector |v j (k)〉 for j ∈
{1, 2, 3}. Then the vector of probability amplitudes can be determined by Eqs. (3) and (4) as follows:

|ψ (m, t )〉 = 1

(2π )

∫
k∈(−π,π]

e−ikm |�(k, t )〉 dk =
3∑

j=1

1

(2π )

∫
k∈(−π,π]

ei[−km+w j (k)t] 〈v j (k)|�(k, 0)〉 |v j (k)〉 dk. (5)

From (1), the probability of finding the walker at time t and
at position m is

P(m, t ) = 〈ψ (m, t )|ψ (m, t )〉
= |ψ1(m, t )|2 + |ψ2(m, t )|2 + |ψ3(m, t )|2, (6)

and it can be derived from Eq. (5). Whereas, the probabil-
ity P(0, t ) of finding the walker at position m = 0 after t
time steps, which is also called the return probability of the
walker to the initial position 0, can be evaluated as P(0, t ) =
〈ψ (0, t )|ψ (0, t )〉. Note that, if the walk starts at m = 0 and is
localized there, then from Eq. (1), we get that

|ψ (0)〉 =
3∑

l=1

ψl (0, 0) |0〉 ⊗ |l〉 ,

whereas the other probability amplitudes ψl (m, 0) = 0 for
m �= 0. Hence from Eq. (3) we have that |�(k, 0)〉 =
|ψ (0, 0)〉. We assume that the initial state of the walker is
at the origin. Thus, the initial quantum states are determined
by |ψ (0, 0)〉 = [α, β, γ ]T , where α, β, γ ∈ C and |α|2 +
|β|2 + |γ |2 = 1.

We emphasize that the localization phenomena is ex-
tensively studied in the literature for DTQWs on different
topologies of the underlying system with a variety of coin
operators, as mentioned in Sec. I. However, the mathematical
definition of localization associated with the probability mea-
sure of finding the walker at a vertex differs across articles.
For example, in Ref. [21], the positive value of the total
time-averaged probability limT →∞ 1

T

∑T −1
t=0 P(m, t ), T � 1

is considered as the condition for localization, whereas in
Ref. [46] a positive value of

∑
m∈Z limt→∞ P(m, t ) is taken to

be the criterion for localization. Indeed, it has been shown that
the localization phenomena at the initial position depends on
the initial state of the walker [23]. In this paper, we follow the
localization criterion outlined in Ref. [47]. Thus we consider
the localization of a DTQW at a location m corresponding
to an initial state if limt→∞ P(m, t ) > 0. A computable for-
mula of this limiting value is obtained in terms of the coin
parameters and a generic initial state. Therefore, the limiting
value can be obtained with a given initial state and the coin pa-
rameters and consequently, the localization phenomena can be
tested. For completeness, we also classify all the initial states
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for which the proposed walks exhibit localization. Finally we
provide a condition based on the coin parameters satisfying
which the proposed walks show localization in the sense of
Ref. [46].

A. Generalized Grover coins

In this work we consider 3 × 3 parametric coin operators
to describe the three-state DTQWs on the line. In particular,
we choose C ∈ X and C ∈ Y [28], where

X =
⎧⎨
⎩
⎡
⎣ x y 1 − x − y

1 − x − y x y
y 1 − x − y x

⎤
⎦ : x2 + y2 − x − y + xy = 0, −1

3
� x � 1

⎫⎬
⎭,

Y =
⎧⎨
⎩
⎡
⎣ x y −1 − x − y

−1 − x − y x y
y −1 − x − y x

⎤
⎦ : x2 + y2 + x + y + xy = 0, −1 � x � 1

3

⎫⎬
⎭.

It is easy to check that the Grover coin is an element of
X by setting x = −1/3 and y = 2/3; whereas the negative
of the Grover coin is a member of Y setting x = 1/3 and
y = −2/3. It is also shown in Ref. [28] that X and X ∪ Y
both form groups under matrix multiplication. Furthermore,
we consider one-parameter trigonometric parametrization of
X and Y as Xθ and Yθ , respectively (see Sec. III). Then it is
obvious that, if A(θ ) ∈ Xθ ∪ Yθ , then [A(θ )]−1 = [A(θ )]T =
A(−θ ) where θ ∈ [−π, π ]. Another salient feature of these
parametric orthogonal matrices is that these are permutative
matrices; that is, any row of any such matrix is a permutation
of any other row, a combinatorial structure of the Grover
matrix. Besides, matrices in X ∪ Y can be expressed as a
linear sum of permutation matrices. Consequently, these coins
can conveniently be implemented by parametrized quantum
circuits [48]. Finally, we establish from the numerical compu-
tation that limt→∞ P(m, t ) at the initial position m is equal for
the coin operators A(θ ) and its inverse A(−θ ).

As mentioned in the introduction, attempts have been made
in the literature to study coined quantum walks by gener-
alizing the Grover diffusion matrix with parametric unitary
matrices. However, the existing classes of parametric coins do
not have any algebraic structure such as a group structure. This
makes the proposed classes of coins significantly different
from the existing parametric coins in the literature. Moreover,
note that Det(A) = 1 if A ∈ X and Det(A) = −1 if A ∈ Y (see
Ref. [28]). Hence the matrices in X and Y belong to different
connected components in the Lie group formed by orthogonal
matrices of order 3.

In the next two sections we determine the limit laws of
the probability distribution for infinite time steps. Besides,
we discuss the localization phenomena of the walks from two
different aspects: existence of the nonzero return probability
limt→∞ P(m, t ) and the zero velocity of probability distribu-
tion peak of the particle to stay at the position m = 0 on the
line.

III. LIMIT THEOREMS FOR WALKS WITH
GENERALIZED GROVER COINS

The asymptotic probability distribution and the localiza-
tion of three-state walks on one- and two-dimensional lattices
with parametric coin operators have been studied [46,49]. In
this section, we consider the three-state walks on a line with
parametric coin operators C ∈ X ∪ Y . We present the limit

value of the probability that a walker can be found at a vertex
on Z for long time. In addition, we show the localization
phenomena of these walks.

A. Coins from X
The evolution operator of three-state walk with generalized

Grover coin in Fourier domain is given by ŨX (k) = D(k)C,
where C ∈ X and k ∈ (−π, π ]. Indeed, we write explicitly

ŨX (k) =
⎡
⎣ xeik yeik (1 − x − y)eik

1 − x − y x y
ye−ik (1 − x − y)e−ik xe−ik

⎤
⎦,

(7)

where x2 + y2 + xy − x − y = 0.
First we derive the eigenvalues and eigenvectors of ŨX (k)

and ŨY (k) via two theorems. They are defined as follows:
Theorem III.1. Consider ŨX (k) as defined in Eq. (7). Then

the set of eigenpairs (λ j (k), v j (k)) of ŨX (k) are

λ j = eiω j (k),

|v j (k)〉 = 1

‖ f j (ω(k))‖
[

y + λ j (1 − x − y)

(1 − x − y)

+ λ jye−ik, 1,
(1 − x − y) + λ jy

y + λ j (1 − x − y)eik

]T

,

where ω1(k) = 0, ω2(k) = −ω3(k) = ω(k) with cos ω(k) =
x cos k − (1 − x)/2 and

‖ f j (ω(k))‖2 = 1 + x − 2x cos ω(k)

1 + x − 2x cos [ω(k) − k]
+ 1

+ 1 + x − 2x cos ω(k)

1 + x − 2x cos [ω(k) + k]
,

for j = {1, 2, 3}.
Proof. Note that the characteristic polynomial of ŨX (k) is

κX (λ) = λ3 − (2 cos k + 1)xλ2 + (2 cos k + 1)xλ − 1. Thus
the eigenvalues and the corresponding eigenvectors can be
obtained by simple algebraic computations. �

Let us take |�(k, 0)〉 = [α, β, γ ]T ∈ C3,
where |α|2 + |β|2 + |γ |2 = 1. From Eq. (5),
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we have

|ψ (m, t )〉

=
3∑

j=1

1

2π

∫ π

−π

ei[−km+w j (k)t] 〈v j (k)|�(k, 0)〉 |v j (k)〉 dk

=
3∑

j=1

[ψ j (m, t, 1, α, β, γ ), ψ j (m, t, 2, α, β, γ ),

ψ j (m, t, 3, α, β, γ )]T , (8)

where

ψ j (m, t, l, α, β, γ )

= 1

2π

∫ π

−π

ei[−km+w j (k)t] 〈v j (k)|�(k, 0)〉 〈l|v j (k)〉 ,

and {|l〉 |l = 1, 2, 3} is the canonical basis of C3.
Clearly, ψl (m, t ) =∑3

j=1 ψ j (m, t, l, α, β, γ ), for l =
1, 2, 3 and hence

P(m, t ) =
∑

l∈{L,S,R}
|ψl (m, t )|2 =

3∑
l=1

3∑
j=1

|ψ j (m, t, l, α, β, γ )|2.

Let us denote the probability of finding a particle at node m af-
ter time steps t with chirality l by P(m, t, l ), then P(m, t, l ) =
|ψl(m, t )|2, where l = 1, 2, 3.

Now we state the long-time limit theorem of the DTQWs
with coin operators from X at vertex position m on the line
as follows: To derive these theorems, we make use of the
well-known Riemann-Lebesgue Lemma [50], which is stated
as follows:

Theorem III.2 (Riemann-Lebesgue Lemma). Let f be
an integrable real valued function on [0, 2π ]. Then
limn→∞

∫ 2π

0 f (x) cos(nx)dx = 0 and limn→∞
∫ 2π

0
f (x) sin(nx)dx = 0.

We prove the following theorem which finds the asymp-
totic value of the probability measure for finding the particle
as t → ∞ for discrete-time quantum walks using coin opera-
tors C ∈ X .

Theorem III.3. Let C ∈ X be not a permutation matrix i.e.,
x �= 0, 1 and �(k, 0) = [α, β, γ ]T be the initial state of the

walker. Then for m ∈ Z

lim
t→∞ P(m, t )

∼ 1

3(1 − x)(x + 3)

{|Aν|m| + Bν|−m+1||2

+ |α(1 − x − y)ν|m| + αyν|m+1| + β(1 + x)ν|m|

−βxν|−m+1| − βxν|m+1| + γ (1 − x − y)ν|−m+1|

+ γ yν|m||2 + |Aν|m+1| + Bν|m||2},
where

ν = − (x − 3) + √
3(1 − x)(x + 3)

2x
,

A = α(1 − x) + β(1 − x − y),

B = γ (1 − x) + βy.
If C ∈ X are permutation matrices and |�(k, 0)〉 = [α, β, γ ]T

is the initial state of the walker, then for m ∈ Z,

lim
t→∞ P(m, t )

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|β|2 if m = 0, C = I
1
3 (|α|2 + 2|β + γ |2) if m = 0, C = P(123)

1
3 |β + γ |2 if m = −1, C = P(123)

2
3 |α|2 if m = 1, C = P(123)

1
3 (|γ |2 + 2|α + β|2) if m = 0, C = P(132)

2
3 |γ |2 if m = −1, C = P(132)

1
3 |α + β|2 if m = 1, C = P(132)

0, otherwise.

Proof. The asymptotic nature of the amplitude vector can
be derived by Riemann-Lebesgue Lemma for infinite time
steps (see Appendix A for the details) so that

|ψ (m, t )〉

=
3∑

j=1

1

2π

∫ π

−π

ei[−km+w j (k)t] 〈v j (k)|�(k, 0)〉 |v j (k)〉 dk

∼ 1

2π

∫ π

−π

e−ikm 〈v1(k)|�(k, 0)〉 |v1(k)〉 dk (for t → ∞).

Thus,

|ψ (m, t )〉 ∼ 1

2π

∫ π

−π

1

‖ f1(ω(k))‖2

[
1 − x

(1 − x − y) + ye−ik
, 1,

1 − x

y + (1 − x − y)eik

]T

×
[
α

1 − x

(1 − x − y) + yeik
+ β + γ

1 − x

y + (1 − x − y)e−ik

]
e−ikmdk (for t → ∞)

= [ψ1(m, t, 1, α, β, γ ), ψ1(m, t, 2, α, β, γ ), ψ1(m, t, 3, α, β, γ )]T .

By Theorem III.1 we have

1

‖ f1(ω(k))‖2
= 1 + x − 2x cos k

3 − x − 2x cos k
,
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for λ1 = eiω1(k) = 1 and hence the coefficient of α in the expression of ψ1(m, t, 1, α, β, γ ) is equal to

1

2π

∫ π

−π

(1 − x)2

(1 − x − y + ye−ik )(1 − x − y + yeik )

(
1 + x − 2x cos k

3 − x − 2x cos k

)
e−ikmdk.

Whenever x �∈ {0, 1}, i.e., C ∈ X is not a permutation matrix, the above expression simplifies to

1

2π

∫ π

−π

(1 − x)

3 − x − 2x cos k
e−ikmdk = 1

2π

∫ π

−π

(1 − x) cos km

3 − x − 2x cos k
dk = 1√

3(1 − x)(x + 3)
(1 − x)ν|m|,

where

ν = − (x − 3) + √
3(1 − x)(x + 3)

2x
.

Similarly, we calculate for the others and come up with the following:

|ψ (m, t )〉 ∼ 1√
3(1 − x)(x + 3)

[
α(1 − x)ν|m| + β(1 − x − y)ν|m| + βyν|−m+1| + γ (1 − x)ν|−m+1|,

α(1 − x − y)ν|m| + αyν|−m−1| + β(1 + x)ν|m| − xβν|−m+1| − xβν|−m−1| + γ (1 − x − y)ν|−m+1| + yγ ν|m|,

α(1 − x)ν|−m−1| + βyν|m| + β(1 − x − y)ν|−m−1| + γ (1 − x)ν|m|].
Thus the statement of the theorem follows after computing

the norm of ψ (m, t ). Now let us take C to be the permutation
coin. This can be obtained from X by substituting either x = 0
or x = 1.

First let x = 1, then C is the identity matrix. Clearly the
eigenvalues of corresponding Ũ (k) are eik , 1, e−ik . Thus,

|ψ (m, t )〉 ∼ 1

2π

∫ π

−π

〈2|�(k, 0)〉 e−ikm |2〉 dk (for t → ∞),

where |2〉 = [0, 1, 0]T . This results limt→∞ P(m, t ) = |β|2
for m = 0 and limt→∞ P(m, t ) = 0 for m �= 0.

Let x = 0 then either y = 0 or y = 1. If y = 1 then C =
P(123). Correspondingly, the eigenvalues of Ũ (k) are ω, ω2,
and 1 where ω = e

2π i
3 . In this case,

|ψ (m, t )〉 ∼ 1

2π

∫ π

−π

[α + (β + γ )eik, αe−ik + (β + γ ),

αe−ik + (β + γ )]T e−ikmdk (t → ∞).

If x = 0 and y = 0, then C = P(132). The eigenvalues of
Ũ (k) are ω, ω2, and 1 where ω = e

2π i
3 . Hence we get

|ψ (m, t )〉 ∼ 1

2π

∫ π

−π

[(α + β ) + γ eik, (α + β ) + γ eik,

(α + β )e−ik + γ ]T e−ikmdk,

setting t → ∞. This completes the proof. �
To corroborate the theoretical findings of Theorem III.3,

we plot Fig. 1. We compare the limiting probability of the
walker to be at some vertex m of the line, i.e., limt→∞ P(m, t ),
obtained in the aforementioned theorems with the actual prob-
ability of the walker to be at m after a large but finite number
of steps. For Fig. 1, we consider a DTQW starting from origin
and using a coin operator from the family C ∈ X . In all the
figures we observe that the probability of finding the particle
is maximum around the origin.

Using the computable expression of limt→∞ P(m, t ) as
derived in Theorem III.3, the localization condition for the

DTQWs according to the definition given in Ref. [46] is[
1 + ν2

1 − ν2
(2|A|2 + 2|B|2 + |T1|2 + |T2|2 + |T3|2) + 4ν

1 − ν2

× [Re(AB) + Re(T1T2) + Re(T1T3)]

+2ν2 3 − ν2

1 − ν2
Re(T2T 3)

]
> 0,

where T1 = α(1 − x − y) + β(1 + x) + γ y, T2 = αy − βx,
T3 = −βx + γ (1 − x − y). Note that −5 + 2

√
6 � ν < 1

when x �= 0, 1 so that 1 − ν2 �= 0. This follows from the
derivation in Appendix B.

Let us now choose the initial coin state α = 1√
3

= β = γ .
Then from Theorem III.3,

lim
t→∞ P(0, t ) = 1

3(1 − x)(x + 3)

[
|A + Bν|2

+1

3
|2 + ν(1 − 3x)|2 + |Aν + B|2

]
.

(a) x = − 1
3

(b) x = 1+
√

2
3

FIG. 1. Panels (a) and (b) compare the probability distribution
P(m, t ) at time t = 5000 (black points) and the limit measure
limt→∞ P(m, t ) (blue bars) when the underlying coin operators
are from the collection X and correspond to x = − 1

3 and x =
1+√

2
3 , respectively; with initial coin state [ 1√

3
, 1√

3
, 1√

3
]T . We get

P(0, 5000) = 0.2934, limt→∞ P(0, t ) = 0.3031 for panel (a) and
P(0, 5000) = 0.3542, limt→∞ P(0, t ) = 0.3548 for panel (b).
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(a) m = 0 (b) m = 0

(c) m = 1 (d) m = 1

FIG. 2. The initial coin state is taken as [ 1√
3
, 1√

3
, 1√

3
]T for all

the walks. In panels (a) and (c), we compare the values P(m, 5000)
(green points) and limt→∞ P(m, t ) (red point) for the walker’s po-
sitions at the origin i.e., m = 0 and m = 1, respectively; with coin
operators correspond to different values of (x, y) changes along
x2 + y2 − x − y + xy = 0, − 1

3 � x, y � 1. Besides, we draw the
probabilities P(m, 5000) (black points) and limt→∞ P(m, t ) (red
points) due to the change in θ ∈ [−π, π ], θ �= 0, 2π

3 , − 2π

3 , where
x = (1 + 2 cos θ )/3, for positions m = 0 and m = 1, given in panels
(b) and (d), respectively.

Since 2 + ν(1 − 3x) �= 0 for x �= 0, 1, we get
limt→∞ P(0, t ) > 0. Correspondingly, the walks with coins
from X , x �= 0, 1 show localization at m = 0. Figure 2
supports this fact.

In fact we establish the following corollary from Theorem
III.3 regarding the initial states that lead zero value to the
limiting probabilities.

Corollary III.4. Let C ∈ X and x �= 0, 1. Then
limt→∞ P(0, t ) = 0 if and only if |�(k, 0)〉 = 1

N [(1 − x −
y), −(1 − x), y]T , N = [(1 − x − y)2 + (1 − x)2 + y2]1/2.

Proof. The limiting probability takes zero value for
the walks under consideration, whenever A = B = 0 and
x �= 0, 1. Hence the corresponding initial state reads
|�(k, 0)〉 := |�X 〉 = 1

N [(1 − x − y), −(1 − x), y]T , for
which limt→∞ P(0, t ) of the walks with coins from X ,
x �= 0, 1 vanishes. �

Indeed, it can be checked that |�X 〉 is orthogonal to the
eigenvector |v1(k)〉 given in Theorem III.1 corresponds to the
eigenvalue 1.

Now we redefine the set of matrices in X that can be repre-
sented by a single parameter θ . To this end, for −π � θ � π ,
setting

(x, y) =
(

1 + 2 cos θ

3
,

1 − cos θ

3
+ 1√

3
sin θ

)
,

yields one-parameter representation for the matrices in X in
terms of the parameter θ [28]. We call this matrix class as Xθ ,
where

Xθ =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2 cos θ+1
3

(1−cos θ )
3 + 1√

3
sin θ (1−cos θ )

3 − 1√
3

sin θ

(1−cos θ )
3 − 1√

3
sin θ 2 cos θ+1

3
(1−cos θ )

3 + 1√
3

sin θ

(1−cos θ )
3 + 1√

3
sin θ (1−cos θ )

3 − 1√
3

sin θ 2 cos θ+1
3

⎤
⎥⎥⎦ : −π � θ � π

⎫⎪⎪⎬
⎪⎪⎭.

It is clear from the parametrization that if A(θ ) ∈ Xθ then
[A(θ )]−1 = A(−θ ). In Fig. 2, we compare the long-time-limit
probabilities with the probability at a large but finite time,
at two different positions m = 0, 1, across the range of coin
parameters from X . In each case we set α = β = γ = 1√

3
.

The diagrams in Figs. 2(a) and 2(c) show the change in
probability values along the ellipse x2 + y2 − x − y + xy = 0,
− 1

3 � x, y � 1; the diagrams in Figs. 2(b) and 2(c) are plotted
recording the changes in parameter θ for [−π, π ]. We see
that the probabilities take the relative minimum value around
(x, y) = (1, 0) or consequently around θ = 0. A relative max-
imum values for both the probability at t = 5000 and limit

measure appear for (x, y) = (0, 1) and θ = 2π
3 in Figs. 2(c)

and 2(d), respectively. Besides, it is easy to see from Fig. 2
that limt→∞ P(m, t ) at the initial position m = 0 is equal for
the coin operators A(θ ) and its inverse [A(−θ )].

B. Coins from Y
In what follows, we provide a limit theorem for the pro-

posed walks with coin operators from Y . We perform a similar
analysis as above. For C ∈ Y , k ∈ (−π, π ], ŨY (k) = D(k)C
is given by

ŨY (k) =
⎡
⎣ xeik yeik (−1 − x − y)eik

−1 − x − y x y
ye−ik (−1 − x − y)e−ik xe−ik

⎤
⎦, (9)

where x2 + y2 + xy + x + y = 0.
The following theorem provides computable expressions for eigenvalues and eigenvectors of ŨY (k):
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Theorem III.5. Consider ŨY (k) in Eq. (9). Then the set of eigenpairs (λ j (k), v j (k)) of ŨY (k) are

λ j = eiω j (k), |v j (k)〉 = 1

‖ f j (ω(k))‖
[ −y + λ j (1 + x + y)

(1 + x + y) − λ jye−ik
, 1,

(1 + x + y) − λ jy

−y + λ j (1 + x + y)eik

]T

,

where ω1(k) = π , ω2(k) = −ω3(k) = ω(k) with cos ω(k) = −x cos k − (1+x)
2 and

‖ f j (ω(k))‖2 = 1 − x − 2x cos ω(k)

1 − x − 2x cos [ω(k) − k]
+ 1 + 1 − x − 2x cos ω(k)

1 − x − 2x cos [ω(k) + k]
,

for { j = 1, 2, 3}.
Proof. Note that the characteristic polynomial of ŨY (k) is κY (λ) = λ3 − (2 cos k + 1)xλ2 − (2 cos k + 1)xλ + 1. Hence the

desired results follow after simple algebraic calculations. �
The next theorem concerns the asymptotic value of the probability measure for finding the particle to be at any vertex m, as

t → ∞, for a DTQW using coin operators C ∈ Y .
Theorem III.6. Let C ∈ Y be not a permutation matrix, i.e., x �= 0,−1 and �(k, 0) = [α, β, γ ]T be the initial state of the

walker, then for m ∈ Z we get

lim
t→∞ P(m, t ) ∼ 1

3(1 + x)(3 − x)
{|Dμ|m| + Eμ|−m+1||2 + |α(1 + x + y)μ|m| − αyμ|m+1| + β(1 − x)μ|m| + βx(μ|−m+1|

+μ|m+1|) + γ (1 + x + y)μ|−m+1| − γ yμ|m||2 + |Dμ|m+1| + Eμ|m||2},
where

μ = −(x + 3) + √
3(1 + x)(3 − x)

2x
,

D = α(1 + x) + β(1 + x + y),

E = γ (1 + x) − βy.

If C ∈ Y are permutation matrices and �(k, 0) = [α, β, γ ]T is the initial state of the walker, then for m ∈ Z we have the
following:

lim
t→∞ P(m, t ) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|β|2 if m = 0, C = I
1
3 (|α|2 + 2|β + γ |2) if m = 0, C = −P(213)
1
3 |β + γ |2 if m = −1, C = P(123)
2
3 |α|2 if m = 1, C = P(123)
1
3 (|γ |2 + 2|α + β|2) if m = 0, C = P(132)
2
3 |γ |2 if m = −1, C = P(132)
1
3 |α + β|2 if m = 1, C = P(132)

0, otherwise.

Proof. The proof follows adapting a similar approach as in
Theorem III.3. �

In Fig. 3, we compare the numerical values of P(m, t ), t =
10 000 and the limiting value of the probability measure fixing
the same initial state, when the initial position of the walker is
the origin; that is, m = 0 for two different coins from Y . The
figures support the localization phenomena.

The walks with coin operators from Y localize according
to Ref. [46] if[

1 + μ2

1 − μ2
(2|D|2 + 2|E |2 + |S1|2 + |S2|2 + |S3|2)

+ 4μ

1 − μ2
[Re(DE ) + Re(S1S2) + Re(S1S3)]

+2μ2 3 − μ2

1 − μ2
Re(S2S3)

]
> 0,

(a) x = 1
3

(b) x =
√

3−1
3

FIG. 3. Panels (a) and (b) compare P(m, t ) for t = 10 000 (black
points) and limt→∞ P(m, t ), (blue bars) when the underlying coin op-
erators are from Y correspond to x = 1

3 and x =
√

3−1
3 , respectively;

with initial coin state [ 1√
3
, 1√

3
, 1√

3
]T . We get P(0, 10 000) = 0.3120,

limt→∞ P(0, t ) = 0.3031 for panel (a) and P(0, 10 000) = 0.3092,
limt→∞ P(0, t ) = 0.3123 for panel (b).
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(a) m = 0. (b) m = 0.

(c) m = 1. (d) m = 1.

FIG. 4. Here the coin operators under consideration are chosen
from Y , x �= −1, 0 and the initial coin state is [ 1√

3
, 1√

3
, 1√

3
]T in all

the cases. In panels (a) and (c) we compare the values for probability
at t = 10 000 (green points) and limit probability measure (red point)
for the walker’s positions at m = 0 and m = 1, respectively, with dif-
ferent coin operators. Also, we draw the probabilities P(m, 10 000)
(black points) and limt→∞ P(m, t ) (red points) for different values of
θ ∈ [−π, π ], θ �= π,−π, π

3 ,− π

3 ,

where S1 = α(1 + x + y) + β(1 − x) − γ y, S2 = −αy + βx,
S3 = βx + γ (1 + x + y) and −5 + 2

√
6 � μ < 1, μ2 < 1.

See Appendix B for the derivation.

Also, from Theorem III.5, we write

lim
t→∞ P(0, t ) = 1

3(1 + x)(3 − x)

[
|D + Eμ|2

+1

3
|2 + μ(1 + 3x)|2 + |Dμ + E |2

]
.

Since 2 + μ(1 + 3x) �= 0 for x �= 0,−1, we get
limt→∞ P(0, t ) > 0 and we say the walks with coins from Y ,
x �= 0,−1 show localization at m = 0. To account for this fact
we have Fig. 4. In fact, we establish the following corollary
from Theorem III.6 regarding the initial states that lead to
zero value for the limiting probabilities.

Corollary III.7. Let C ∈ Y and x �= 0,−1. Then
limt→∞ P(0, t ) = 0 if and only if |�(k, 0)〉 = 1

N [−(1 +
x + y), (1 + x), y]T , N = [(1 + x + y)2 + (1 + x)2 + y2]1/2.

Proof. We get limt→∞ P(0, t ) = 0 whenever D = E =
0 and x �= 0,−1. Therefore, the corresponding initial
state is |�(k, 0)〉 := |�Y〉 = 1

N [−(1 + x + y), (1 + x), y]T ,
for which the limiting probability at m = 0 of the walks with
coins from Y, x �= 0,−1 vanishes. �

Indeed, it can be checked that |�Y〉 is orthogonal to the
eigenvector |v1(k)〉 given in Theorem III.5 and corresponds to
the eigenvalue −1.

Now we redefine the set of matrices in Y can be repre-
sented by a single parameter θ . To this end, for −π � θ � π ,
for the set of matrices in Y , setting

(x, y) =
(

2 cos θ − 1

3
, −1 + cos θ

3
+ 1√

3
sin θ

)
yields one-parameter representation for the matrices in X and
Y in terms of the parameter θ [28]. We call this matrix class
Yθ , where

Yθ =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2 cos θ−1
3 − (1+cos θ )

3 + 1√
3

sin θ − (1+cos θ )
3 − 1√

3
sin θ

− (1+cos θ )
3 − 1√

3
sin θ 2 cos θ−1

3 − (1+cos θ )
3 + 1√

3
sin θ

− (1+cos θ )
3 + 1√

3
sin θ − (1+cos θ )

3 − 1√
3

sin θ 2 cos θ−1
3

⎤
⎥⎥⎦ : −π � θ � π

⎫⎪⎪⎬
⎪⎪⎭.

Note that, if θ ∈ {π,−π, π
3 ,−π

3 }, we obtain the negative
of the permutation matrices in Yθ . Also, if A(θ ) ∈ Yθ then
[A(θ )]−1 = A(−θ ). In Fig. 4, we see the limiting values of
the probability measure for the walks where the coin param-
eter (x, y) changes along the ellipse x2 + y2 + x + y + xy =
0, −1 � x, y � 1

3 ; or the coin parameter θ ∈ [−π, π ]. In
Figs. 4(b) and 4(d), the probabilities take the relative mini-
mum and maximum values are around θ = 0 and θ = −π

3 ,
respectively. In Figs. 4(c) and 4(d), the probability values are
getting near to zero in the neighborhood of (x, y) = (−1, 0)
and θ = ±π , respectively. Finally, observe from Fig. 4 that
limt→∞ P(m, t ) at the initial position m = 0 is equal for the
coin operator A(θ ) and its inverse [A(−θ )].

IV. PEAK VELOCITIES OF THE WALKS

In Sec. III we established that the discrete-time quantum
walks with coin operators from the family Xθ and Yθ localize.

This was done by demonstrating that there exists a nonvan-
ishing probability for the quantum walk to remain at a vertex
even as the time steps of the walk approach infinity. In this
section, we discuss the localization phenomena of the walks
from a different perspective.

In Ref. [31], the authors establish a relationship between
the choice of the coin parameters and the peak velocity with
which the underlying quantum walk wave function spreads.
The authors demonstrate this by considering a generalized
Grover operator as coin, obtained by modifying its eigen-
values and eigenvectors. Peak velocities control the limit
distribution and in turn influences localization.

Here at first, we determine the peak velocities of the prob-
ability distribution of the walker’s position when the coin
operators are from Xθ and Yθ . This allows us to provide a new
family of parametrized coin operators Xθ , outside those in
Ref. [31], which preserves the localization of the Grover walk.
We describe how the coin parameter θ relates the spreading of
the walks through the line.
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Recall that, from Eq. (8), we have

|ψ (m, t )〉 =
3∑

j=1

1

2π

∫ π

−π

ei[−km/t+w j (k)]t 〈v j (k)|�(k, 0)〉

× |v j (k)〉 dk. (10)

Now to determine the behavior of |ψ (m, t )〉 as t → ∞, we
employ the idea given in Ref. [31] by using the method of
stationary phase approximation (SPA) [51].

In general, the SPA states that, for a propagating wave
packet, the contributions of the fast oscillating phases average
out and only the amplitudes corresponding to the stationary
phases contribute significantly to the overall wave function
of the wave packet. The propagation of the wave function
corresponding to a quantum walk on an infinite line with
periodic boundary conditions can be modeled using the theory
of the SPA.

Consider the phase ω̄ j (k) = ω j (k) − mk/t from Eq. (10).
Now, the rate of decay is given by the order of the stationary
points of the phase ω̄ j (k). By solving the equation d2

dk2 ω̄ j (k) =
0, we find the stationary points corresponding to the maximum
value of d

dk ω̄ j (k). If k0 is the solution of the second-order
derivative then by equating the first-order equation d

dk ω̄ j (k) =
d
dk ω j (k) − m/t with zero we get the position of the peak after
time t as m = d

dk ω j (k)|k0t , whereas the peaks in the proba-
bility distribution curve propagates with the maximal group
velocity d

dk ω j (k)|k0 . Here we recall that the group velocity of
the propagating wave function corresponding to the quantum
walk is simply d

dk ω j (k), where k and ω j (k) are the wave
number and angular frequency, respectively [41].

Next we obtain peak velocities for the wave function cor-
responding to a discrete-time quantum walk on a line with
generalized coin operators chosen from the sets Xθ and Yθ .

A. With coin operators C ∈ Xθ

First we consider the walk with coins from X . Now for
x = (1 + 2 cos θ )/3, by Theorem III.1 the eigenvalues of
ŨX (k) are λ j = eiω j (k), j = 1, 2, 3, where ω1(k) = 0, ω2(k) =
−ω3(k) = ω(k) with cos ω(k) = − 1

3 (1 − cos k) + cos θ
3 (1 +

2 cos k).
Since ω1(k) is independent of the wave number k, the

localization effect of the quantum walks using Xθ as the
coin operator is preserved as that of the Grover walk [21,23].
Indeed, the existence of constant eigenvalues of the time evo-
lution operator and the localization are equivalent for DTQWs
on infinite lattice under cyclic boundary conditions [47].

We shall now determine the peak velocities using the coin
operators from Xθ for θ = 0, 2π

3 ,− 2π
3 , which are permutation

matrices. For θ = 0, Xθ becomes the identity matrix. There-
fore, ω2(k) = ±k and ω3(k) = ±k, consequently the right-
and left-going peak velocities are

vR = d

dk
ω3(k) = −1, vL = d

dk
ω2(k) = 1,

whereas d2

dk2 ω2(k) = d2

dk2 ω3(k) = 0.
Similarly, if θ = 2π

3 or θ = − 2π
3 we get permutation matri-

ces P(123) ∈ Xθ or P(132) ∈ Xθ respectively. For both the cases
the eigenvalues ω2(k) = ± 2π

3 and ω3(k) = ± 2π
3 and hence

the corresponding peak velocities are 0. If θ equals to −π or
π , accordingly the coin operator is the Grover matrix, the right
and left peak velocities are 1√

3
and − 1√

3
, respectively [31].

From now onward we consider coins from the family
Xθ except the Grover and permutation matrices, i.e., (1 +
2 cos θ ) �= 0, 3,−1. Now, to find the peak velocities we de-
termine for which values of k the second derivatives of ω2(k)
and ω3(k) vanish. Thus,

d2ω2(k)

dk2
= cos k(1 + 2 cos θ )

{9 − [−1 + cos k + cos θ (1 + 2 cos k)]2}
1
2

− sin2 k(1 + 2 cos k)2[−1 + cos k + cos θ (1 + 2 cos k)]

{9 − [−1 + cos k + cos θ (1 + 2 cos k)]2}
3
2

vanishes for

k1
0 = π − arccos

(
5 cos θ + 7 − 3

√
cos2 θ + 6 cos θ + 5

2(2 cos θ + 1)

)

and

k2
0 = π − arccos

(
5 cos θ + 7 + 3

√
cos2 θ + 6 cos θ + 5

2(2 cos θ + 1)

)
.

Then we determine the group velocities given by

dω2(k)

dk
= −dω3(k)

dk
=

1
3 sin k(1 + 2 cos θ )√

1 − [− 1
3 (1 − cos k) + 1

3 cos θ (1 + 2 cos k)
]2
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at the stationary points k0
1 and k0

2 . Hence the velocities of the right- and left-going probability peaks vR and vL are given by

v
(1)
L (θ ) = dω2(k)

dk

∣∣∣∣
k=k0

1

=

⎧⎪⎪⎨
⎪⎪⎩

1
3

√
9
√

cos2 θ+6 cos θ+5−(15 cos θ+21)√
cos2 θ+6 cos θ+5−(cos θ+3)

if − 2π
3 < θ < − 2π

3

− 1
3

√
9
√

cos2 θ+6 cos θ+5−(15 cos θ+21)√
cos2 θ+6 cos θ+5−(cos θ+3)

if − π < θ < − 2π
3 , 2π

3 < θ < π,

v
(1)
R (θ ) = dω3(k)

dk

∣∣∣∣
k=k0

1

= −v
(1)
L (θ ),

v
(2)
L (θ ) = dω2(k)

dk

∣∣∣∣
k=k0

2

=

⎧⎪⎪⎨
⎪⎪⎩

1
3

√
9
√

cos2 θ+6 cos θ+5+(15 cos θ+21)√
cos2 θ+6 cos θ+5+(cos θ+3)

if − 2π
3 < θ < − 2π

3

− 1
3

√
9
√

cos2 θ+6 cos θ+5+(15 cos θ+21)√
cos2 θ+6 cos θ+5+(cos θ+3)

if − π < θ < − 2π
3 , 2π

3 < θ < π,

v
(2)
R (θ ) = dω3(k)

dk

∣∣∣∣
k=k0

2

= −v
(2)
L (θ ),

where (1 + 2 cos θ ) �= 0, 3,−1. It is worthy to mention that
v

(1)
S (θ ) = v

(2)
S (θ ) = 0.

Here we mention that vR(θ ) and vL(θ ) do not keep the same
sign for all the coin parametric values θ through the interval
[π, π ], in contrast with the study in Ref. [31]. Henceforth, in
order to get rid of the conflict with the names “velocity of
the right-going peaks” and “velocity of the left-going peaks,”
which are generally used in case of positive and negative
quantities, we emphasize that we represent vR(θ ) and vL(θ ),
respectively, by the expressions dω2(k)

dk |k=k0 and dω3(k)
dk |k=k0

only, not in the sense of sign.
We plot the functions v

(1)
L (θ ) and v

(2)
L (θ ) with θ in Figs. 5

and 6 respectively, whereas the underlying coin operator is
Xθ , −π � θ � π .

FIG. 5. The velocity v
(1)
L (θ ) for the one-parameter family of

quantum walks defined by the coin class Xθ . The velocity of the left
traveling probability peak takes the maximal value 1 at θ = 0 and
when |θ | increases it decreases and becomes 0 at θ = ±2π/3. v(1)

L (θ )
takes a negative value for |θ | > 2π/3. The curve for peak velocity
is symmetric about the vertical line through θ = 0. For the Grover
walk, v(1)

L (θ ) attains the value − 1√
3
, i.e., v(1)

L (π ) = v
(1)
L (−π ) = − 1√

3
.

In Fig. 7, we plot the probability distributions of the Grover
walk for different positions of the walker after three certain
time steps.

Figure 8 shows the probability distributions of the walks
after time t = 50 at different position of the walker with some
coins from Xθ .

From Fig. 5 we see |v(1)
L ( π

2 )| < |v(1)
L (π )|. Accordingly, in

Fig. 8, the right and left peaks travel slower than the Grover
walk in Fig. 7 through the line, whereas the initial state is
( 1√

2
, 0, 1√

2
) and t = 50 for both the cases. Indeed, it is to be

noted that, unlike the Grover coin, the coins Xθ , θ = π
2 ,−π

2
are not symmetric, which cause the asymmetric probability
distributions with respect to the position m = 0.

Now we see in Fig. 9 the probability distribution of the
walk with coin from Xθ with time changes, at a certain posi-
tion of the walker on the line.

FIG. 6. The velocity v
(2)
L (θ ) for the one-parameter family of

quantum walks defined by the coin class Xθ . We see v
(2)
L (θ ) attains

positive values for −2π/3 < θ < 2π/3 and take maximum value 1
at θ = 0. For the Grover walk v

(2)
L (θ ) = − 1√

3
, θ = π,−π . More-

over, the peak velocity curve is symmetric about the vertical line
through θ = 0. There is a certain jump discontinuity in the peak
velocity curve at θ = ±2π/3. However, the peak velocity v

(2)
L (θ ) is

not feasible to carry out.
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(a) t = 50 (b) t = 100

(c) t = 500

FIG. 7. The probability distribution of the Grover walk after time
steps t = 50, t = 100, and t = 500 with initial state ( 1√

2
, 0, 1√

2
).

Clearly the probability distribution contains three dominant peaks
whose positions are determined by the velocities v

(1)
L (π ) = − 1√

3
,

v
(1)
S (π ) = 0, v

(1)
R (π ) = 1√

3
. In panel (a), the peak positions corre-

spond to −27, 0, 27 and in panel (b), the peak positions appear at
−56, 56, 0. As time increases we see that the probability values at the
peaks diminish gradually. The peak at the origin does not propagate
with time, which emphasizes the localization of the Grover walk.

In Fig. 9 we plot the probability of the walker to be at
position m = 0, over time. Starting from m = 0, the quantum
walk with coins from Xθ propagates to other vertices of the
line with time. However, the probability to localize (i.e., to
remain at m = 0) converges to a constant as t increases.

B. With coin operators C ∈ Yθ

Now we consider the walk with coins from Yθ , while
for x = (2 cos θ − 1)/3, by Theorem III.5 the eigenvalues of
ŨY (k) are λ j = eiω j (k), j = 1, 2, 3 where ω1(k) = π , ω2(k) =
−ω3(k) = ω(k) with cos ω(k) = − 1

3 (1 − cos k) − cos θ (1 −
2 cos k)/3. Here also the eigenvalue λ1 = −1 is independent
of wave number k and hence the walk shows localization.

(a) Xθ, θ = π
2
. (b) Xθ, θ = −π

2
.

FIG. 8. The probability distribution of the walk using coins from
Xθ for θ = π

2 and θ = − π

2 after t = 50 time steps with the initial
state ( 1√

2
, 0, 1√

2
). The peaks on the left and the right side move with

velocities v
(1)
L,R( π

2 ) = v
(1)
L,R(− π

2 ) ≈ ∓0.3568 and appear at positions
T v

(1)
L,R( π

2 ) = T v
(1)
L,R(− π

2 ) ≈ ∓17. Here the probability distribution
curves spread much slower in compared with the Grover walk shown
in Fig. 7.

FIG. 9. The probability distribution of the walker with time at
the origin m = 0, starting with the initial state ( 1√

2
, 0, 1√

2
), while

the coins are Xθ for θ = π, π

2 . The red- and green-colored nodes
correspond to θ = π and θ = π

2 , respectively. Here the black dotted
curves passing through the probability distributions are the averaged
probabilities of the corresponding walks. It looks apparently that, as
time propagates, the averaged probabilities of the walks at m = 0
with the Grover coin Xπ and with coin X π

2
converge to 0.2 and 0.13.

Similarly as the case Xθ we determine the peak velocities
using the coin operators from Yθ . For θ = π,−π , Yθ be-
comes −I3, so that ω2(k), ω3(k) = ±k and vR = 1, vL = −1.
Similarly, if θ = π

3 or θ = −π
3 we get permutation matrices

P(132) ∈ Yθ or −P(123) ∈ Yθ , respectively. For both the cases
peak velocities are zero. If θ = 0 the coin operator is the neg-
ative times Grover matrix, whose right and left peak velocities
are − 1√

3
and 1√

3
, respectively.

Now We get that d2ω2(k)
dk2 vanishes for

k1
0 = π − arccos

(
5 cos θ − 7 + 3

√
cos2 θ − 6 cos θ + 5

2(2 cos θ − 1)

)

and

k2
0 = π − arccos

×
(

5 cos θ − 7 − 3
√

cos2 θ − 6 cos θ + 5

2(2 cos θ − 1)

)
,

for (2 cos θ − 1) �= 0,−3, 1, i.e., θ �= π
3 ,−π

3 , π,−π, 0.

(a) Group velocity v
(1)
L (θ) (b) Group velocity v

(2)
L (θ)

FIG. 10. v
(1)
L (θ ) and v

(2)
L (θ ) for the one-parameter family of

quantum walks defined by the coin class Yθ . At θ = 0 v
(1)
L (0) attains

the value − 1√
3
. v

(1)
L (θ ) takes the maximal value 1 at θ = −π, π and

is negative for |θ | < 2π/3. In panel (a), the velocity increases as |θ |
increases and becomes 0 at θ = ±π/3. Whereas in panel (b), the
velocity decreases as |θ | increases and there is a discontinuity of the
left peak velocity curve at θ = ±π/3, in contrast with panel (a).
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Then the group velocities

dω2(k)

dk
= −dω3(k)

dk
=

1
3 sin k(1 − 2 cos θ )√

1 − [ 1
3 (1 − cos k) + 1

3 cos θ (1 + 2 cos k)
]2

at the stationary points k0
1 and k0

2 are as follows:

v
(1)
L (θ ) = dω2(k)

dk

∣∣∣∣
k=k0

1

=

⎧⎪⎪⎨
⎪⎪⎩

− 1
3

√
9
√

cos2 θ−6 cos θ+5+(15 cos θ−21)√
cos2 θ−6 cos θ+5+(cos θ−3)

if − π
3 < θ < π

3

1
3

√
9
√

cos2 θ−6 cos θ+5+(15 cos θ−21)√
cos2 θ−6 cos θ+5+(cos θ−3)

if − π < θ < −π
3 , π

3 < θ < π,

v
(1)
R (θ ) = −v

(1)
L (θ ),

v
(2)
L (θ ) = dω2(k)

dk

∣∣∣∣
k=k0

2

=

⎧⎪⎪⎨
⎪⎪⎩

− 1
3

√
9
√

cos2 θ−6 cos θ+5−(15 cos θ−21)√
cos2 θ−6 cos θ+5−(cos θ−3)

if − π
3 < θ < π

3

1
3

√
9
√

cos2 θ−6 cos θ+5−(15 cos θ−21)√
cos2 θ−6 cos θ+5−(cos θ−3)

if − π < θ < −π
3 , π

3 < θ < π,

v
(2)
R (θ ) = −v

(2)
L (θ ),

whenever (2 cos θ − 1) �= 0,−3, 1.
We show the changes in the functional values of v

(1)
L (θ )

and v
(2)
L (θ ) with θ in Fig. 10.

Next, Fig. 11 shows the probability distributions of the
walk with negative times the Grover coin, i.e., θ = 0, at dif-
ferent position of the walker after three certain time steps.

(a) t = 50 (b) t = 100

(c) t = 500

FIG. 11. The probability distribution corresponding to negative
of the Grover coin after time steps t = 50, 100, 500 with initial
state ( 1√

3
, 1√

3
, 1√

3
). Clearly the probability distribution contains three

dominant peaks whose positions are determined by the velocities
v

(1)
L (0) = 1√

3
, v

(1)
S (0) = 0, v

(1)
R (0) = − 1√

3
. In panel (a), the peak po-

sitions correspond to −28, 0, 28 and in panel (b), the peak positions
appear at −56, 0, 56. In contrast with panels (a) and (b) for the
probability distribution in panel (c) corresponds to a large time step
t = 500, the left and right peaks take small probability values. In all
the figures the central peak at the origin does not propagate with time,
which emphasizes the localization of the walk with negative Grover
coin.

Figure 12 shows the probability distributions of the walks
after time t = 50 at different position of the walker with some
coins from Yθ .

From Fig. 10 we see |v(1)
L ( π

6 )| < |v(1)
L (0)|. Hence in Fig. 12

the right and left peaks travel slower than the walk in Fig. 11
through the line, whereas the initial state is ( 1√

3
, 1√

3
, 1√

3
) and

t = 50 for both the cases. In contrast with the walk with
negative Grover coin, the walks with coins Yθ , θ = π

6 ,−π
6

have asymmetric probability distributions with respect to the
position m = 0.

V. CONCLUSION

We have proved two limit theorems for three-state quantum
walks on one-dimensional lattices when the coin operators are
considered as generalized Grover operators which are recently
introduced in the literature by characterizing orthogonal ma-
trices of dimension 3 × 3 that can be written as a linear sum
of permutation matrices. Furthermore, we have analyzed the
localization properties of the walks by using the obtained

(a) Yθ, θ = π
6
. (b) Yθ, θ = −π

6
.

FIG. 12. The probability distribution of the walk using coins
from Yθ for θ = π

6 and θ = − π

6 after t = 50 time steps with the
initial state ( 1√

3
, 1√

3
, 1√

3
). The peaks on the left and the right side

move with velocities v
(1)
L,R( π

6 ) = v
(1)
L,R(− π

6 ) and appear at positions
T v

(1)
L,R( π

6 ) = T v
(1)
L,R(− π

6 ) ≈ ∓14. Clearly, the probability distribution
curves spread much slower in compared with the walk shown in
Fig. 11.
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formula of probability measure of finding the walker at any
position with a given generic initial state. Indeed, we have
shown that the walks show localization phenomena generi-
cally, and we also have classified the initial states for which
the walks do not show localization phenomena when the ini-
tial position is assumed to be the origin. In support of these
results we have analyzed peak velocities associated with the
limiting distributions of the walks. All our analytical results
have been thoroughly corroborated with numerical examples.

Our results can be used to determine how fast the quantum
walks described here converge to their time-averaged limiting
distribution. As mentioned earlier, this phenomena, known as
mixing, has been crucial in analyzing the running times of
several quantum algorithms. In fact, it has been demonstrated
that discrete-time quantum walks on a one-dimensional
lattice with a Hadamard coin mixes quadratically faster than
its classical counterpart. It would be interesting to investigate
whether this speedup is retained for quantum walks with the

parametrized coins introduced here. Other topologies, such as
higher dimensional lattices, can also be explored in this re-
gard. Another future plan of our research includes developing
quantum circuit models for the proposed quantum walks.
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APPENDIX A: DERIVATION RELATED TO LIMIT THEOREMS

Below we derive a compact expression for the quantum state |ψ (m, t )〉, the probability amplitude vector as defined in Eq. (2)
when the coin operator C ∈ X . A similar expression can be obtained for coins in Y .

3∑
j=2

1

2π

∫ π

−π

ei[−km+w j (k)t] 〈v j (k)| �(k, 0) |v j (k)〉 dk

= 1

2π

∫ π

−π

1

‖ f2(ω(k))‖2

([
y + (1 − x − y)eiω(k)

(1 − x − y) + yei[ω(k)−k]
, 1,

1 − x − y + yeiω(k)

y + (1 − x − y)ei[ω(k)+k]

]T

×
[
α

y + (1 − x − y)e−iω(k)

(1 − x − y) + ye−i[ω(k)−k]
+ β + γ

1 − x − y + ye−iω(k)

y + (1 − x − y)e−i[ω(k)+k]

]
ei[ω(k)t−km]

)
dk

+ 1

2π

∫ π

−π

1

‖ f3(−ω(k))‖2

([
y + (1 − x − y)e−iω(k)

(1 − x − y) + ye−i[ω(k)+k]
, 1,

1 − x − y + ye−iω(k)

y + (1 − x − y)e−i[ω(k)−k]

]T

×
[
α

y + (1 − x − y)eiω(k)

(1 − x − y) + yei[ω(k)+k]
+ β + γ

1 − x − y + yeiω(k)

y + (1 − x − y)ei[ω(k)−k]

]
ei[−ω(k)t−km]

)
dk

= [a11α + a12β + a13γ , a21α + a22β + a23γ , a31α + a32β + a33γ ]T .

Then comparing both sides for the coefficients of α, β, γ we get ai j , i, j ∈ {1, 2, 3}. Here we derive a11 and the other ai j can
be obtained similarly.

By Theorem III.1 ‖ f2(ω(k))‖2 = ‖ f3(−ω(k))‖2 and hence

a11 = 1

2π

∫ π

−π

1

‖ f2(ω(k))‖2

(∣∣∣∣ y + (1 − x − y)eiω(k)

(1 − x − y) + yei[ω(k)−k]

∣∣∣∣
2

ei[ω(k)t−km] +
∣∣∣∣ y + (1 − x − y)e−iω(k)

(1 − x − y) + ye−i[ω(k)+k]

∣∣∣∣
2

ei−[ω(k)t+km]

)
dk.

Simplifying the above expression it becomes

a11 = 1

2π

∫ π

−π

e−ikm

(
1 + x − 2x cos ω(k)

1 + x − 2x cos [ω(k) − k]
eiω(k)t + 1 + x − 2x cos ω(k)

1 + x − 2x cos [ω(k) + k]
e−iω(k)t

)
dk.

Clearly the above expression simplifies a11 to the form 1
2π

∫ π

−π
G(ω(k), k) cos (ω(k)t ) cos (km)dk, where G(ω(k), k) is a

quotient function which is a continuous functions of k. Hence for all coins in X which are not permutation matrices i.e., x �= 0, 1,
we get G(ω(k), k) is Riemann integrable as well as Lebesgue integrable.

Thus using the Riemann-Lebesgue Lemma we say a11 ≈ 0 as t → ∞. Similarly it can be done for other ai j , i, j ∈ {1, 2, 3}.
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APPENDIX B: DERIVATION RELATED TO LOCALIZATION CONDITION USING THE DEFINITION GIVEN IN Ref. [46]

Recall that the localization condition for a DTQW as proposed in Ref. [46] is
∑

m∈Z limt→∞ P(m, t ) to be positive.
Then, for coins in X , the parameter ν as mentioned in Theorem III.3, is such that −5 + 2

√
6 � ν < 1 for x �= 0, 1, so

that 1 − ν2 �= 0. Suppose x �= 0, 1 and T1 = α(1 − x − y) + β(1 + x) + γ y, T2 = αy − βx, T3 = −βx + γ (1 − x − y). Then
considering the approximation of limt→∞ P(m, t ) in Theorem III.3, taking sum over all the positions on the line, we obtain

∑
m∈Z

lim
t→∞ P(m, t ) = 1

3(1 − x)(x + 3)

[
2

{
(|A|2 + |B|2)

∑
m∈Z

ν2|m| + 2Re(AB)
∑
m∈Z

ν|m|+|m+1|
}

+
{

(|T1|2 + |T2|2 + |T3|2)
∑
m∈Z

ν2|m| + 2(Re(T1T2) + Re(T1T3))
∑
m∈Z

ν|m|+|m+1|
}

+
{

2Re(T2T 3)
∑
m∈Z

ν|−m+1|+|m+1|
}]

= 1

3(1 − x)(x + 3)

[{
[2(|A|2 + |B|2) + (|T1|2 + |T2|2 + |T3|2)]

∑
m∈Z

ν2|m|
}

+
{

2
[
Re
(
AB
)+ Re

(
T1T2

)+ Re
(
T1T3

)]∑
m∈Z

ν|m|+|m+1|
}

+
{

2Re
(
T2T 3

)∑
m∈Z

ν|−m+1|+|m+1|
}]

= 1

3(1 − x)(x + 3)
[
1 + ν2

1 − ν2

{
2|A|2 + 2|B|2 + |T1|2 + |T2|2 + |T3|2

+ 2ν−1[Re(AB) + Re(T1T2) + Re(T1T3)] + 2Re(T2T 3)
}− 2ν−1[Re(AB) + Re(T1T2) + Re(T1T3)]

− 2(1 − ν2)Re(T2T 3)

]

= 1

3(1 − x)(x+ 3)

[
1+ ν2

1 − ν2
(2|A|2+ 2|B|2+ |T1|2+ |T2|2+ |T3|2) + 4ν

1 − ν2
[Re(AB) + Re(T1T2) + Re(T1T3)]

+ 2ν2 3 − ν2

1 − ν2
Re(T2T 3)

]
.

Furthermore, for coins in Y , in order to derive a criterion for localization and to analyze the dependency of it on the initial
state, we obtain from Theorem III.6 for x �= 0,−1,∑

m∈Z
lim

t→∞ P(m, t ) = 1

3(1 + x)(3 − x)

[
1 + μ2

1 − μ2
(2|D|2 + 2|E |2 + |S1|2 + |S2|2 + |S3|2)

+ 4μ

1 − μ2
[Re(DE ) + Re(S1S2) + Re(S1S3)] + 2μ2 3 − μ2

1 − μ2
Re(S2S3)

]
.

where S1 = α(1 + x + y) + β(1 − x) − γ y, S2 = −αy + βx, S3 = βx + γ (1 + x + y), and −5 + 2
√

6 � μ < 1, μ2 < 1.
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