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Several tasks in quantum-information processing involve quantum learning. For example, quantum sensing,
quantum machine learning, and quantum-computer calibration involve learning and estimating unknown param-
eters θ = (θ1, . . . , θM ) from measurements of many copies of a quantum state ρ̂θ . This type of metrological
information is described by the quantum Fisher information matrix, which bounds the average amount of
information learned about θ per measurement of ρ̂θ . In several scenarios, it is advantageous to compress the
multiparameter information encoded in ρ̂θ

⊗n into ρ̂
ps
θ

⊗m, where m � n. Here, we present a “go-go” theorem
proving that m/n can be made arbitrarily small, and that the information compression can happen without
loss of information. We also demonstrate how to construct filters that perform this unbounded and lossless
information compression. These filters can, for example, reduce arbitrarily the quantum-state intensity on exper-
imental detectors, while retaining all initial information. Finally, we prove that the ability to compress quantum
Fisher information is a nonclassical advantage that stems from the negativity of a particular quasiprobability
distribution, a quantum extension of a probability distribution.
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I. INTRODUCTION

The diverse fields of metrology and machine learning
concern estimating, or learning, multiple unknown parame-
ters θ = (θ1, θ2, . . . , θM ) from experiments [1–3]. A common
measure of an experiment’s usefulness in learning is the
Fisher information matrix I (θ) [4]. I (θ) quantifies the av-
erage information learned about θ per experimental trial.
The covariance matrix of a locally unbiased estimator θe

is lower bounded by I (θ) via the Cramér-Rao inequality:
�(θe ) � [NI (θ)]−1, where N is the number of independent
experimental trials [5,6]. Naïvely, the theoretical task is to
adjust the experimental input state and final measurement to
optimize the Fisher information matrix and to minimize the
estimator’s risk with respect to some risk function [7–12].
However, theoretical strategies are not necessarily suitable for
real technologies—especially not for quantum technologies,
which generate data from measurements of quantum states ρ̂θ .

While a theorist aims to optimize the Fisher informa-
tion, an experimentalist must beware experimental limitations
and costs [13,14]. Recent works, theoretical and practical,
have focused on mitigating experimental problems associated
with the measurement and postprocessing of output quan-
tum states. Weak-value amplification [15–17] and postselected
metrology [18–21] allow the rate of output states per unit time
to be lowered while a significant fraction of the information
about a single parameter θ1 is retained. This enables detectors
to operate at lower intensities and can, if the postselection
is experimentally cheap, reduce temporal overheads associ-
ated with measurements and postprocessing. The protocols
cannot increase the information content, but can reduce the

experimental costs of accessing it. A shortcoming of previ-
ous information-compression protocols is that they only work
when information has been encoded by unitaries of specific
forms, and require perfect knowledge of all but one of the
experimental parameters—unrealistic settings [22].

Given the important role of multiparameter learning in
quantum metrology and quantum machine learning, a gen-
eralization of these cost-reducing results is warranted for
both practical and foundational reasons. A generalization will
help facilitate postselected metrology in diverse experiments,
where several parameters are unknown, as well as in quan-
tum machine learning, where the overhead associated with
the postprocessing of output data can be monumental. From
a foundational perspective, a generalization could provide
useful knowledge about postselection as a tool to amplify
quantum resources. A previously unanswered fundamental
question is, How much metrological information can be en-
coded in a quantum state?

In this paper, we answer this question. First, we review
theoretical results, establishing that scalar risk functions based
on the quantum Fisher information matrix are suitable objects
to minimize, when optimizing quantum learning and quanti-
fying quantum metrological information. Second, we derive
a formula for the distilled (postselected) quantum Fisher
information matrix. Third, we design a quantum-learning
methodology to distill the useful information from an arbitrar-
ily large number of states ρ̂θ into an arbitrarily small number
of states ρ̂

ps
θ

(Theorem 1). Our methodology is general: It
applies to any reasonable encoding unitary. It is a well-known
fact that filtering a number of particles can distill the aver-
age information content of a subset of the particles, but not
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FIG. 1. Compression of metrological information. Our postse-
lected metrology protocol compresses the multiparameter informa-
tion encoded in ρ̂θ

⊗n into ρ̂
ps
θ

⊗m. The filter imposes postselection.
There is no bound on how small m/n can be. The information lost to
discarded particles or to the environment can be vanishingly small.

increase the total average information of all particles. Nev-
ertheless, our protocol is lossless: No information is wasted
in the distillation (postselection) procedure, and the total in-
formation of all the initial particles is compressed into an
arbitrarily small number of final particles. The main results of
our work are summarized in Fig. 1. Fourth, we discuss how
our results can be applied to improve quantum learning in
the presence of imperfect detectors or postprocessing costs.
Finally, we show that our results leverage negativity [26], a
narrower nonclassicality concept than noncommutation.

II. PRELIMINARIES

Consider a learning experiment with finite and discrete out-
comes k with corresponding probabilities p(k|θ). The Fisher
information matrix is defined as

Ii, j (θ) =
∑

k

p(k|θ){∂i ln[p(k|θ)]}{∂ j ln[p(k|θ)]}, (1)

where ∂i ≡ ∂
∂θi

. The Fisher information matrix lower-bounds
the covariance matrix �(θe ) via the Cramér-Rao inequality:
�(θe ) � [NI (θ)]−1. Choosing a positive, real, M×M weight
matrix W introduces a scalar Cramér-Rao bound:

s(�(θe ),W ) ≡ Tr[W �(θe )] � 1

N
Tr[W I−1(θ)]. (2)

If, e.g., W = 1 and θe is an unbiased estimator, the scalar
risk function s(�(θe ),W ) equals the sum of the individual
mean-square errors of the parameters in θe. See Ref. [4] for
a review. For unbiased, or “reasonable,” estimators θe and
N → ∞, inequality (2) is saturated [27]. In what follows,
we shall assume these conditions, such that s(�(θe ),W ) ≡
s(I (θ),W ) = Tr[W I−1(θ)]/N .

From a learnability perspective, it is often useful to con-
sider the most informative experiment that extracts (Fisher)
information from quantum states ρ̂θ:

s(MI)(ρ̂θ,W ) ≡ s
(

max
M

I (θ),W
)

= 1

N
min
M

Tr[W I−1(θ)]. (3)

Here, M is the set of all possible measurements.
In the Supplemental Material, we review previous results,

showing that s(MI)(ρ̂θ,W ) is bounded by

1

N
Tr[WI−1(θ)] � s(MI)(ρ̂θ,W ) � 2

1

N
Tr[WI−1(θ)]. (4)

I (θ) is the symmetric-logarithmic-derivative quantum Fisher
information. In this theoretical proof-of-principle study, we
focus on pure states. An investigation of distilled quantum
learning in the presence of noise is left for an upcoming paper.
For pure states,

Ii, j (θ|ψθ ) = 4 Re[〈∂iψθ|∂ jψθ〉 − 〈∂iψθ|ψθ〉 〈ψθ|∂ jψθ〉]. (5)

Within a factor of 2, I (θ) sets s(MI)(ρ̂θ,W ). This consti-
tutes our main motivation for focusing on I (θ) as a measure
of quantum learnability. Furthermore, empirical machine-
learning motivation can be found in Refs. [28–30]. Below,
we show that the quantum Fisher information encoded in an
arbitrarily large number of identical states can be compressed
into an arbitrarily small number of identical states, without
any information loss.

III. POSTSELECTED QUANTUM FISHER
INFORMATION MATRIX

Here, we consider an experiment where an initial state,
ρ0, is evolved by an M-parameter unitary, Û (θ): ρ̂0 → ρ̂θ ≡
Û (θ)ρ̂0Û †(θ). Then it is subject to a postselective measure-
ment {F̂1 = F̂ , F̂2 = 1̂ − F̂ }. F̂i need not be projective. The
experiment is depicted in Fig. 2. Throughout this paper, we
assume a discrete Hilbert space of dimension d .

The output states in Fig. 2 are given by |ψps
θ

〉 ≡ K̂ |ψθ〉 /√
pps

θ
, where pps

θ
= Tr[F̂ ρ̂θ] is the probability of successful

postselection and K̂ is the Kraus operator that sets the post-
selection filter: F̂ = K̂†K̂ .

We now derive a formula for the postselected quantum
Fisher information matrix. By evaluating Eq. (5) for |ψθ〉 →
|ψps

θ
〉, we extend and generalize the single-parameter results

of Ref. [19]. The first inner product of Eq. (5) is then given by⎛
⎝∂i

〈ψθ| K̂†√
pps

θ

⎞
⎠ ·

⎛
⎝∂ j

K̂ |ψθ〉√
pps

θ

⎞
⎠

=
⎛
⎝ 〈∂iψθ| K̂†√

pps
θ

− 1

2

〈ψθ| K̂†(
pps

θ

) 3
2

∂i p
ps
θ

⎞
⎠

·
⎛
⎝ K̂ |∂ jψθ〉√

pps
θ

− 1

2

K̂ |ψθ〉(
pps

θ

) 3
2

∂ j pps
θ

⎞
⎠

= 〈∂iψθ| F̂ |∂ jψθ〉
pps

θ

− 1

2

〈ψθ| F̂ |∂ jψθ〉(
pps

θ

)2 ∂i p
ps
θ

− 1

2

〈∂iψθ| F̂ |ψθ〉(
pps

θ

)2 ∂ j pps
θ

+ 1

4

(
∂i p

ps
θ

)(
∂ j pps

θ

)
(
pps

θ

)2 , (6)

where the last equality follows from pps
θ

= 〈ψθ| F̂ |ψθ〉. The
second inner product of Eq. (5) is⎛
⎝∂i

〈ψθ| K̂†√
pps

θ

⎞
⎠ ·

⎛
⎝ K̂ |ψθ〉√

pps
θ

⎞
⎠ = 〈∂iψθ| F̂ |ψθ〉

pps
θ

− 1

2

(
∂i p

ps
θ

)
pps

θ

.

(7)
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FIG. 2. Preparation and distillation of quantum states. Potential optical realization (main), and schematic figure (inset). First, M unknown
parameters θ are encoded in the initial state ρ̂0 by the unitary Û (θ): ρ̂0 → ρ̂θ . Second, the encoded state ρ̂θ is past through a postselective
measurement {F̂1 = F̂ , F̂2 = 1̂ − F̂ }. The postselection filters out the quantum states unless outcome F̂ = K̂†K̂ happens. Third, the experiment
outputs the distilled states ρ̂

ps
θ = K̂ ρ̂θK̂†/pps

θ with success probability pps
θ = Tr(F̂ ρ̂θ ).

The third inner product, 〈ψθ|∂ jψθ〉, is evaluated similarly.
Combining these expressions, we find that the quantum Fisher
information matrix of the distilled fraction of the output states
(the states that have passed the postselection filter) is given
by

Ii, j
(
θ
∣∣ψps

θ

) = 4 Re

[
1

pps
θ

〈∂iψθ|F̂ |∂ jψθ〉

− 1(
pps

θ

)2 〈∂iψθ|F̂ |ψθ〉 〈ψθ|F̂ |∂ jψθ〉
]
. (8)

IV. DISTILLING QUANTUM LEARNABILITY

It is possible to use filtering (postselection) to distill
quantum Fisher information such that we get anomalous ma-
trix entries: |Ii, j (θ|ψps

θ
)| > maxρ̂0 |Ii, j (θ|ψθ )|. In other words,

postselection can outperform optimal state preparation in con-
densing the information per output state. (Below, we shall
connect such anomalous information values to negativity, a
narrower nonclassicality concept than noncommutation.) One
would expect that anomalously large values of the postse-
lected quantum Fisher information matrix can lead to better
learning-per-experimental-cost rates (by reducing the num-
ber of measurements needed to obtain a certain amount of
information). However, I−1(θ|ψps

θ
) bounds s(MI)(ψps

θ
,W ) via

matrix inequalities [inequalities (4)], and it is generally hard
to know which entry, Ii, j (θ|ψps

θ
), it would be beneficial to

amplify. Furthermore, setting a postselection operator F̂ to
optimize one entry in I (θ|ψps

θ
) could have a detrimental

effect on another entry. Next, we show that it is possi-
ble to choose F̂ such that the entire matrix I (θ|ψps

θ
) is

optimized: det I (θ|ψps
θ

) → ∞, and s(MI)(ψps
θ

,W ) → 0. The
price to pay for I (θ|ψps

θ
) is smaller success chances pps

θ
.

That is, the metrological multiparameter information can be
compressed into fewer quantum states, but the compres-
sion (filtering) cannot increase the overall information. First,
we provide a guiding example of two-parameter estima-
tion of a postselected qubit. Then, we present the general
theory.

A. Example

Consider a qubit in an initial state |ψ0〉 = |0〉. The
quantum circuit of interest is parametrized by two param-
eters θ = (θ1, θ2) and represented by the unitary Û (θ) =
ei(σ̂x+σ̂z )θ2/

√
2eiσ̂xθ1 , where σ̂k is the kth Pauli operator. The

quantum Fisher information matrix of the output state |ψθ〉 =
Û (θ) |0〉 is

I (θ|ψθ ) =
(

4 2
√

2
2
√

2 3 − cos (4θ1)

)
. (9)

We assume that our initial guess of θ, ρ̂θ0 , is off by 1/10
for both θ1 and θ2: θ0 = (θ1 + 1

10 , θ2 + 1
10 ). We set the Kraus

operator to K̂ = ( 1√
5

− 1)ρ̂θ0 + 1̂. The probability of a suc-

cessful postselection is given by pps
θ

= Tr[K̂†K̂ ρ̂θ] ≈ 1/5.
Moreover, the postselected (distilled) quantum Fisher infor-
mation matrix is given by

I
(
θ
∣∣ψps

θ

) ≈ 5

(
4 2

√
2

2
√

2 3 − cos (4θ1)

)
. (10)

All entries of I (θ|ψps
θ

) are anomalous and exceed their classi-
cal maximum of 4 (see below). By reducing (via postselective
filtering) the number of quantum states that will reach the final
detector by a factor of 5, we have also achieved a fivefold
increase of the information content of the remaining states.

B. General theory

Here, we outline how to achieve a diverging quantum
Fisher information matrix in the general scenario. Our results
assume that we possess an initial estimate of θ, θ0, that is
sufficiently close to the true value: θ0 ≈ θ [31]. In the limit
of many trials (N → ∞), we can always “sacrifice” a van-
ishingly small fraction of the trials to achieve such an initial
estimate. θ0 can also be improved iteratively, suitably using a
Kalman filter [36].

Theorem 1: Arbitrary distillation ofquantum learnability.
For a sufficiently accurate initial estimate, the theoretically
attainable average distilled multiparameter information per
output state about the unknown parameter vector θ has no
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upper limit: It is possible to distill quantum states such that
I (θ|ψps

θ
) → ∞ and s(MI)(ψps

θ
,W ) → 0 in a lossless fashion.

Proof of Theorem 1. Our proof is constructive. We present
a specific protocol that achieves the objective; other protocols
might exist. We consider the setup depicted in Fig. 2, with
postselected quantum Fisher information given by Eq. (8).

First, we express our initial quantum-state estimate, ρ̂θ0 ,
in terms of the true state ρ̂θ . We start by expanding Û (θ0)
around θ. To simplify the notation, we define δ ≡ (δ1, . . . , δM )
such that δ = θ − θ0. The following calculations assume that
|δ|2 � 1.

Û (θ0) = Û (θ) + [∇θÛ (θ)]�(θ0 − θ) + O(|δ|2) (11)

= Û (θ) − iÛ (θ)d̂ + O(|δ|2). (12)

In the last step we have defined the O(|δ|) Hermitian operator
d̂ ≡ Û †(θ)[−i∇θÛ (θ)]�δ. We can now evaluate, to O(|δ|2),
ρ̂θ0 :

ρ̂θ0 = Û (θ0)ρ̂0Û
†(θ0) (13)

= Û (θ)(1̂ − id̂ )ρ̂0(1̂ + id̂ )Û †(θ) + O(|δ|2) (14)

= Û (θ)(ρ̂0 + i[ρ̂0, d̂])Û †(θ) + O(|δ|2) (15)

= ρ̂θ + i[ρ̂θ, D̂] + O(|δ|2). (16)

Again, we have defined a O(|δ|) Hermitian operator D̂ ≡
Û (θ)d̂Û †(θ). Equation (16) is general (the Supplemental Ma-
terial provides guiding examples). The only assumption is that
Û (θ0) can be locally approximated by its first-order Taylor
expansion.

Second, we set the Kraus operator K̂ with respect to the
initial estimate of the quantum state before postselection [37]:

K̂ = (t − 1)ρ̂θ0 + 1̂, (17)

where 0 � t � 1. Physically, this choice of K̂ generates a
postselection (distillation) procedure that transmits the ex-
pected state ρ̂θ0 with probability t2 and transmits fully any
state orthogonal to ρ̂θ0 . In interferometric language, our filter
allows a detector to operate in a dark fringe, but to access all
information.

We proceed by evaluating the postselected Fisher informa-
tion matrix Ii, j (θ|ψps

θ
) [Eq. (8)] for the above-outlined choice

of Kraus operator, K̂ = (t − 1)ρ̂θ0 + 1̂. This Kraus operator
gives the postselection operator F̂ = (t2 − 1)ρ̂θ0 + 1̂. The fol-
lowing calculations assume that M|δ|2 � t2. We define the
O(|δ|) Hermitian operator Ĉ ≡ i[ρ̂θ, D̂] to simplify notation.
We begin by evaluating the individual terms of Eq. (8). Then,
we combine these terms.

First, we calculate the postselection probability pps
θ

in
Eq. (8):

pps
θ

= Tr[F̂ ρ̂θ] (18)

= Tr[(ρ̂θ0 (t2 − 1) + 1̂)ρ̂θ] (19)

= (t2 − 1)Tr[(ρ̂θ + Ĉ)ρ̂θ] + 1 + O(|δ|2) (20)

= t2 + O(|δ|2). (21)

Here, we have used that Tr[ρ̂θĈ] = 0.
Second, we calculate the first inner product in Eq. (8):

〈∂iψθ|F̂ |∂ jψθ〉 = 〈∂iψθ|(ρ̂θ0 (t2 − 1) + 1̂)|∂ jψθ〉 (22)

= (t2 − 1) 〈∂iψθ|(ρ̂θ + Ĉ)|∂ jψθ〉
+ 〈∂iψθ|∂ jψθ〉 + O(|δ|2) (23)

= (t2 − 1) 〈∂iψθ|ψθ〉 〈ψθ|∂ jψθ〉
+ (t2 − 1) 〈∂iψθ|Ĉ|∂ jψθ〉
+ 〈∂iψθ|∂ jψθ〉 + O(|δ|2). (24)

Third, we calculate the second inner product in Eq. (8):

〈∂iψθ|F̂ |ψθ〉 = 〈∂iψθ|(ρ̂θ0 (t2 − 1) + 1̂)|ψθ〉 (25)

= (t2 − 1) 〈∂iψθ|(ρ̂θ + Ĉ)|ψθ〉
+ 〈∂iψθ|ψθ〉 + O(|δ|2) (26)

= t2 〈∂iψθ|ψθ〉
+ (t2 − 1) 〈∂iψθ|Ĉ|ψθ〉 + O(|δ|2). (27)

Fourth, in a similar manner we calculate the third inner
product in Eq. (8):

〈ψθ|F̂ |∂ jψθ〉 = t2 〈ψθ|∂ jψθ〉 + (t2 − 1) 〈ψθ|Ĉ|∂ jψθ〉
+ O(|δ|2). (28)

Fifth, we calculate the product of the second and third inner
products in Eq. (8):

〈∂iψθ|F̂ |ψθ〉 〈ψθ|F̂ |∂ jψθ〉
= t4 〈∂iψθ|ψθ〉 〈ψθ|∂ jψθ〉

+ t2(t2 − 1) 〈∂iψθ|ψθ〉 〈ψθ|Ĉ|∂ jψθ〉
+ t2(t2 − 1) 〈∂iψθ|Ĉ|ψθ〉 〈ψθ|∂ jψθ〉 + O(|δ|2) (29)

= t4 〈∂iψθ|ψθ〉 〈ψθ|∂ jψθ〉
+ t2(t2 − 1) 〈∂iψθ| Ĉ |∂ jψθ〉 + O(|δ|2). (30)

Finally, we combine the calculated expressions:

Ii, j
(
θ
∣∣ψps

θ

) = 4 Re

{
1

t2
[(t2 − 1) 〈∂iψθ|ψθ〉 〈ψθ|∂ jψθ〉

+ (t2 − 1) 〈∂iψθ|Ĉ|∂ jψθ〉 + 〈∂iψθ|∂ jψθ〉]

− 1

t4
[t4 〈∂iψθ|ψθ〉 〈ψθ|∂ jψθ〉

+ t2(t2 − 1) 〈∂iψθ| Ĉ |∂ jψθ〉]
}

+ O(|δ|2)

(31)

= 1

t2
4 Re{〈∂iψθ|∂ jψθ〉 − 〈∂iψθ|ψθ〉 〈ψθ|∂ jψθ〉}

+ O(|δ|2) (32)

= 1

t2
Ii, j (θ|ψθ ) + O(|δ|2). (33)

To summarize, substituting K̂ and ρ̂θ0 into Ii, j (θ|ψps
θ

)
[Eq. (8)] yields

Ii, j
(
θ|ψps

θ

) = 1

t2
Ii, j (θ|ψθ ) + O(|δ|2). (34)

We now interpret Eq. (34). K̂ is independent of i, j, such
that our distillation technique amplifies all nonzero entries of
I (θ|ψps

θ
) simultaneously: I (θ|ψps

θ
) = I (θ|ψθ )/t2 + O(|δ|2).
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Combining this result with inequalities (4), s(MI)(ψps
θ

,W ) →
0 when |δ|2 � t2 → 0 [38]. Consequently, we have found a
protocol that distills the information of all parameters in θ in
a way such that the scalar cost function tends to zero.

It is important to note that while information can be
compressed from many states ψθ to fewer states ψ

ps
θ

, the
procedure cannot increase the average information of the total
system. That is, the larger information content of the states
that survive the filtering (postselection) comes at the cost of
an information decrease of the states that fail the filtering.
Phrased in algebraic terms, pps

θ
× I (θ|ψps

θ
) � Ii, j (θ|ψθ ). As

outlined above, the probability of successful postselection in
our protocol is given by pps

θ
= t−2 + O(|δ|2). Thus we reach

the remarkable conclusion that the distillation of informa-
tion in our proposed protocol is lossless: pps

θ
× I (θ|ψps

θ
) =

I (θ|ψθ ) + O(|δ|2). This concludes our constructive proof. �

V. APPLICATIONS

By distilling the multiparameter Fisher information, the in-
tensity of output states is reduced. This can lead to learnability
improvements by allowing metrologists and machine learners
to use input-state intensities that would normally have caused
the output detectors to saturate. The information content avail-
able in the compressed, low-intensity output is identical to
what the initial, high-intensity output would have been.

As an application example, consider encoding an image in
quantum states ρ̂θ . θ = (θ1, . . . , θM ) is a vector of the image’s
pixels’ intensities. Perhaps our task is to learn about imper-
fections in the image-encoding procedure of a certain target
image θ	. Then ρ̂θ	 is a good initial guess to learn the im-
perfectly encoded, true image θ ≈ θ	. Alternatively, perhaps
we want to learn an image that deviates slightly from a blank
image. Then θ0 = 0, and ρ̂θ0 = ρ̂0 is a good initial guess. Our
distillation protocol allows us to improve the benchmarking
of the image-state preparation as well as to avoid detector
saturation, and to increase sensitivity, without losing informa-
tion, when measuring ρ̂θ to learn the image. More specifically,
imagine that we have access to a source supplying coherent
photonic states ρ̂θ . The current state-of-the-art experiment
produces such states at a rate of 1 GHz [39]. To confirm the
findings of the experiment conducted in Ref. [39], the beam of
photons had to be attenuated by a factor of 9.9 to avoid detec-
tor saturation [39]. In a setup where this photonic beam and
these detectors had been used for quantum-learning purposes,
our distillation protocol could have been used to attenuate the
beam. Compared with a scenario where the supply of photons
had been reduced instead, our protocol could lead to an 890%
increased rate of Fisher information per sampling time.

A particle-number detector will suffer from a dead time, the
time needed to reset the detector after triggering it. In the jar-
gon of experimental costs, the dead time associates a temporal
cost with the measurement [20]. Also, measurements call for
postprocessing, which costs further time and computation.
Under the right conditions, our distillation protocol enables
an experimentalist to incur the final measurement’s cost only
when the probe state carries a great deal of information. The
“right conditions” are when the postselection is experimen-
tally cheaper than the final measurement. For example, if ρ̂θ

can be supplied ten times faster than the dead time of the
detector that measures ρ̂θ , then optimal filtering can increase
the information-per-time rate tenfold. In Ref. [20], postse-
lected single-parameter metrology improved the sensitivity of
a polarization measurement by a factor of >200. Our results
diversifies such methods to the multiparameter regime.

Many quantum schemes can be sped up by using several
quantum processors in parallel [32,33]. By using our protocol
to distill the output from parallel processors, it could be pos-
sible to reduce the number of final-measurement apparatuses
in setups, decreasing the monetary cost of parallel-processor
schemes.

One can also envision scenarios where the encoding and
final measurements (which may include a premeasurement
quantum computation using ρ̂θ as an input [40]) are spatially
separated and connected by quantum channels. Our distilla-
tion protocol allows the rate of quantum-state transmission
to decrease, while keeping the average information flow con-
stant. Similarly, if the measurement is to take place long after
the interaction, our distillation protocol can reduce the number
of quantum states that need to be stored in quantum memory
predetection.

VI. QUASIPROBABILISTIC ANALYSIS

After having examined the practical aspects of our
information-distillation protocol, we now turn to a founda-
tional analysis. One might wonder, What is the fundamental
resource that enables postselection to probabilistically boost
the Fisher information? The answer, we show in this section,
is negativity, a nonclassicality concept that stems from a cer-
tain type of noncommutation between observables [26,41,42].

So far, we have made few assumptions regarding the
form of Û (θ). However, in many scenarios, Û (θ) will be
composed of a series of M sequential unitary operators,
Û (θ) = ∏1

m=M Ûm(θm), where Ûm(θm) satisfies Stone’s theo-
rem on one-parameter unitary groups [43] such that Ûm(θm) =
eiθmÂm ∀m ∈ 1, . . . , M [44]. The Hermitian generators Âm are
in general noncommuting.

Here, we examine such sequential unitaries and use
quasiprobabilistic techniques to bound Ii, j (θ|ψps

θ
) with re-

spective to classical and quantum statistics. Quasiprobability
distributions are mathematical objects that behave similarly
to probability distributions: They sum to unity, and marginal-
izing over all but one of the arguments yields a classical
probability distribution. However, individual quasiprobabili-
ties can be nonclassical by having values outside [0,1].

The complex-valued Kirkwood-Dirac (KD) quasiprobabil-
ity distribution [45,46] is a relative of the Wigner function that
can describe discrete systems—even qubits. The KD distribu-
tion has recently illuminated quantum effects in weak-value
amplification [47–49], measurement disturbance [48,50–52],
tomography [53–57], quantum chaos [49,58–62], metrol-
ogy [19,20], thermodynamics [63,64], and the foundations
of quantum mechanics [50,65–73]. By optimizing a formula
with respect to a classical (real and non-negative) and a quan-
tum (complex) Kirkwood-Dirac distribution, classical and
quantum bounds can be found, respectively. Below we deploy
this technique.
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A KD distribution represents a quantum state ρ̂ in terms
of k � 2 sets of measurement operators. Equation (8) can be
decomposed naturally in terms of a KD distribution defined
by a discrete ρ̂ and k = 3 sets of measurement operators.
Two sets are composed of the projectors onto the subspaces
of distinct eigenvalues of ˆ̃Ai and ˆ̃Aj , and one set contains the
postselection measurement operators:{


̂
(i)
k : 
̂

(i)
k

ˆ̃Ai = a(i)
k 
̂

(i)
k

}
,{


̂
( j)
l : 
̂

( j)
l

ˆ̃Aj = a( j)
l 
̂

( j)
l

}
,

{F̂1 = F̂ , F̂2 = 1̂ − F̂ }.
Here, ˆ̃Am ≡ [

∏m+1
i=M Ûi(θi )]Âm[

∏M
j=m+1 Û †

j (θ j )] for m < M.

For m = M, ˆ̃AM ≡ ÂM . We order the eigenvalues of ˆ̃Ai and ˆ̃Aj

ascendingly, a(i)
1 � · · · � a(i)

d , and define the spectral eigen-
gap �a(i) ≡ a(i)

d − a(i)
1 , etc. We can now define our operational

KD distribution with respect to the operators above:{
qρ̂

k,l,m

} ≡ {
Tr
[

̂

(i)
k F̂m
̂

( j)
l ρ̂

]}
. (35)

The KD distribution obeys an analog of Bayes’s theo-
rem [49,53]. Consequently, we can define a distribution that
corresponds to {qρ̂

k,l,m} conditioned on the postselection yield-
ing outcome F̂ :

{
Qρ̂

k,l

} ≡

⎧⎪⎨
⎪⎩

qρ̂

k,l,m=1∑
k,l,m=1

qρ̂

k,l,m

⎫⎪⎬
⎪⎭ = {

Tr
[

̂

(i)
k F̂
̂

( j)
l ρ̂

]/
pps

θ

}
. (36)

Transforming the inner products in Eq. (8) to traces, we
obtain

Ii, j
(
θ
∣∣ψps

θ

) = 4 Re

{
1

pps
θ

Tr[F̂ ˆ̃Aj ρ̂θ
ˆ̃Ai]

− 1(
pps

θ

)2 Tr[F̂ ρ̂θ
ˆ̃Ai]Tr[F̂ ˆ̃Aj ρ̂θ]

}
. (37)

Here, we have used that

|∂ jψθ〉 = ∂ jÛ (θ) |ψ0〉 = ˆ̃Aj |ψθ〉 . (38)

We can now use distribution (36) to recast Eq. (37):

Ii, j
(
θ
∣∣ψps

θ

) = 4 Re

{∑
k,l

a(i)
k a( j)

l Qρ̂θ

k,l −
(∑

k′,l ′
a(i)

k′ Qρ̂θ

k′,l ′

)

·
(∑

k′′,l ′′
a( j)

l ′′ Qρ̂θ

k′′,l ′′

)}
. (39)

When {Qρ̂

k,l} is classical, all |Qρ̂

k,l | � 1. Negative
quasiprobabilities allow the denominators of Eq. (36) to
approach 0 even for finite numerators. Then, |Qρ̂

k,l | can be
arbitrarily large. Such negativity, an example above shows,
enables |Ii, j (θ|ψps

θ
)| to be anomalously large, compared

with experiments described by classical distributions. This
can increase distilled states’ multiparameter information to
nonclassically large values.

Theorem 2: Necessary condition for anomalous posts-
elected quantumFisher information matrix. Suppose that a

postselected quantum Fisher information matrix has some
entry |Ii, j (θ|ψps

θ
)| > �a(i)�a( j). Then, an underlying KD

distribution {Qρ̂

k,l} necessarily contains at least one negative
value.

Proof of Theorem 2. We prove this theorem by contradic-
tion. First, we note that Eq. (39) is a quantum extension of
a covariance, where Qρ̂θ

k,l replaces classical joint probabilities.

Second, we assume that {Qρ̂θ

k,l} is classical. Third, ignoring the

specific form of {Qρ̂θ

k,l}, we maximize and minimize Eq. (39)

over all classical distributions. When Qρ̂θ

k,l ∈ [0, 1] and i �= j,
Eq. (39) has the form of (four times) a classical covari-
ance with maximum and minimum values �a(i)�a( j) and
−�a(i)�a( j), respectively [74]. When Qρ̂θ

k,l ∈ [0, 1] and i = j,
Eq. (39) is upper bounded by (�a(i) )2 and lower bounded
by 0 [19]. Per definition, an anomalous quantum Fisher in-
formation matrix (QFIM) entry breaks these bounds, such
that the assumption of a classical distribution {Qρ̂θ

k,l} cannot
be satisfied. Consequently, if |Ii, j (θ|ψps

θ
)| > �a(i)�a( j), then

{Qρ̂θ

k,l} is nonclassical. The form of Eq. (39) implies that any
nonreal values cancel. Thus the nonclassicality must be in the
form of negativity. �

An immediate corollary follows.
Corollary 1. In a classically commuting theory, a theory

in which operators commute, the quantum Fisher information
matrix satisfies |Ii, j (θ|ψps

θ
)| � �a(i)�a( j).

Proof. Reference [26] proves that noncommutation is nec-
essary for nonclassical KD distributions [75]. The corollary
thus follows from Theorem 2. �

One might wonder if a filter applied before the
information-encoding unitary could also generate arbitrarily
large information encoded in the final quantum states. The
answer is no. If the postselection filter is moved from after
to before the unitary, the KD distribution is classical. Thus,
by Theorem 2, the postselected quantum Fisher information
is not anomalous.

VII. CONCLUSION

We have shown that postselection enables distillation of
quantum learnability in a lossless fashion. The quantum
Fisher information matrix enables scalar quantification of
quantum learnability in multiparameter metrology and ma-
chine learning. We proved (Theorem 1) that there is no
upper bound on how much multiparameter Fisher infor-
mation can be compressed into a small number of states.
From a practical perspective, our result generalizes, to the
multiparameter-quantum-learnability regime, previous tech-
niques from single-parameter postselected metrology and
weak-value amplification. The implementation of our dis-
tillation protocol could mitigate the impact of detector
imperfections and enable simplified setups in parallelized
quantum schemes. Finally, we used quasiprobabilistic tech-
niques to study experiments with sequential unitaries Û (θ) =∏1

m=M eiθmÂm . Classically, we find that the entries in the post-
selected quantum Fisher information matrix are bounded by
|Ii, j (θ|ψps

θ
)| > �a(i)�a( j), where �a(i) is the spectral gap

of Âi. Via a quantum analog of Bayes’s theorem, negative
quasiprobabilities allow the entries to break these bounds
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(Theorem 2). Thus nonclassical negativity underlies the
anomalously large values of Ii, j (θ|ψps

θ
) found in the example

above.
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APPENDIX A: BOUNDS ON THE MOST INFORMATIVE
SCALAR RISK FUNCTION

In the main text, we considered a scalar risk function
with respect to the most informative experiment that extracts
(Fisher) information from quantum states ρ̂θ:

s(MI)(ρ̂θ,W ) ≡ s
(

max
M

I (θ),W
)

= 1

N
min
M

Tr[W I−1(θ)].

(A1)

M is the set of all possible measurements. We argued that the
quantum Fisher information matrix is the object of interest
when finding bounds on s(MI)(ρ̂θ,W ). In this Appendix, we
review results that support this claim.

The Fisher information matrix is upper bounded by
the quantum Fisher information matrix [4,76–78]: I (θ) �
I (θ|ρ̂θ ). The quantum Fisher information matrix is defined by

Ii, j (θ|ρ̂θ ) = Tr(L̂ j∂iρ̂θ ). (A2)

Here, L̂ j is the logarithmic derivative operator, which is not
uniquely defined [78]. It can be defined using a symmetric
logarithmic derivative (SLD), 2∂iρ̂θ = L̂(SLD)

i ρ̂θ + ρ̂θL̂(SLD)
i ,

or with a right logarithmic derivative (RLD), ∂iρ̂θ = ρ̂θL̂(RLD)
i .

In the multiparameter scenario (M > 1), noncommutation of-
ten forbids measurements such that Ii, j (θ) = Ii, j (θ) for all
i, j. Thus I (θ) � I (θ|ρ̂θ ) cannot commonly be saturated.
Either the symmetric-logarithmic-derivative or the right-
logarithmic-derivative quantum Fisher information matrix can
give a bound that lies closer to the achievable bound. For
pure states, L̂(SLD)

i = 2L̂(RLD)
i = 2∂iρ̂θ , and the symmetric-

logarithmic-derivative quantum Fisher information matrix
[Eq. (A2)] is

Ii, j (θ|ψθ ) = 4 Re[〈∂iψθ|∂ jψθ〉 − 〈∂iψθ|ψθ〉 〈ψθ|∂ jψθ〉],
(A3)

where ρ̂θ ≡ |ψθ〉 〈ψθ| [78].
The quantum Fisher information matrix yields a scalar

Cramér-Rao bound [4]:

s(MI)(ρ̂θ,W ) � 1

N
Tr[WI−1(θ)]. (A4)

It is this bound that (directly or indirectly) leads quantum
machine-learning algorithms to optimize the quantum Fisher
information matrix of their subroutines [28–30]. However,
Eq. (A4) “only” provides a lower bound on s(MI)(ρ̂θ,W ).
Consequently, it is reasonable to ask, How good a measure of
learnability is the quantum Fisher information matrix? From

an information theoretic perspective, the answer [79,80] is
given by

1

N
Tr[WI−1(θ)] � h(θ,W ) � (1 + Q)

1

N
Tr[WI−1(θ)],

(A5)
where h(θ,W ) is Holevo’s lower bound of the Cramér-Rao
inequality [81]. The “geometric quantumness” measure Q
satisfies 0 � Q � 1 [82]. Generally, it is hard to calculate
h(θ,W ) (see Ref. [4] for the exact form). Nevertheless, for
pure states, s(MI)(ρ̂θ,W ) = h(θ,W ) [83].

For the purpose of the theoretical pure-state investigation
in this paper, the formulas above can be summarized as

1

N
Tr[WI−1(θ)] � s(MI)(ρ̂θ,W ) � 2

1

N
Tr[WI−1(θ)]. (A6)

Within a factor of 2, I (θ) sets s(MI)(ρ̂θ,W ).

APPENDIX B: VALIDITY OF EQUATION (16)

In this Appendix we confirm that the estimated state
ρ̂θ0 satisfies ρ̂θ0 ≡ Û (θ0)ρ̂0Û †(θ0) = ρ̂θ + i[ρ̂θ, D̂] + O(|δ|2)
[Eq. (16)], by examining two very common forms of encoding
unitary evolutions.

First, we assume that the unitary takes the form of Û (θ) =∏1
m=M Ûm(θm), where Ûm(θm) ≡ eiθmÂm ∀m ∈ 1, . . . , M [44].

The Hermitian generators Âm are in general noncommuting.
Then,

Û (θ0) =
1∏

j=M

Ûj
(
θ0

j

)
(B1)

=
1∏

j=M

Ûj (θ j )e
−iδ j Â j (B2)

=
1∏

j=M

Ûj (θ j )(1̂ − iδ j Â j ) + O(|δ|2) (B3)

= Û (θ)

(
1̂ − i

M∑
j=1

δ j
ˆ̃Aj

)
+ O(|δ|2) (B4)

= Û (θ)(1̂ − iγ̂ ) + O(|δ|2). (B5)

Here, we have defined the O(δ) Hermitian operator γ̂ ≡∑M
j=1 δ j

ˆ̃Aj . Similarly,

Û †(θ0) = (1̂ + iγ̂ )Û †(θ) + O(|δ|2). (B6)

We can now evaluate, to O(|δ|2), ρ̂θ0 :

ρ̂θ0 = Û (θ0)ρ̂0Û
†(θ0) (B7)

= Û (θ)(1̂ − iγ̂ )ρ̂0(1̂ + iγ̂ )Û †(θ) + O(|δ|2) (B8)

= Û (θ)(ρ̂0 + [ρ̂0, iγ̂ ])Û †(θ) + O(|δ|2). (B9)

Setting Û (θ)γ̂ Û †(θ) → D̂, we obtain the required form:
ρ̂θ0 = ρ̂θ + i[ρ̂θ, D̂] + O(|δ|2).

Second, we assume that the unitary takes the form of
Û (θ) = ei

∑M
j=1 θ j Â j . Then,

Û (θ0) = ei
∑M

j=1 θ0
j Â j (B10)
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= ei
∑M

j=1 θ j Â j−i
∑M

k=1 δk Âk (B11)

≡ eiĤθ−iĜδ (B12)

= eiĤθ e−iĜδ e
1
2 [Ĥθ, Ĝδ ]e

i
6 [Ĥθ, [Ĥθ, Ĝδ ]] + O(|δ|2) (B13)

= Û (θ)e−iĜδ e
1
2 [Ĥθ, Ĝδ]e

i
6 [Ĥθ, [Ĥθ, Ĝδ]] + O(|δ|2) (B14)

= Û (θ)
(
1̂ − iĜδ

)(
1̂ + 1

2
[Ĥθ, Ĝδ]

)

×
(

1̂ + i

6
[Ĥθ, [Ĥθ, Ĝδ]]

)
+ O(|δ|2) (B15)

= Û (θ)

(
1̂ − iĜδ + 1

2
[Ĥθ, Ĝδ]

+ i

6
[Ĥθ, [Ĥθ, Ĝδ]]

)
+ O(|δ|2) (B16)

= Û (θ)(1̂ − iκ̂ ) + O(|δ|2). (B17)

Here, we have used Zassenhaus’ formula and defined Hermi-
tian operators Ĥθ ≡ ∑M

j=1 θ j Â j , Ĝδ ≡ ∑M
k=1 δkÂk j, and κ̂ ≡

Ĝδ − i[Ĥθ, Ĝδ]/2 − [Ĥθ, [Ĥθ, Ĝδ]]/6. κ̂ is O(δ). Similarly,

Û †(θ0) = (1̂ + iκ̂ )Û †(θ) + O(|δ|2). (B18)

As before, we can now evaluate, to O(|δ|2), ρ̂θ0 :

ρ̂θ0 = Û (θ)(ρ̂0 + [ρ̂0, iκ̂])Û †(θ) + O(|δ|2). (B19)

Setting Û (θ)κ̂Û †(θ) → D̂, we obtain the required form: ρ̂θ0 =
ρ̂θ + i[ρ̂θ, D̂] + O(|δ|2).

APPENDIX C: POSTSELECTED GEOMETRIC
QUANTUMNESS

The geometric quantumness measure Q in inequalities
(A5) is given by

Q = ||iI−1(θ|ψθ )J (θ|ψθ )||∞, (C1)

where ||X ||∞ denotes the largest eigenvalue of X . J (θ|ψθ ) is
the Uhlmann curvature [84,85] given by

Ji, j (θ|ψθ ) = 4 Im[〈∂iψθ|∂ jψθ〉 − 〈∂iψθ|ψθ〉 〈ψθ|∂ jψθ〉].
(C2)

The same tricks used in the main text can be used to show
that

Ji, j
(
θ
∣∣ψps

θ

) = 1

t2
Ji, j (θ|ψθ ) + O(|δ|2). (C3)

Thus, at least to O(|δ|2), the geometric quantumness Q is
constant with respect to the postselection.
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