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The distinguishability of photons in nonoperational degrees of freedom compromises the unconditional
security of quantum key distribution since an eavesdropper can improve attack strategies by exploiting this
distinguishability. However, the optimal eavesdropping strategies in the presence of light-source side channels
are not known. Here we provide several explicit attack strategies on the Bennett-Brassard 1984 (BB84) protocol
with partially distinguishable photons. In particular, we consider the phase-covariant cloning attack, which is
optimal in the absence of side channels, and show that there are even better strategies in the presence of side
channels. The improved strategies exploit a measurement of the side-channel state followed by an attack on the
signal photon. Our results explicitly demonstrate a reduction of the critical error rate and set an upper bound on
the practical secret key rate.
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I. INTRODUCTION

Quantum key distribution (QKD) is a method to share a
secret key between two legitimate parties (Alice and Bob) in
the presence of an eavesdropper (Eve) [1,2]. This possibility is
based on the no-cloning theorem, which prohibits information
gain from a carrier photon without disturbing its quantum
state [3,4]. In theory, QKD is unconditionally secure [5,6]. In
practice, however, there are numerous deviations of practical
QKD from theory [7], which leads to loopholes and side chan-
nels [8] and, consequently, to quantum hacking [9,10]. The
practical security of QKD is an active research topic [11,12].

Loopholes on Bob’s (receiver) side can be closed with
the use of a measurement-device-independent QKD protocol
[13–15] and twin-field QKD [16,17], where measurement de-
vices are excluded from the private space of the legitimate
sides and transferred to a third (untrusted) party. This protocol
allows getting rid of all hacking attacks on the measurement
devices, which made up the majority of already known hack-
ing strategies in practical QKD [8]. But this protocol does not
close loopholes on Alice’s (transmitting) side, which require
specific characterization and countermeasures ([18–21]).

Light-source side channels can be described with a non-
operational degree of freedom [18,22] from which Eve gains
information. For example, if Alice and Bob use polarization
encoding in the QKD protocol, then all other photon degrees
of freedom (e.g., spatial and temporal profile) are nonoper-
ational for QKD. The efficiency of eavesdropping depends
on Eve’s choice of how to measure and process information
from the side channel. In the Bennett-Brassard 1984 (BB84)
protocol without side channels, the critical quantum bit error
rate of 11% is an information-theoretic result [6], which is
also achieved with an explicit eavesdropping strategy [23].

But if photons used in the BB84 protocol are partially distin-
guishable in other than operational degrees of freedom (e.g.,
photons’ spatial profiles do not perfectly coincide in BB84
with polarization encoding), the security of the protocol is
lower. In other words, the critical quantum bit error rate is less
than 11%. In BB84 with partially distinguishable photons, the
lower bound on the possible secret key rate was provided in
[21]. This result shows a pessimistically low secret key gener-
ation rate. The explicit attack strategy, which gives this lower
bound of the secret key rate, is unknown. Previous research on
this issue [24–26] has not reached the secret key rate of [21],
thus opening a gap between explicit attacks and theoretical
secrecy. Therefore, investigating explicit attack strategies can
help close this gap.

In this paper, we provide explicit eavesdropping strategies
on the BB84 protocol in the presence of a binary side channel
of the light source. The strategies consist of a measurement of
the side-channel state and an attack on the signal photon. We
investigate two main types of measurements: unambiguous
state discrimination (USD) and minimum-error (ME) mea-
surement. For unambiguous state discrimination of the side
channel, there are two options: in the case of a conclusive
result, Eve obtains full information about the quantum signal,
while in the case of an inconclusive result, Eve performs
the standard optimal cloner attack. Therefore, we expect a
reduction of the critical error rate. For the minimum-error
side-channel measurement, the measurement result introduces
a bias in the signal states’ ensemble probabilities. Eve can
use this bias as an additional binary information source, or
alternatively, she can use it to adjust the eavesdropping strat-
egy on the signal photon with the use of postselection. We
use a Hong-Ou-Mandel (HOM) interference visibility [21] to
estimate information leakage through the side channel and
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calculate how the critical error rate depends on the HOM
visibility.

This paper is organized as follows. In Sec. II we formulate
the BB84 protocol in the presence of a binary-source side
channel and discuss possible strategies for information extrac-
tion. In Sec. III we formulate three eavesdropping strategies
on the protocol, and in Sec. IV we discuss and conclude our
results.

II. BB84 PROTOCOL WITH PARTIALLY
DISTINGUISHABLE PHOTONS

A. Side-channel model

In the balanced BB84 protocol, Alice and Bob use two
equiprobable bases of quantum states to distribute bits of a
secret key: the X basis {|0〉x, |1〉x} and the Y basis {|0〉y, |1〉y}.
Alice randomly chooses a secret bit value (0 or 1) and ran-
domly chooses a basis (X or Y ) and sends a quantum state
into the communication channel. This leads to the following
ensemble of states:{

1
4 : |0x〉, 1

4 : |1x〉, 1
4 : |0y〉, 1

4 : |1y〉
}
. (1)

Eavesdropping introduces mixedness in this ensemble, which
occurs due to the entanglement of the state of the carrier
photon with an auxiliary quantum system. By measuring
her quantum system, Eve obtains outcomes which correlate
with secret bits. At the same time, eavesdropping intro-
duces errors in Bob’s measurement results. These errors allow
estimating the leakage of information to the eavesdropper.
This eavesdropping-error connection is guaranteed with the
no-cloning theorem and is a cornerstone of quantum key dis-
tribution.

The eavesdropper has an informational side channel when
the photon source produces photons with physical dis-
tinguishability besides the signal degree of freedom. For
example, if the protocol uses polarization encoding, other
photon physical properties such as spatial and temporal de-
grees of freedom can be correlated with polarization and
hence leak information about the polarization state. The
eavesdropper can use these correlations to enhance the dis-
tinguishability of photons and thus potentially get more
information about the encoded secret bit than assumed in a
QKD protocol. To estimate this information leakage, a model
of nonoperational degrees of freedom should be incorporated
into the security analysis.

In this work, we consider a specific binary model of the
side channel of the photon source. This model accounts for
the photon distinguishability of Alice’s photon source while
providing Eve no information either about the secret bit or
about the basis choice. Thus, Alice’s choice of basis remains
equiprobable to Eve even in the presence of a side channel;
hence, the protocol is still basis balanced. We note that in the
current practical QKD systems the basis choice can be inten-
tionally unbalanced; that is, one basis is used by Alice more
often than the other in order to generate the secret key more
efficiently. In our consideration we do not take this imbalance
into account. When Eve measures a state of a side channel,
she finds that one pair of quantum states is more probable in
a quantum channel. At the same time, these states belong to
different bases and encode different bits; thus, this is not a side

channel of the form “0 is more probable than 1.” Our model is
interesting from the point of eavesdropping possibilities: even
such an uninformative side channel allows Eve to increase the
eavesdropping efficiency.

The model of the side channel is

{|0x〉 ⊗ |0�〉, |1x〉 ⊗ |1�〉} (2)

for the X basis and

{|0y〉 ⊗ |1�〉, |1y〉 ⊗ |0�〉} (3)

for the Y basis, where |0�〉 and |1�〉 are two nonorthogonal
states 〈0�||1�〉 = � of a side-channel degree of freedom. This
form of the side channel allows for special eavesdropping
strategies, which we describe in the following sections.

B. Hong-Ou-Mandel visibility as a measure of
side-channel leakage

Legitimate sides can use Hong-Ou-Mandel interference
to keep track of information that leaks to Eve through the
photon-distinguishability side channel. The Hong-Ou-Mandel
interference is a two-photon interference that prohibits two
indistinguishable photons from exiting at different ends of
a balanced beam splitter [27]. If there is any photon distin-
guishability of the two photons, incident on a beam splitter,
there will be a nonzero probability to measure the photon
counts at both exits of a beam splitter in photodetectors placed
at each exit. These coincidence counts indicate the physical
distinguishability of photons for any physical difference and
can be a sign that photons contain additional information
available to the eavesdropper.

Let us consider a two-photon state which is incident on a
balanced beam splitter. The initial state of the two photons is

|�in〉ab = a†
p1b†

p2|0z〉ab = |1; p1〉a|1; p2〉b, (4)

where a† and b† are creation operators for modes a and b,
which correspond to the incoming sides of a beam splitter
and p1,2 are arbitrary discrete degrees of freedom of the two
photons. The unitary transform of the beam splitter is

UBSa† = 1√
2

a† + 1√
2

b†, (5)

UBSb† = 1√
2

a† − 1√
2

b†. (6)

Applying this operator to the initial two-photon state, one
obtains an output state of the form

|�out〉ab = 1
2 (a†

p1a†
p2 + a†

p2b†
p1 − a†

p1b†
p2 − b†

p1b†
p2)|0z〉ab. (7)

When all degrees of freedom are the same for a pair of incident
photons, then this state reduces to

|�out〉ab = 1

2
(a†

pa†
p − b†

pb†
p)|0z〉ab = 1√

2
(|2; p〉a − |2; p〉b).

(8)
This state allows two photons to exit one of the exits of the
beam splitter in pairs but not separately. If one places pho-
todetectors at each end of the beam splitter, there will be no
coincidence counts (counts of both photodetectors in the same
time bin). In contrast, if there is a mismatch in any degrees of
freedom of two incident photons, a state (7) will be generated
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after the beam splitter, and there will be coincidence counts.
These coincidence events will affect the visibility of the HOM
interference visibility, defined as

V (ρ1, ρ2) = Tr[ρ1ρ2] = Nmax − Nmin

Nmax
, (9)

where Nmin and Nmax are minimum and maximum values
of coincidence counts. If Alice makes the signal degrees of
freedom of her photons equal (e.g., she encodes equal bits in
the polarization of photons), she can test her photons for addi-
tional distinguishability with the HOM visibility [21]. If there
is no photon-distinguishability side channel, the visibility is
unity. If this is not the case and the visibility is less than unity,
then there is additional distinguishability among the photons,
which leaks information to Eve.

Let us apply the HOM interference to our consideration of
a single-photon QKD. Alice’s ensemble in the presence of the
binary side channel has the following form:

E = {
1
4 : |0x〉 ⊗ |0�〉, 1

4 : |1x〉 ⊗ |1�〉, 1
4 : |0y〉 ⊗ |1�〉,

1
4 : |1y〉 ⊗ |0�〉}. (10)

To check the distinguishability of states with HOM interfer-
ence, Alice produces two different photons, e.g., encoding
states 0x and 1x. She then brings a signal degree of freedom
of these photons to the equal quantum state—she transforms
one of the photons in such a way that its quantum state
transforms to the state of another photon [21]. For exam-
ple, she transforms the state |1�〉〈1�| to state |0x〉〈0x|. In
the end, she has two photons with states |0x〉〈0x| ⊗ |0�〉〈0�|
and |0x〉〈0x| ⊗ |1�〉〈1�|, which she causes to interfere on a
balanced beam splitter. The visibility value of this interference
then reads

Tr[(|0x〉〈0x| ⊗ |0�〉〈0�|)(|0x〉〈0x| ⊗ |1�〉〈1�|)]
= Tr[|0x〉〈0x||0x〉〈0x|]Tr[|0�〉〈0�||1�〉〈1�|]
= |〈0�||1�〉|2. (11)

So in our consideration, HOM visibility is parametrized with
a scalar product of side-channel states.

III. EAVESDROPPING ELEMENTS IN THE BB84
PROTOCOL WITH PARTIALLY DISTINGUISHABLE

PHOTONS

A. Side-channel-state measurement strategies

Knowledge of the photon-distinguishability side channel
allows Eve a variety of strategies to attack the protocol. The
choice here is how to combine measurements of the signal and
side-channel degrees of freedom to gain information about
secret bits. In the following, we consider two strategies of
interest.

1. Unambiguous-state-discrimination measurement

With this strategy, Eve performs unambiguous state dis-
crimination of the side-channel degree of freedom. This
measurement provides full knowledge of the side-channel
state or yields an inconclusive result with no information.
Physically, this measurement describes a device which has
N + 1 outputs and which is a target for a quantum state

belonging to an ensemble of arbitrary (in general, nonorthogo-
nal) N states {|ψ1〉, |ψ2〉, . . . , |ψN 〉}. The ith port of the device
fires if a corresponding quantum state is measured, while the
last (N + 1)th port fires when the device fails to recognize the
quantum state. In general, there is a nonzero probability to
fail the measurement because of the theorem that unknown
nonorthogonal quantum states cannot be distinguished reli-
ably [28].

In terms of positive operator-valued measure (POVM) op-
erators, this measurement is formulated as follows: for a set
of linearly independent quantum states {|ψ1〉, . . . , |ψn〉} there
exist POVM operators Mi, i = 0, . . . , n, I = ∑n

i=0 Mi, such
that

pi = Tr[|ψi〉〈ψi|Mi], Tr[|ψ j〉〈ψ j |Mi] = 0, if j �= i, (12)

is the probability of conclusive results of measuring the ith
state (if Eve has a conclusive measurement, she obtains full
information about the measured state), and

pinc = 1 −
N∑

i=1

pi (13)

is the probability of an inconclusive measurement with no
information about the state.

2. Minimum-error measurement

With this strategy, Eve makes a minimum-error measure-
ment of the side-channel degree of freedom, which gives
her information about the side-channel state with a mini-
mum (but nonzero for nonorthogonal states) error probability.
Physically, this measurement describes a device which has N
outputs and which is a target for a quantum state belonging to
an ensemble of arbitrary (in general, nonorthogonal) N states
{|ψ1〉, |ψ2〉, . . . , |ψN 〉}. If the ith port of the device fires, then
it is likely that a |ψi〉 state was sent towards the device. At the
same time, there is a nonzero probability that the measured
state was different from the |ψi〉 state. This is again a conse-
quence of the theorem of distinguishability of nonorthogonal
quantum states.

In terms of POVM operators, this measurement is for-
mulated as follows: for a set of quantum states {q1 :
|ψ1〉, . . . , qn : |ψn〉}, where qi is the probability of sending the
ith state towards the measurement device, there exist POVM
operators Mi, i = 1, . . . , n, I = ∑n

i=1 Mi, such that

pi = Tr[|ψi〉〈ψi|Mi] (14)

is the correct outcome probability when measuring the ith
state and

perror
i =

n∑
j �=i
j=1

Tr[|ψ j〉〈ψ j |Mi] �= 0 (15)

is the probability of an error for the ith state measurement.
The condition of minimal error is formulated as a constraint of
the maximal average probability of the correct measurement
outcome,

Popt = max
{Mi}

n∑
i=1

qi pi. (16)
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B. Soft filtering of an ensemble of quantum states

One of the main assumptions at the base of BB84 pro-
tocol security is a random choice of the basis and the
secret bit, which Alice uses to encode the secret bit into
the state of the photon and to send it to Bob. Formally,
this lack of information means equal probabilities of ensem-
ble states (1). With source side channels, an eavesdropper
can obtain information about states from nonoperational
degrees of freedom. This leads to the equiprobability vi-
olation of ensemble states. If states of the ensemble have
different probabilities, Eve can use soft filtering [29,30] to
enhance her attack efficiency on the protocol. The soft fil-
tering is an extension of the USD measurement, which in
the case of success maps nonorthogonal quantum states of
the ensemble {qi : |ψi〉〈ψi|, i = 1, . . . , n} into another ensem-

ble {qi〈ψi|Q−1|ψi〉 : Q− 1
2 |ψi〉〈ψi|Q

1
2

〈ψi|Q−1|ψi〉 , i = 1, . . . , n}, where Q =∑
j q j |ψ j〉〈ψ j |. This quantum channel is defined as follows:

�(|ψi〉〈ψi|) = Fsucc|ψi〉〈ψi|F †
succ + Ffail|ψi〉〈ψi|F †

fail, (17)

where

Fsucc = Q− 1
2 , (18)

Ffail = (I − Q−1)
1
2 . (19)

In the case of successful filtering, a new ensemble consists of
states which are more distinguishable than the states of the
initial ensemble. The inverse filtering map is given by

Bsucc = Q
1
2 , (20)

Bfail = (I − Q)
1
2 . (21)

Using the described soft filtering, Eve can enhance her
eavesdropping efficiency when the photon source has a binary
side channel as introduced in (2) and (3). If Eve makes the
minimum-error measurement of the side-channel degree of
freedom, she efficiently introduces bias in quantum states of
Alice’s ensemble. The initial ensemble (1) transforms to

{
q

2
: |0x〉, 1 − q

2
: |1x〉, 1 − q

2
: |0y〉, q

2
: |1y〉

}
(22)

if Eve measures a side channel in the state |0�〉 or

{
1 − q

2
: |0x〉, q

2
: |1x〉, q

2
: |0y〉, 1 − q

2
: |1y〉

}
(23)

if Eve measures a side channel in the state |1�〉. Here q
is the probability to distinguish states |0�〉 and |1�〉 with
a minimum-error measurement [31,32]. Details are given in
the Appendix. Then, depending on the side-channel measure-
ment, Eve applies soft filtering to make two states out of
four possibly more distinguishable. This filtering allows her to
apply a cloning unitary, tuned to the two most distinguishable
states, to attack the protocol. We discuss quantum cloning in
the next section.

C. Quantum cloning

1. The phase-covariant cloning

Among all attack strategies on the state of the signal photon
(without taking side-channel information into account), the
most efficient is a collective unitary attack. The essence of this
attack is applying a particular unitary evolution to a system,
which consists of a signal photon and an ancillary quantum
system. The resulting entangled quantum state (after the uni-
tary evolution) allows for maximal information for Eve at a
given error on the Bob’s side. Eve applies the same unitary
operation to all signal states in a sequence of sent bits dur-
ing Alice and Bob’s communication and stores her ancillary
system states in a quantum memory. After the basis-exchange
step, Eve applies a collective measurement to her quantum
memory, which gives her the possible maximum information
about distributed secret bits.

A collective unitary attack strategy on the BB84 protocol
results in a critical quantum bit error rate of Qc ≈ 11% and
can be implemented with the use of a phase-covariant optimal
cloning machine [33]. The optimal cloner is a special unitary
transform which takes as input an arbitrary quantum state and
produces two quantum states with a high overlap with the
initial state. There are many cloner transforms [34] which
provide optimal clones for different ensembles of quantum
states and for different figures of merit. Although these cloners
do not allow violating the no-cloning theorem [3], they can be
used as an eavesdropping tool by an adversary. This phase-
covariant machine is a unitary of the following form:

U |ψ (φ)〉B|0〉E |0〉Anc

= 1
2 (|0〉B|0〉E |0〉Anc + cos η|0〉B|1〉E |1〉Anc

+ sin η|1〉B|0〉E |1〉Anc ± cos η|1〉B|0〉E |0〉Anc

± sin η|0〉B|1〉E |0〉Anc ± |1〉B|1〉E |1〉Anc), (24)

where η is a cloning parameter. When η = 0, the cloner is the
identity operator and has no effect on the compound quantum
state, and when η = π/2, Eve has Bob’s state in her space,
and Bob’s qubit becomes maximally mixed because of entan-
glement with Eve’s ancillary qubit.

The described phase-covariant cloning attack allows for a
critical bit error value Qc ≈ 11% for the standard BB84 pro-
tocol with two mutually unbiased bases X and Y (or Z and X ).
Photon distinguishability leads to lower critical error values.
Here we consider the case when Eve can run a perfect optimal
phase-covariant cloning transform, i.e., without errors from
imperfect device construction. Imperfect cloning gives Eve
less information than perfect cloning. Thus, allowing Eve to
clone perfectly, we give her maximal opportunities, bounded
only by the no-cloning theorem.

2. The two-state cloning

While an optimal phase-covariant cloner allows for the
most efficient attack in the absence of passive side channels, it
does not use photon distinguishability, which arises from side-
channel-state measurements. If Eve measures the side-channel
state with the minimum-error measurement, the probabilities
of states in Alice’s ensemble change, and Eve knows some
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states are more probable than others. It is reasonable to use
this knowledge to devise an adaptive eavesdropping strategy.

Such an eavesdropping strategy can be constructed with the
use of a two-state optimal cloner machine [23]. This cloning
machine is a unitary of the following form:

U |0〉A|0〉E = a|0〉A|0〉E + b(|0〉A|1〉E + |1〉A|0〉)E

+ c|1〉A|1〉E , (25)

U |1〉A|0〉E = c|0〉A|0〉E + b(|0〉A|1〉E + |1〉A|0〉E )

+ a|1〉A|1〉E , (26)

where

a = 1

cos 2x
[(P + Q cos 2x) cos x − (P − Q cos 2x) sin x],

(27)

b = 1

cos 2x
P(cos x − sin x) sin 2x, (28)

c = 1

cos 2x
[(P − Q cos 2x) cos x − (P + Q cos 2x) sin x],

(29)

P = 1

2

√
1 + sin 2x√
1 + sin2 2x

, (30)

Q = 1

2

√
1 − sin 2x√
1 − sin2 2x

, (31)

and x is given by the scalar product 〈ψ1||ψ2〉 = sin 2x of states
|ψ1〉 and |ψ2〉, which the cloner is tuned on.

IV. ATTACK STRATEGIES ON THE BB84 PROTOCOL

Here we provide a description of eavesdropping strategies.

A. Minimal-error measurement of the side channel and
phase-covariant cloning

The first strategy is minimal-error measurement of the side-
channel state and phase-covariant cloning of the signal-photon
state. If Eve makes a minimum-error measurement of the side
channel, she obtains binary information about the quantum
state of the signal photon. This information means that two
states within a basis have different probabilities, and Eve now
needs to distinguish between states from a quantum ensemble

{p : ρ0, 1 − p : ρ1}, (32)

where p and 1 − p represent the classical knowledge obtained
through the side channel. Here Eve uses her classical in-
formation twofold: she obtains information from a classical
channel and also uses this information in quantum ensemble
discrimination. The attack can be divided into the following
steps:

(1) Eve performs a minimal-error measurement of the side-
channel state (Sec. III A 2). She uses information from the side
channel in addition to information from a classical channel.

(2) After measuring the side-channel state, she executes a
phase-covariant cloning attack (Sec. III C 1) on the transmitted
photon and stores her clone in a quantum memory register.

(3) At the end of the communication, Eve obtains basis
information for each position in the quantum memory register
and makes a collective measurement of the memory register.

Her total information about secret bits is

IAE = Iclassical(p) + Iquantum(p, Q) = 1 − h2(p)

+ h2
(

1
2 {1 −

√
1 − 4p(1 − p)[1 − (1 − 2Q)2]}), (33)

where Q is a bit error on Bob’s side and we use the connection
between Q and Eve’s state distinguishability after the phase-
covariant cloner [33,35]. The resulting secret key after this
attack strategy is

R = 1 − h2(Q) − IAE . (34)

B. Minimal-error measurement of the side-channel state, soft
filtering, and two-state cloning

The second strategy is minimal-error measurement of the
side channel with soft filtering and two-state cloning of the
signal-photon state. Here again, Eve has classical binary
information from the side channel, but now she uses this
information to adjust the attack strategy on the signal photon.
Measurement of the side channel leads to reweighting of the
ensemble probabilities (see the Appendix): if Eve measures
|0�〉 on the side channel, she obtains an ensemble of the form
of (A8), and if she measures |1�〉, she obtains an ensemble of
the form of (A9). Then Eve carries out the eavesdropping se-
quence soft filtering −→ cloning −→ backward soft filtering
and obtains a quantum state correlated with a secret bit. At the
end of the communication, Eve obtains basis information for
every bit position and makes a collective measurement of the
ensemble of states in her quantum memory. For an X -basis
position, Eve discriminates states from the ensemble

E = {
P0�

0 : ρ
0,0�

Eve , P1�

0 : ρ
0,1�

Eve , P0�

1 : ρ
1,0�

Eve , P1�

1 : ρ
1,1�

Eve ,
}
,

(35)
where P0�

0 is a probability to receive a state ρ
0,0�

Eve . This state
is a result of measuring |0�〉 in the side channel, tuning soft
filtering on ensemble (22), postselecting successful filtering
results, applying two-state cloning, and back soft filtering with
postselection of successful results. The same logic applies to
another pair of states in Alice’s ensemble. To see that this
ensemble correctly accounts for side-channel measurement,
we here discuss two extreme cases. If side-channel states are
orthogonal (〈0�||1�〉 = 0), then this ensemble transforms to

E = {
1
2 : |0x〉〈0x|, 0 : ρ

0,1�

Eve , 0 : ρ
1,0�

Eve , 1
2 : |1x〉〈1x|,

}
, (36)

where states ρ
0,1�

Eve and ρ
1,0�

Eve are some nonorthogonal states
(which are not important for calculation since their probability
to reach Eve is zero). Here Eve has an ensemble of two
equiprobable and orthogonal pure states, which give one bit
of information. Hence, Eve can reliably distinguish a quantum
state sent by Alice in a quantum channel. In contrast, if side-
channel states coincide, then the final ensemble is

E = {
1
4 : ρ

0,0�

Eve , 1
4 : ρ

0,1�

Eve , 1
4 : ρ

1,0�

Eve , 1
4 : ρ

1,1�

Eve ,
}
, (37)

where ρ0,1
Eve are the resulting states in Eve’s quantum memory

after the whole attack sequence. The lack of information from
the side channel (due to complete indistinguishability of side-
channel states) leads to no effect from the soft filtering [(18)
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is a unity operator], and the only action Eve performs on the
signal-photon state is two-state cloning, which now is chosen
at random. The attack can be divided into the following steps:

(1) Eve applies a minimal-error measurement of the side-
channel state (Sec. III A 2). This measurement gives her
partial information about the transmitted state, which trans-
forms states of the BB84 ensemble (1). If Eve measured the
side channel in state |0〉, the ensemble (1) transforms into (22),
and if she measured the side channel in state |1〉, the ensemble
(1) transforms into (23).

(2) This change in probabilities in the ensemble allows
Eve to apply a filtering transformation (17), which makes the
two states with the highest probabilities more distinguishable
while making the other two states less distinguishable.

(3) Then, Eve applies a two-state cloning transformation
(Sec. III C 2), which is tuned on a more distinguishable pair of
states, to a photon in the quantum channel and produces two
clones of this photon.

(4) Then, she applies a backward-filtering transformation
to both clones to make them closer to the state sent by Alice.

(5) Eve sends one of two identical clones to Bob and stores
the other in her quantum memory.

(6) At the end of the communication, Eve obtains the basis
information for each position in the quantum memory register
and makes a collective measurement of the memory register.

In the general case, the secret key rate has the form

R = (1 − Pattack )1 + Pattack[1 − h2(Q) − χ (E )], (38)

where Q is a bit error on Bob’s side. We here introduced the
variable Pattack to have a controlled parameter for error on
Bob’s side. Here χ is the Holevo bound value. The Holevo
value is a maximal number of bits per state one can extract
from the ensemble of quantum states with the best collective
measurement of an infinite number of states, defined as fol-
lows:

χ (E ) = S

(∑
j

p jρ j

)
−

∑
j

p jS(ρ j ), (39)

where S(ρ) is the von Neumann entropy

S(ρ) = −Tr[ρ log2(ρ)]. (40)

C. USD measurement of the side-channel state and
phase-covariant cloning

The third strategy is a USD measurement of the side-
channel state with phase-covariant cloning on the signal-
photon state if the USD measurement failed.

(1) Eve uses a USD measurement of the side-channel state
(see Sec. III A 1). If the USD measurement is successful, it
reliably tells Eve what a side-channel state was. If the USD
measurement fails, it provides no information about the side-
channel state.

(2) In the case of successful measurement Eve does not
attack the signal-photon state and waits until the basis ex-
change between Alice and Bob. The knowledge of the basis
reveals to her what quantum state was sent among the two,
corresponding to the measured side-channel state. In this case,
she does not introduce any error in the communication act.

(3) In the case of measurement failure, Eve executes a
phase-covariant cloning attack (Sec. III C 1) on the signal
photon and stores her clone in a quantum memory register.

(4) At the end of the communication, Eve obtains infor-
mation about used bases for each position in the quantum
memory register and makes a collective measurement of the
memory register.

Although the side-channel model we use here does not give
Eve information about the communication basis, after basis
exchange she knows both the basis and bit sent by Alice to
Bob. In this way, the attack strategy is similar to the tagged-
photon case of Gottesman et al. [36] applied to a USD attack
of the side-channel degree of freedom (see also [18]):

R = (1 − PUSD)
(

1 − h2

( Q

1 − PUSD

))
− χ (E ), (41)

where PUSD is the probability of the USD measurement suc-
cess, Q is a bit error on Bob’s side, and E = { 1

2 : ρ0,X , 1
2 :

ρ1,X } is the standard BB84 basis X after phase-covariant
cloning eavesdropping.

D. Results

Here we provide the calculation results for the three eaves-
dropping strategies. In Fig. 1, we provide critical error rates
(error rates for secret key rate R = 0) for different values of
the HOM visibility. In Fig. 2, we provide secret key rates for
three eavesdropping strategies for different values of single-
photon HOM visibility.

In Fig. 1(a) we show how the critical error rate (i.e., max-
imum error rate that corresponds to the zero secret key rate)
depends on the light-source HOM visibility (i.e., the “quality”
of the light source). As we expect, the critical error rate be-
comes less than 11% in the presence of side channels. Among
the three attacks considered here, one of the attacks (explained
in Sec. IV B) provides a critical error rate greater than 11% in
the absence of side channels (HOM visibility equals 1). This
attack is based on a unitary two-state cloning. This cloning
provides optimal clones of only two states, and thus, it is
suboptimal for the symmetric alphabet of the BB84 protocol
(four equiprobable states on the equator of the Bloch sphere).
Although this attack provides a higher value of the critical
error rate in the absence of side channels (soft filtering with
two-state cloning), it becomes the most efficient attack when
the source quality is very low. The reason is that information
from side channels introduces asymmetry in the BB84 alpha-
bet and makes two states more likely than the other two. This
bias makes the two-state cloning preferable to use for eaves-
dropping. We see that at V � 0.4 soft filtering with two-state
cloning becomes more efficient than phase-covariant cloning
without soft filtering.

For high-quality light sources (i.e., high values of HOM
visibility) the situation is different. As we can see in Fig. 1(a),
two attacks (attacks in Secs. IV A and IV C) become the most
efficient when V � 0.4 and provide almost identical results in
terms of the critical-error-rate reduction. Figure 1(b) indicates
that for realistic single-photon sources that provide a HOM
visibility value above 0.9, the critical error rate decreases to
just 10%. Hence, a small deviation of the light source from
the ideal model does not result in any significant reduction of
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FIG. 1. (a) Critical error rates (secret key rate is zero) for the three eavesdropping strategies. Here Eve attacks the side-channel state with
a minimum error measurement (ME) or an unambiguous state discrimination (USD). The attack on the side-channel state is followed by an
attack on the signal photon. (b) Critical error rates for high visibility values. (c) Critical error rates for low visibility values.

security, at least for the considered eavesdropping strategies.
In Fig. 1(c) we see that all three attacks provide zero key in the
limit of zero HOM visibility, which indicates our calculations
are self-consistent. We see that the USD-based attack gives
strongly nonlinear dependence of the critical error rate on the
visibility value (although single-photon sources of this quality
are hardly applicable to QKD) and gives Eve less information
than the other two attacks. As a result, the two-state cloning
attack with soft filtering (see Sec. IV B) is the most efficient
for low-quality light sources.

In Fig. 2 we see how the secret key rate of the BB84
protocol depends on the quantum bit error rate for different
values of the HOM visibility of the light source. Apart from
the trivial fact that the higher the quantum bit error rate is,
the lower the secret key rate is, the dependence of the key
rate on the visibility value is not that trivial. In the limit of
zero error rate, eavesdropping strategies behave differently.
In the attacks in Secs. IV A and IV C Eve uses the side
channels separately from the operational degree of freedom.
In particular, she can measure the side channel and does not
attack the operational signal state. In this way she obtains
some information about the secret key without introducing
bit errors, and the secret key becomes less than 1 bit even
when the error rate is zero [Figs. 2(a) and 2(b)]. The adaptive
strategy [Fig. 2(c)], which uses filtering and two-state cloning,
requires Eve to act with the operational degree of freedom in

order to obtain information about secret bits. She does not use
the side channel and operational degree of freedom separately
and thus cannot obtain any information without introducing
errors.

V. CONCLUSION AND OUTLOOK

We compared the efficiencies of three explicit eaves-
dropping strategies for the BB84 protocol with partially
distinguishable photons. We demonstrated that among these
attacks the USD measurement of the side channel along with
a unitary attack on the signal-photon state is the most effi-
cient eavesdropping for light sources with low information
leakage (high values of the HOM visibility). In contrast, for
light sources with high information leakage (low values of
the HOM visibility), it is better to use adaptive eavesdropping
with soft filtering of the signal-photon state.

We also found that eavesdropping with postselection (soft
filtering in our studies) can enhance eavesdropping efficiency
compared to eavesdropping without postselection. This en-
hancement is remarkable since this effect does not take place
in the case of BB84 without side channels.

Our results open the following questions for future re-
search. We demonstrated that it is possible to overcome the
performance of the optimal attack without side channels, but
we do not claim the global optimality of the proposed attacks.
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FIG. 2. Secret key rate for the three eavesdropping strategies:
(a) corresponds to Sec. IV A, (b) corresponds to Sec. IV C, and
(c) corresponds to Sec. IV B. Here we provide the key rate as a
function of the quantum bit error rate for several values of the light-
source HOM visibility values.

The optimal eavesdropping attack in the presence of side
channels and the optimal model of the side channels remain
an open problem. In particular, the dimensionality of the side-
channel-state space potentially influences the efficiency of the
eavesdropping; using different photon parameters separately
(e.g., spectral and spatial profiles), Eve can construct more
complicated sequences of measurements and filtering over

both signal and side-channel degrees of freedom, which leads
to the lower bound on the secret key rate.

Next, the critical error rate is not the only possible frame-
work since there are attacks which compromise the protocol
with a zero bit error rate. For example, USD of the side-
channel state with blocking-inconclusive results leads to zero
error on Bob’s side. To take such strategies into account,
we need to include the channel transmittance to the security
analysis and connect it to the probability of conclusive results
or other postselection-based strategies.
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APPENDIX: ENSEMBLE REWEIGHTING FROM
MINIMUM-ERROR MEASUREMENT OF THE

SIDE-CHANNEL STATE

Let us consider the process of minimal-error measurement
of the side-channel degree of freedom in detail. We denote
two possible states of the side-channel degree of freedom as
{|0�〉, |1�〉}. We model the process of measurement as the in-
teraction of a side-channel degree of freedom with an ancillary
degree of freedom, whose states can be distinguished with cer-
tainty ({|r0〉, |r1〉} : 〈r0||r1〉 = 0). We specify the Stinespring
representation of this process as follows:

|0�〉 −→ √
Psucc|0�〉|r〉0 +

√
1 − Psucc|1�〉|r〉1, (A1)

|1�〉 −→
√

1 − Psucc|0�〉|r〉0 + √
Psucc|1�〉|r〉1, (A2)

where Psucc is the probability to distinguish between two states
|0�〉 and |1�〉. Then, the density matrices of the two resulting
states of the compound system are

ρminerr
0 = Psucc|0�〉〈0�| ⊗ |r0〉〈r0|

+
√

Psucc(1 − Psucc)|0�〉〈1�| ⊗ |r0〉〈r1|
+

√
Psucc(1 − Psucc)|1�〉〈0�| ⊗ |r1〉〈r0|

+ (1 − Psucc)|1�〉〈1�| ⊗ |r1〉〈r1|, (A3)

ρminerr
1 = (1 − Psucc)|0�〉〈0�| ⊗ |r0〉〈r0|

+
√

Psucc(1 − Psucc)|0�〉〈1�| ⊗ |r0〉〈r1|
+

√
Psucc(1 − Psucc)|1�〉〈0�| ⊗ |r1〉〈r0|

+ Psucc|1�〉〈1�| ⊗ |r1〉〈r1|. (A4)

Now let us look at changes in ensembles of Alice’s states.
Suppose Alice chose an X basis state to send a secret bit to
Bob. Eve applies unitary evolution to a side-channel state and
a measurement-device state:

ρX
Alice = 1

2 |0x〉〈0x| ⊗ ρminerr
0 + 1

2 |1x〉〈1x| ⊗ ρminerr
1 . (A5)
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We can rewrite this state in a more convenient form as

ρX
Alice =

(
Psucc

2
|0x〉〈0x| + 1 − Psucc

2
|1x〉〈1x|

)
× ⊗ |0�〉〈0�| ⊗ |r0〉〈r0| (A6)

+
(

1 − Psucc

2
|0x〉〈0x| + Psucc

2
|1x〉〈1x|

)
× ⊗ |1�〉〈1�| ⊗ |r1〉〈r1| + off-diagonal terms.

(A7)

After doing a measurement of the ancillary state the off-
diagonal terms of a compound density matrix vanish. Depend-

ing on the outcome of the ancilla measurement, the resulting
states have the form

Measured |r0〉 : ρ ′
Alice = Psucc|0x〉〈0x| + (1 − Psucc)|1x〉〈1x|,

(A8)

Measured |r1〉 : ρ ′
Alice = (1 − Psucc)|0x〉〈0x| + Psucc|1x〉〈1x|.

(A9)

The same logic applies to all bases of the BB84 protocol. This
leads to reweighting of Alice’s ensemble states, which is used
for adaptive eavesdropping.
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