
PHYSICAL REVIEW A 106, 042401 (2022)

Improved quantum computing with higher-order Trotter decomposition

Xiaodong Yang ,1,2,3 Xinfang Nie,4,2,3 Yunlan Ji,5 Tao Xin,1,2,3 Dawei Lu,4,1,2,3,* and Jun Li 1,2,3,†

1Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2International Quantum Academy, Shenzhen 518055, China

3Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China

4Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
5School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009, China

(Received 7 May 2022; revised 19 August 2022; accepted 9 September 2022; published 3 October 2022)

In designing quantum control, it is generally required to simulate the controlled system evolution with a
classical computer. However, computing the time evolution operator can be quite resource consuming since
the total Hamiltonian is often hard to diagonalize. In this paper, we mitigate this issue by substituting the time
evolution segments with their Trotter decompositions, which reduces the propagator into a combination of single-
qubit operations and fixed-time system evolutions. The resulting procedure can provide substantial speed gain
with acceptable costs in the propagator error. As a demonstration, we apply the proposed strategy to improve the
efficiency of the gradient ascent pulse engineering algorithm for searching optimal control fields. Furthermore,
we show that the higher-order Trotter decompositions can provide efficient Ansätze for the variational quantum
algorithm, leading to improved performance in solving the ground-state problem. The strategy presented here is
also applicable for many other quantum optimization and simulation tasks.
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I. INTRODUCTION

Quantum control offers access to explore various quantum
phenomena and processes [1–3]. Normally, this is achieved
by engineering a quantum system of interest to some control
target with specifically designed time-dependent control fields
[4]. Finding controls that allow optimal performance by an-
alytical means is in general quite difficult [5]. For systems
with more than several qubits, one often has to resort to
numerical approaches. In numerical quantum control, it is a
routine to simulate the controlled system evolution on a clas-
sical computer and employ an iterative optimization algorithm
to search an optimal control [6–9]. During this procedure,
the classical computer needs to compute a large number of
matrix exponentials. Traditionally, there exist a variety of
algorithms to compute matrix exponentials, while the most
widely used variants are those that combine the Padé ap-
proximants [10]. However, whichever algorithm is employed,
this is generally a resource-consuming task, especially when
the engineered Hamiltonian cannot be diagonalized. Current
small-scale control optimizations can still be accomplished
within an acceptable computer run time, yet it will quickly be-
come infeasible for problems of growing sizes in the coming
noisy intermediate-scale quantum era [11]. Thus developing
practical strategies to simulate large quantum system evolu-
tions is of importance for quantum engineering on near-term
quantum devices.

*ludw@sustech.edu.cn
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Previously, there have been proposed a number of strate-
gies to lower the difficulty of simulating controlled quantum
dynamics. For example, compressing the dimension of the
evolution operator with exquisite approximation techniques,
like those used in the tensor-network-based framework
[12–15] or in the subsystem-based optimal control method
[16,17], can substantially reduce the computational cost.
However, these methods can only function in specific cases
and need abundant preprocessing efforts. Additionally, the
truncated Taylor series can be efficiently applied to approx-
imate the evolution operator and decrease the computational
complexity [18,19], yet it functions only when the controlled
system Hamiltonian is sparse or a linear combination of
some unitary terms. Alternatively, one can apply paralleliza-
tion techniques to accelerate the computing process [20–22],
though this requires special computer architectures and pro-
gramming patterns. Recently, researchers attempt to partially
ease the computational complexity with quantum resources,
leading to hybrid quantum-classical control methods [23,24],
which need extra experimental learning. Therefore, from the
perspective of practicality, the above-mentioned strategies are
not friendly for everyday use in the laboratory.

Here, we put forward an effective and simple enough
strategy to improve the efficacy of simulating the system
evolution using the method of Trotter approximation [25–27].
The key ingredient of our strategy is to replace the matrix
exponential of each time evolution segment with the Trot-
ter decompositions. As such, one only needs to compute
the system evolution several times during the whole opti-
mization process, which will shorten the computer run time
largely. The parameters one has to optimize are then simply
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single-qubit rotations, which further reduces the computing
time. However, one also faces a problem that the precision
of the Trotterization decreases as the number of control pa-
rameters grows, so we propose to use the higher-order Trotter
decompositions to get around the obstacle. A similar method
has been explored in Ref. [28]. The numerical tests with
the gradient ascent pulse engineering (GRAPE) algorithm for
searching optimal control fields and the variational quantum
algorithm (VQA) for solving the ground-state problem reveal
the effectiveness of our strategy on reducing the computa-
tional resources. The outline of this paper is given as follows.
We first introduce the proposed strategy in Sec. II, and the
corresponding applications are presented in Sec. III. Finally,
we provide some brief discussions in Sec. IV.

II. FRAMEWORK

We consider an n-qubit quantum system which is de-
scribed by the system Hamiltonian HS . In order to realize a
desired quantum state or quantum operation, we apply the
time-dependent controls along x and y directions, i.e., u(t ) =
(u j

x (t ), u j
y (t )), where j = 1, 2, . . . , n and t ∈ [0, T ] with T

being the total time length of the pulse. As such, the control
Hamiltonian is written as

HC (t ) =
n∑

j=1

[
u j

x (t )σ j
x + u j

y (t )σ j
y

]
, (1)

where σ
j

x and σ
j

y are the Pauli operators for the jth qubit. For
a given time T , the time evolution operator of this coherently
controlled quantum system is

U (T ) = T exp

{
−i

∫ T

0
[HS + HC (t )]dt

}
, (2)

with T being the Dyson time-ordering operator. Generally,
one is not able to directly evaluate this time-dependent expo-
nential integral in an analytical way. The routine is to break
down the continuously varying Hamiltonian into a discrete
sequence. More precisely, the total evolution time T is dis-
cretized into M equal steps under the constraint that each
duration τ = T/M is small enough, i.e., τ � ‖HS + HC‖−1.
As such, the control amplitude during each time duration τ

can be regarded as constant, i.e., u = (u j
x[m], u j

y[m]), where m
runs from 1 to M. After discretization, the control Hamilto-
nian at the mth step is HC[m] = ∑n

j=1(u j
x[m]σ j

x + u j
y[m]σ j

y ).
Denoting the time evolution operator of the mth step as U m =
e−iτ (HS+HC [m]), then the total evolution operator is U0(T ) =
U M · · ·U 1. According to the specific control target, one de-
fines a suitable control performance function, such as state
fidelity or gate fidelity, and then various optimization algo-
rithms can be employed to search the optimal control pulse.

A critical difficulty that arises during the iterative optimiza-
tion process is that evaluating the time evolution operators,
which are matrix exponentials, may have exponential scaling
of time and memory cost with respect to the number of qubits
n. A similar difficulty that exists in quantum simulation is
realizing the complex time evolution on real physical plat-
forms, which can be greatly solved by the well-known Trotter
decompositions [29–31]. It inspires us to use the Trotter de-
compositions to mitigate the issue of fully computing matrix

exponentials in the iterative optimization process. Concretely,
for small enough τ , we can express the mth step evolution
operator as follows:

e−i(HS+HC [m])τ =
∏

k

e−iαk HSτ e−iβk HC [m]τ + O(τ l+1), (3)

where the parameters {αk} and{βk} are suitably chosen such
that the right-hand side of the equation, referred to as the
lth-order approximant, yields an error term of order O(τ l+1).
Rigorous error analysis of the Trotter decompositions should
resort to the recent work Ref. [32]. Generally speaking,
the parameters {αk} and{βk} can be designed symmetri-
cally [25,27,33] or asymmetrically [34–36]. The asymmetric
scheme makes it easier to realize higher-order decompositions
with rational parameters, yet requires more splitting terms
compared with the symmetric scheme for the approximant
of the same order [35]. From the perspective of practical-
ity, we thus choose the symmetric Trotter decompositions to
approximate the time evolution operators. Specifically, with
the simplest first-order decomposition, the system evolution
operator can be approximated by

U1(T ) ≈
M∏

m=1

e−iHSτ e−iHC [m]τ . (4)

Despite its simplicity, the resultant error can become signifi-
cant as the control parameters grow. To tackle this problem,
we propose to use the higher-order Trotter decompositions.
For the widely known second-order decomposition, the total
system evolution can be approximately calculated by

U2(T ) ≈
M∏

m=1

e−iHSτ/2e−iHC [m]τ e−iHSτ/2. (5)

Similarly, the approximate system evolution operator for the
third-order decomposition is

U3(T ) ≈
M∏

m=1

e−iα1HSτ e−iβ1HC [m]τ e−iα2HSτ

e−iβ2HC [m]τ e−iα3HSτ e−iβ3HC [m]τ , (6)

and for the fourth-order decomposition it is

U4(T ) ≈
M∏

m=1

e−iα1HSτ e−iβ1HC [m]τ e−iα2HSτ

e−iβ2HC [m]τ e−iα3HSτ e−iβ3HC [m]τ e−iα4HSτ . (7)

See Fig. 1 for the illustration of the first-order to the
fourth-order Trotter decompositions and the corresponding
parameters {αk} and{βk}. In this way, we split the system
Hamiltonian and the control Hamiltonian into separate evo-
lution operators. As the system evolution segments remain
unchanged during the optimization, they only need to be cal-
culated once. Additionally, the control evolution segments are
actually single-qubit operations; though renewed iteratively,
they are easy to compute and store. We thus anticipate that
this strategy can reduce the resources needed to compute the
complex time evolution operator during the search of optimal
control fields.
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FIG. 1. Illustration of the sliced time evolution operator
using different orders of the Trotter decomposition. (a) First
order. (b) Second order. (c) Third order. The parameters
are α1 = 1 − γ , β1 = (4/3 − γ ± �)/[2γ (γ ± �)], α2 =
(γ ± �)/2, β2 = (3 − 4γ )/[2(2 − 3γ )], α3 = (γ ∓ �)/2, β3 = 1 −
(3γ − 4/3 ∓ �)/[2γ (γ ∓ �)], and � = [(−12γ 3 + 45γ 2 − 48γ +
16)/(−12γ + 9)]1/2 with γ being an arbitrary number. (d) Fourth
order. The parameters are α1 = α4 = β1/2, α2 = α3 = (1 − β1)/2,
and β1 = β3 = 1/(2 − 3

√
2), β2 = − 3

√
2β1.

To figure out in which situations our strategy would likely
be efficient, we provide rough analysis of the computa-
tional complexity. Generally, matrix exponential and matrix
multiplication of full matrices both have the computational
complexity of O(N3) with N = 2n [10,37]. Our strategy
breaks the full time evolution operator into several sparse ma-
trix exponentials, thus the computational complexity of each
matrix exponential may reduce to O(N2) [10,37]. However,
the increased multiplication terms will certainly decrease the
computing speed as the matrix multiplication is also resource
consuming. Overall, our strategy can only get modest speed
gains up to several times, and is mostly favorable for large
quantum systems.

III. APPLICATIONS

As a demonstration, we first test the proposed strategy
with the random Ising model [38] under transverse controls.
The system Hamiltonian is set to be HS = ∑n−1

j=1 r j
1σ

j
z σ

j+1
z ,

where r1
j is the coefficient randomly chosen from the range

[0,1]. The control Hamiltonian is expressed as HC[m] =∑n
j=1(r j

2[m]σ j
x + r j

3[m]σ j
y ) with r j

2[m] and r j
3[m] being ran-

dom values in the range [−1, 1]. We record the computer
run time required to simulate the system evolution with and
without using the Trotterization technique of different orders
given by Eqs. (4)–(7). Meanwhile, we record the infidelity
between the evolution operators simulated by the direct ex-
ponential operation (U0) and the Trotter decompositions (Ul ),
i.e., 1 − |Tr(UlU

†
0 )|2/4n. The corresponding results are shown

in Fig. 2.
For the case of varying the qubit number n shown in

Fig. 2(a), it is clear that using the first-order or the second-
order Trotterization can greatly save the computing time, up
to 50% for n = 2–4, and around 70 to 90% for n = 5–11,
while using the third-order or the fourth-order Trotteriza-
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FIG. 2. Computer run time and infidelity (1 − fidelity) for simu-
lating the system evolution of the controlled random Ising model. (a,
b) For each qubit number n, the simulations are repeated ten times
with different orders of the Trotterization to display the statistical
errors, where τ = 0.1, M = 10. (c, d) For the settled qubit number
n = 7 and τ = 0.1, the simulations for each sliced number M are re-
peated ten times with different orders of the Trotterization to display
the statistical errors.

tion only saves the computer run time significantly for the
cases n = 5–11, around 45 to 65%. Nevertheless, as depicted
in Fig. 2(b), the lower-order Trotterizations introduce more
computational errors than the higher-order Trotterizations,
thus the tradeoff between accuracy and computing speed
should be taken into consideration, which we will explore
later. It is worth mentioning that, owing to the memory and
speed limit of the personal computer, we only simulate up to
11 qubits with M = 10; further simulations towards larger
systems with more sliced numbers should resort to powerful
supercomputers. However, in many practical situations, reli-
able dynamical simulations often need to discretize the time
evolution into hundreds of segments, thus it is necessary to
investigate the behaviors of the proposed and the conven-
tional strategy with varied number of slices. Here, we take
n = 7 as an example to show their behaviors in Figs. 2(c)
and 2(d). One can find that as M grows, the computing time
of simulating the system evolution using the Trotterizations
uniformly decreases, more than 80% with the first-order or
the second-order Trotterization, and more than 50% with the
third-order or the fourth-order Trotterization. Additionally, the
computational errors gradually increase as M grows, which
should be carefully considered in specific situations.

The above demonstration, though simple and direct, clearly
reveals the effectiveness of the Trotterization technique on
reducing the computational resources. In the following, we
consider two realistic applications of searching optimal con-
trol fields using the proposed strategy.

A. Improved GRAPE for pulse optimization

The GRAPE algorithm [6], which exploits the gradient in-
formation of an objective function to update the control fields
iteratively, is a well-known optimization algorithm to tackle

042401-3



YANG, NIE, JI, XIN, LU, AND LI PHYSICAL REVIEW A 106, 042401 (2022)

quantum state engineering and quantum gate preparation
problems. First developed for designing nuclear magnetic res-
onance (NMR) pulses, it is also widely used in electron-spin
resonance [39], nitrogen-vacancy centers in diamond [40,41],
superconducting circuits [42,43], ion traps [44,45], cold atoms
[46], etc. Normally, we first formulate an objective function
f (u) to assess the candidate control fields. GRAPE then finds
local extrema of control solutions by taking steps along the
gradient direction, i.e., u(p+1) = u(p) + λ(p)g(p), where p rep-
resents the iteration number, λ(p) is an appropriate step length,
and the gradient g(p) = (gj

x[m](p), gj
y[m](p) ) with gj

γ [m](p) =
∂ f (p)/∂u j

γ [m](p) for γ = x, y. To accelerate the convergence
speed, we apply the second-order quasi-Newton method,
which approximates the actual Hessian with the gradient
information computed from previous steps [47,48]. More
precisely, this is achieved by using the limited-memory Broy-
den-Fletcher-Goldfarb-Shanno (LBFGS) method in MATLAB,
which further optimizes the optimization procedure with lim-
ited memory [49]. Clearly, in the process of calculating the
objective function f and its approximate Hessian, a consid-
erable number of matrix exponentials of the time evolution
segments need to be done, which would cost an exponential
amount of computer run time. Furthermore, these time evolu-
tion segments must be reevaluated in each iteration for the
renewed control parameters, making the algorithm quickly
intractable for even modest-sized quantum optimal control
problems. Thus it is desirable to develop more efficient strate-
gies to simulate the system evolution here. It is worth noting
that Ref. [28] has concisely discussed how to use the first- and
the second-order Trotterizations to improve the basic GRAPE

algorithm. Our applications here explore in detail the perfor-
mance of the high-order Trotterizations in pulse optimization
with the second-order GRAPE algorithm.

To give a concrete example, consider the control op-
timization problem of preparing the known Greenberger-
Horne-Zeilinger (GHZ) state [50] in a four-qubit NMR
system. The natural Hamiltonian can be expressed as HS =
−∑4

i=1 ωiσ
i
z/2 + ∑4

i< j,=1 πJi jσ
i
zσ

j
z /2, where ωi represents

the Larmor precession frequency for the ith spin and Ji j is
the J-coupling constant between the ith and the jth spin. The
strengths of the Larmor frequencies and the J couplings can
be found in Ref. [51]. The four-qubit GHZ state takes the form
|ψGHZ〉 = (|0〉⊗4 + |1〉⊗4)/

√
2. The goal is to find an optimal

control pulse uopt that can steer the system from |ψ0〉 = |0〉⊗4

to |ψGHZ〉, with maximizing the state fidelity defined as fl =
|〈ψGHZ|Ul |ψ0〉|2. Combining the Trotterization technique with
GRAPE gives a way to find the optimal control fields; a sim-
ilar work is found in Ref. [28]. However, the Trotterization
technique may introduce significant errors in simulating the
system evolution, thus we check the true fidelity of the dis-
covered optimal controls by f = |〈ψGHZ|U0(uopt)|ψ0〉|2. The
computer run time and the true fidelity using different orders
of the Trotterization are shown in Fig. 3. We fix the total
evolution time as T = 5 ms with different number of slices
in the optimizations. For the first-order and the second-order
Trotterization, if M = 200, it can slightly save the computing
time, yet introducing very large computational errors [see
Figs. 3(a) and 3(b)]. Increasing the sliced number M can
improve the true fidelity [Figs. 3(d) and 3(f)], but cost around
18–286% more computing time [Figs. 3(c) and 3(e)]. For
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FIG. 3. The GRAPE algorithm with the Trotterizations for search-
ing optimal pulses to prepare the four-qubit GHZ state. The total
evolution time T = 5 ms, which is divided into different numbers of
slices: (a, b) M = 200, (c, d) M = 500, and (e, f) M = 1000. The
optimization is terminated when the estimated fidelity fl > 0.999 or
the iteration number p > 1000. The computer run time and the final
true fidelity f are recorded. The optimizations are all repeated five
times to display the statistical errors.

the third-order and the fourth-order Trotterization, though,
they always induce very high true fidelity beyond 0.99, and
around 85–264% more computing time is needed. In total,
the Trotterization technique does not provide speedup for the
GRAPE algorithm in a small-scale system, which is consistent
with the results shown in Fig. 2. The reason behind this is
that matrix exponential and matrix multiplication both gener-
ally scale as O(N3) with N = 2n. Though the splitting terms
using the Trotterization may scale as O(N2), the increased
multiplications will reduce the computing speed. Thus for a
small-scale system, the Trotterization based GRAPE algorithm
may fail to achieve speed gains.

Now we turn to consider the problem of finding opti-
mal pulses for achieving single-qubit rotation in a seven-
qubit NMR system. The natural Hamiltonian is HS =
−∑7

i=1 ωiσ
i
z/2 + ∑7

i< j,=1 πJi jσ
i
zσ

j
z /2, and the strengths of

the Larmor frequencies and the J couplings can be found
in Ref. [23]. Our goal is to search out an optimal control
pulse uopt that can steer the system to achieve the target
single-qubit operation Ut = exp(−iπσ 2

x /4), with maximizing
the gate fidelity fl = |Tr(UlU

†
t )|2/47. Similarly, we com-

bine the Trotterization technique with the GRAPE algorithm
to accomplish this optimization task, and we check the fi-
nal true fidelity of the searched optimal controls with f =
|Tr(U0(uopt)U

†
t )|2/47. We fix the total evolution time as T =

1 ms with different number of slices in the optimizations.
For the case of M = 100 shown in Figs. 4(a) and 4(b), us-
ing the first-order to the fourth-order Trotterization can save
the computing time about 33, 38, 13, and 19%, respectively.
However, the final true gate fidelities using the first-order
and the second-order Trotterization are roughly smaller than
0.99, which is often below the fault-tolerant threshold [52].
Increasing M to 250, as shown in Figs. 4(c) and 4(d), the
final gate fidelities are all beyond 0.994, and the first-order to
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FIG. 4. The GRAPE algorithm with the Trotterizations for search-
ing optimal pulses to realize single-qubit rotation in a seven-qubit
system. The total evolution time T = 1 ms, which is divided into
different numbers of slices: (a, b) M = 100, (c, d) M = 250, and
(e, f) M = 500. We stop the optimization when the estimated fidelity
fl > 0.999 or the iteration number p exceeds 500, and record the
computer run time and the final true fidelity f for each case. The
optimizations are all repeated five times to display the statistical
errors.

the fourth-order Trotterization can save the computing time
about 36, 36,−1, and 12%, respectively. For much larger
sliced number M = 500 shown in Figs. 4(e) and 4(f), their
true fidelities are all beyond 0.995 and the corresponding
reduced computing time is about 33, 32,−3, and 5%, respec-
tively. These results indicate that using the first-order and the
second-order Trotterization can always significantly save the
computing time, but only achieve sufficient high fidelity when
the duration time τ = T/M is small enough. Meanwhile,
using the third-order and the fourth-order Trotterization can
achieve very high fidelity even when τ is relatively large,
but may not save that much computing time. In total, these
results indicate that our proposed strategy is mostly favorable
for a relatively large system, and it can possibly save much
more computer run time when searching optimal pulses for
intermediate-scale optimization tasks.

To further exploit the potential of the proposed strategy,
we attempt to use hybrid Trotterizations to improve the per-
formance of the GRAPE. Precisely, we apply the low-order
Trotterization in the early stages of GRAPE and the switch
to the high-order Trotterization in the final stages. To test
this hybrid strategy, the specific problem we choose is the
same as above, namely, finding optimal pulses for realizing
single-qubit rotation in a seven-qubit NMR system. In the
simulations, we use the first-order or the second-order Trot-
terization during the former 400 iterations and then switch
to the third-order or the fourth-order Trotterization during
the latter 100 iterations. The simulation results are shown in
Fig. 5. Compared with the first-order Trotterization, it is clear
that the hybrid first- to third-order and first- to fourth-order
Trotterization significantly increase the fidelity from 0.972
to 0.993, nearly without costing more computer run time,
while, compared with second-order Trotterization, the hybrid
second- to third-order and second- to fourth-order Trotteriza-
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FIG. 5. The GRAPE algorithm with different Trotterization strate-
gies for searching optimal pulses to realize single-qubit rotation in a
seven-qubit system, where T = 1 and M = 100. (a, b) The computer
run time and the fidelity for different Trotterization strategies, respec-
tively. The panels on the right of the yellow dashed lines represent
the results using the hybrid Trotterization strategies. The stopping
condition is that the estimated fidelity fl > 0.999 or the iteration
number p > 500.

tion can slightly increase the fidelity from 0.995 to 0.997, but
cost 30–40% more computer run time. These results reveal
that with proper hybrid Trotterizations, the performance of the
GRAPE algorithm can be further improved.

B. Improved VQA for ground-state energy solving

The VQA [54,55], which functions by minimizing certain
cost functions via the variation of limited gate parameters
with low-depth circuits, has found tremendous applications in
quantum chemistry, quantum simulation, and machine learn-
ing [55]. Usually, the VQA first parametrizes a quantum
circuit U (θ) with multiple layers of building blocks (called
Ansatz), with each block involving single-qubit rotations and
available nonlocal gates. Suitable optimization algorithms are
then applied to tune the parameters θ for minimizing the
target cost function. The structure of an Ansatz is generally
designed according to the optimization task at hand, but it
can also be formalized when no relevant information is readily
known. A notable example hardware-efficient Ansatz [53] [see
Fig. 6(a)], which utilizes available entangling resources in
a given physical device, is prominent for problem-agnostic
situations.

Here, we find that the hardware-efficient Ansatz actually
has a strong relationship with the sliced time evolution simu-
lated by the first-order Trotterization. To be specific, the mth
sliced evolution can be equivalently expressed as

Um ≈ e−iHSτ e−iHC [m]τ ≡ e−iHSτ

n⊗
j=1

R(θm j ), (8)

where the control Hamiltonian part is the product of generic
single-qubit rotations represented by

R(θm j ) = Rx
(
θ1

m j

)
Ry

(
θ2

m j

)
Rx

(
θ3

m j

)
, (9)
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FIG. 6. Efficient Ansätze inspired by the symmetric Trotterization for VQA. (a) Illustration of VQA based on the first-order Trotterization.
This structure is also refereed to as a hardware-efficient Ansatz in [53]. (b, c) VQA based on the second-order and the symmetric fourth-order
Trotterization, respectively, where α1 = s/2, α2 = (1 − s)/2, θ ′

jm = − 3
√

2θ jm with s = 1/(2 − 3
√

2), j = 1, 2, . . . , n. In all the figures, US (τ )
is the free evolution operator during the period τ , which is governed by the available system Hamiltonian HS , i.e., US (τ ) = exp(−iHSτ ). Each
single-qubit rotation is represented by R(θm j ) with the angle θm j , and the rotation axis is typically chosen as x axis and y axis.

and Rγ (θw
m j ) = exp(−iθw

m jσ
j

γ /2), γ = x, y; w = 1, 2, 3. Fol-
lowing similar mapping rules, we propose Ansätze based on
the second-order and the fourth-order symmetric Trotteriza-
tion [25–27], as shown in Figs. 6(b) and 6(c). For example,
for the second-order Trotterization, the mth sliced evolution
operator can be written as

Um ≈ e−iHSτ/2e−iHC [m]τ e−iHSτ/2

= e−iHSτ/2
n⊗

j=1

R(θm j )e
−iHSτ/2. (10)

As such, the whole evolution becomes a parametrized quan-
tum circuit as shown in Fig. 6(b). A similar second-order
Trotterization based Ansatz has been used in Ref. [56], and
recent works [57,58] also provide insights into informing the
VQA with the quantum optimal control perspective. As we
have analyzed that the higher-order Trotterizations can help
improve the efficiency of simulating system evolution, we thus
expect that the proposed new Ansätze function in improving
the VQA. Additionally, it should be noted that for all the pro-
posed Ansätze, the overall free evolution time in each block is
τ , and the total number of parameters is 3(M + 1)n. This indi-
cates that the higher-order Trotterization inspired Ansätze will
not introduce extra computational and operational burdens.

As a demonstration, we consider the problem of solving
the ground-state energy in a four-qubit Heisenberg spin model
on a square lattice [53]. This typical model has been widely
explored in quantum areas, from thermodynamics and statis-
tics to communication and computation [59–61], which can be
realized by various physical systems [62,63], such as ultracold

atoms, trapped ions, and nuclear magnetic resonance. This
model can be described by

HP = J
∑
〈i j〉

(
σ i

xσ
j

x + σ i
yσ

j
y + σ i

zσ
j

z

) + Bz

∑
i

σ i
z , (11)

where J is the nearest-neighbor interaction strength, and Bz

is the longitudinal static field. With loss of generality, we set
J = 100, Bz = 100.

To tackle this eigensolver problem, we use a four-spin
NMR processor to generate candidate states from ρ0 =
|0〉⊗4 with the Trotterization inspired VQA. We then iter-
atively update the parameters to minimize the energy f =
Tr[HPU (θ)ρ0U (θ)†] using the improved Nelder-Mead algo-
rithm [64]. The natural Hamiltonian of this NMR processor is
HS = −∑4

i=1 ωiσ
i
z/2 + ∑4

i< j,=1 πJi jσ
i
zσ

j
z /2, where ωi repre-

sents the Larmor precession frequency for the ith spin and
Ji j is the J-coupling constant between the ith and the jth
spin. The strengths of the Larmor frequencies and the J
couplings can be found in Ref. [51]. With different circuit
layers, we show the numerical energy optimization results
in Figs. 7(a) and 7(c). By defining the state fidelity between
the searched ground state and the theoretical ground state
F = Tr[ρthU (θ)ρ0U (θ)†], we also display the corresponding
state infidelity (1 − F ) in Figs. 7(b) and 7(d). These numer-
ical results indicate that for small number of circuit layers
M = 1–3, the second-order and the fourth-order Trotterization
inspired Ansätze perform much better than the hardware-
efficient Ansatz. When increasing the circuit layers (M > 3),
the second-order Trotterization and the fourth-order Trotter-
ization inspired Ansätze will have comparable performance
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FIG. 7. The Trotterization inspired VQA for solving the ground-
state energy in the four-qubit Heisenberg model on a square lattice.
Minimal energy found using VQA of different circuit layers when
(a) τ = 0.005 s and (c) τ = 0.01 s. Corresponding state infidelity
between the searched optimal ground state and the theoretical ground
state when (b) τ = 0.005 s and (d) τ = 0.01 s. The optimization
stops when the maximal iteration number exceeds 1000, and for each
circuit layer the optimizations are repeated five times to display the
statistical errors.

with the hardware-efficient Ansatz. This is reasonable because
for a limited number of circuit layers M, the higher-order
Trotter decompositions possess higher precision to simulate
the system evolution than the conventional hardware-efficient
Ansatz. However, when M is sufficiently large, the compu-
tational resources will be enough for all orders of the Trotter
decompositions to achieve accurate results. This indicates that
the proposed Ansätze are favorable for the highly short-depth
VQA to find approximate solutions.

IV. CONCLUSION AND DISCUSSION

In the design of precise quantum control, simulating the
system time evolution is the most resource-consuming part.

To mitigate this issue, we combine the Trotter decompositions
to propose a practical strategy suitable for various control
optimization problems. The demonstrations with the GRAPE

algorithm up to seven qubits show the effectiveness of our
strategy in reducing the computing time. We expect that this
strategy can be explored in an intermediate-scale system in
the future, probably combining parallelization technique [20]
or special matrix representation method [65]. Several new
Ansätze inspired by the Trotter decompositions are also pre-
sented for improving the performance of the VQA, showing
the advantages of finding approximate solutions with highly
low-depth circuits. Actually, this is favorable for realistic ap-
plications, as current quantum devices often process many
noisy qubits with a limited coherence time [66]. Furthermore,
future investigations can explore the possibility of implement-
ing the proposed strategy in more complex optimization and
simulation tasks.
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