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We discuss the thermodynamic aspects of a single qubit based device, powered by weak quantum measure-
ments, and feedback controlled by a quantum Maxwell’s demon. We discuss both discrete and time-continuous
operation of the measurement based device at finite temperature of the reservoir. In the discrete example where a
demon acquires information via discrete weak measurements, we find that the thermodynamic variables includ-
ing the heat exchanged, extractable work, and the entropy produced are completely determined by an information
theoretic measure of the demon’s perceived arrow of time. We also discuss a realistic time-continuous operation
of the device where the feedback is applied after a sequence of weak measurements. In the time-continuous limit,
we derive the exact finite-time statistics of work, heat, and entropy changes along individual quantum trajectories
of the quantum measurement process, and relate them to the demon’s arrow of time.
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I. INTRODUCTION

Thermodynamics of quantum measurement powered de-
vices raises many novel concepts and relations to be explored.
Although these types of devices and their thermodynamic
characteristics have been studied in the past both theoretically
[1–11] and experimentally[12–15], there are still plenty of
areas that remain untouched. The most important and sought
after aspect of these devices are heat exchange, work extrac-
tion, and the corresponding efficiencies. In this paper, we aim
to characterize these quantities for a qubit measured via weak
quantum measurements and establish a relation between the
thermodynamic quantities, the acquisition of quantum infor-
mation by a quantum Maxwell’s demon, and the quantum
measurement arrow of time [16]. To this end, weak quantum
measurement will be revisited in two different operational
settings: discrete and time-continuous.

In a closed quantum system where no measurement has
been made yet, the dynamics of the system is time re-
versible. However, when we perform a random weak quantum
measurement on the system, we partially collapse the wave
function and obtain more information about the state of our
system. The partial collapse makes the nature of the evolution
nonunitary, and the fact that we have more knowledge about
the past state makes it easier for us to distinguish whether the
measurement process is more likely to be realized in forward
or in reverse direction, provided the measurement record. Ac-
cordingly, the randomness of the measurement process results
in a statistically asymmetric inference of the time direction of
the evolution of our system [16–19]. Distinction between the
forward and time-reversed evolution can be achieved by a sta-
tistical arrow of time which compares the probabilities of the
two time directions [16,20]. The relationship between the sta-
tistical characteristics of quantum measurement arrow of time

and fluctuation relations has been studied both theoretically
[2] as well as experimentally in the case of cold atoms [20] and
superconducting qubits [21]. Such explorations which are fea-
sible in various qubit based platforms presently in use further
substantiate the timely interest in studying thermodynamic
aspects of quantum measurements in terms of the quantum
measurement arrow of time.

In this paper, we describe a system that consists of a qubit
that is weakly coupled to a hot thermal reservoir that thermal-
izes the qubit consistently to keep it in a steady state via heat
exchange, as demonstrated in Fig. 1. We assume that the hot
reservoir has a very high heat capacity, with temperature T
[22]. For a thermal state, the information about the state of the
qubit is only in the negative z axis of the Bloch sphere rep-
resentation. Then we introduce a quantum Maxwell’s demon
which performs a weak quantum measurement on the x axis of
the Bloch sphere representing the qubit. By performing weak
measurements, the demon acquires new information regarding
the state of the qubit [23] and the qubit is not in a thermal
state anymore. As a result of the measurement, the Bloch
vector gains a new vector component along the x axis and
its length changes. This change in length of the Bloch vector
conjointly changes the energy and purity of the qubit [24].
Since an engine is programed to extract work cyclically from
the reservoir, the energy in random form inside the qubit must
be brought back to the thermal state (negative z axis) by an
external factor. To achieve this, the demon extracts work by an
optimal feedback on the system by rotating the qubit around
the y axis of the Bloch sphere at an optimal angular frequency
such that the Bloch vector returns back to the negative z
axis [12,25]. Subsequent thermalization brings the qubit to
the thermal state. After each measurement, the demon keeps
the information in its memory, violating the second law of
thermodynamics similar to a Szilard engine [23,26]. However,
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FIG. 1. The setup for a measurement based qubit engine. The
qubit is in a thermal state maintained via contact with reservoir
R. The demon performs an x measurement increasing the purity
and energy of the state. This increase in energy of the qubit can
be extracted as work after an optimal feedback (represented by �)
which brings the qubit back along the negative z axis.

to be able to make new measurements cyclically, the demon
needs to erase the previous information inside its memory
via Landauer’s erasure protocol. This erasure costs the de-
mon, with only a finite memory, a certain amount of work
[1,23,26–28].

The process described above for a two-level quantum
system has several ingredients that are independently inter-
esting to characterize heat, entropy, and information flows,
inviting considerable interest in exploring the fundamental
links between these quantities. On the practical side, they
also allow us to estimate the finite-time statistics of heat
and entropy changes, for example, in terms of the quan-
tum measurement record, which may be directly accessible
in an experiment. The present paper is aimed at precisely
addressing such possibilities, by considering thermodynamic
cycles fueled by both discrete and time-continuous quantum
weak measurements. We draw interesting connections be-
tween the finite-time statistics of thermodynamic variables
such as work, heat, and entropy changes, and relate them to
the finite-time statistics of the quantum measurement arrow
of time, which can be derived from the quantum measurement
record. Maxwell’s demon in this example is the experimental-
ist making inferences and applying feedback by utilizing the
measurement, and computational resources. Therefore, going
forward, we may refer to the statistical arrow of time for
quantum measurements as the demon’s perceived arrow of
time, or simply the demon’s arrow of time.

This paper is organized as follows. In Sec. II, we charac-
terize a single thermodynamic cycle of the qubit, considering
discrete weak quantum measurements. We further evaluate
the efficiency and coefficient of performance of the device
when it acts as a heat engine or a refrigerator, respectively.
In Sec. III we discuss the operation of the qubit engine in a
time-continuous manner. We draw our conclusions in Sec. IV.

II. DISCRETE QUANTUM WEAK MEASUREMENTS

We begin by considering thermodynamic cycles on a qubit
interacting with a thermal reservoir, fueled by single-step,
discrete quantum weak measurements. A similar setup in the
strong measurement limit is discussed in Ref. [1]. The qubit
is initially in a thermal state, ρ th

i = exp(−H0/kBT )/Z , where
the free Hamiltonian of the qubit is Ĥ0 = h̄ω0|1〉〈1|, and
Z = tr[exp(−H0/kBT )]. The initial energy of the qubit E0 =
1
2 h̄ω0(1 + z0), where z0 = −1/(2n̄ + 1), and n̄ = 1/(e

h̄ω0
kBT −

1) is the thermal occupation of the qubit at temperature T .
Maxwell’s demon performs the measurement using an aux-

iliary qubit that is entangled with our qubit of interest, along
its x axis. An equivalent measurement model is discussed,
for example, in Ref. [29], using a controlled-NOT gate to
model the entangling interaction where the auxiliary qubit
(the probe) is in a coherent superposition in the computational
basis. Given that the probe is also a qubit, the readouts are
binary, corresponding to the outcome of a strong measurement
in the computational basis of the probe. As a consequence, the
model only requires minimum computational resources for
the demon to operate, worth a classical bit. The measurement
can be described by the two-outcome measurement operators
M̂+ and M̂−, which are defined as [24]

M̂± = 1
2 [(

√
κ + √

1 − κ ) I ± (
√

κ − √
1 − κ )σ̂x], (1)

where κ = 1/2 − √
2γ ′δt is a dimensionless quantity and an

indicator of the strength of the discrete measurement with
characteristic measurement rate γ ′ and measurement time δt ,
which can be related to the resolution of the detector [24]. The
measurement operators satisfy the positive operator-valued
measure relation M2

+ + M2
− = I. These measurements weakly

probe the spin state of the qubit along the x direction in
the Bloch sphere, discretely. When κ → 1

2 , no information is
obtained by the demon. In the strong measurement limit, when
κ → 0 or 1, maximal discrimination between the eigenvectors
(| + x〉 or | − x〉) is achieved.

For given κ , the state of the qubit following measurement
outcome M̂± is [30,31]

ρM± = M̂±ρ th
i M̂†

±
Pf (±)

where Pf (±) = tr(M̂±ρ th
i M̂†

±) (2)

is the forward probability of measurement outcome ±. The
statistical irreversibility of quantum measurements is char-
acterized by the observation that a sequential measurement
by the demon can undo the effect of a prior measurement,
provided the measurements are time reversals of each other
[21,32–34]. This is accomplished by performing a sequence
of (+,−) or (−,+) measurements, restoring the initial state
of knowledge. The probability of a successful reversal, given
the measurement outcome ±, is given by

Pb(±) = tr(M̂∓M̂±ρ th
i M̂†

±M̂†
∓)

Pf (±)
. (3)

The demon’s perception of the arrow of time (distin-
guishability of forward and time-reversed measurement)
demonstrates the statistical correlation between performing
a measurement and undoing it by a sequential measure-
ment [21,32–34]. It is defined as the logarithmic ratio of the
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(a) (b) (c)

FIG. 2. (a) The hot reservoir thermalizes the qubit at a certain
rate via exchange of heat. The red arrow on the qubit is the Bloch vec-
tor at the initial thermal state. (b) The demon performs measurement
on the qubit changing the length of the Bloch vector (see the orange
arrow). The change in length of the Bloch vector also represents the
information acquired by the demon. (c) The resultant Bloch vector
after measurement (the orange arrow) is rotated by Rabi oscillation
characterized by angular frequency �. The resultant difference in the
length of initial and final Bloch vector is extracted as work.

probability of doing a forward measurement and a time-
reversed measurement [16,21]:

Q(±) = log

(
Pf (±)

Pb(±)

)
= −2 ln(2) − ln[κ (1 − κ )], (4)

which, for the example considered here, is independent of the
measurement outcome. As κ → 1

2 , Q → 0, which shows that
since no further information is acquired by the demon, the
probability of the demon performing a forward weak measure-
ment is the same as the demon performing a time-reversed
weak measurement (it is impossible to distinguish the time
direction of the measurement). As κ → 0 or 1, Q → ∞,
which asserts that the demon acquires maximum possible
information in the strong measurement limit.

A. Work extraction

We now proceed to compute other thermodynamic quan-
tities for the cycle—completed by an optimal feedback and
reset via thermalization—in terms of the demon’s arrow of
time. The average energy of the qubit after the measurement is
given by EM = 1

2 h̄ω0(1 + z0e− Q
2 ). For κ → 0 or 1, maximum

information is collected about the x axis of the Bloch sphere.
Hence, the demon generates the maximum amount of energy
possible, resulting in EM → 1

2 h̄ω0. The energy transduced by
the measurement process on an average is therefore

QM = EM − E0 = 1
2 h̄ω0z0

(
e− Q

2 − 1
)
. (5)

As κ → 1
2 , no information is collected about the x axis of the

Bloch sphere. Hence, the demon does not give any energy to
the qubit, resulting in QM → 0.

After measurement, the new length of the Bloch vector

is the length of the resultant vector |z f | =
√

x2± + z2±, where
x± and z± are the coordinates on the Bloch sphere after
measurement M̂+ or M̂− (see Fig. 2). The magnitude of z f

is the same for both measurements since both M̂+ and M̂−

bring an equal change in magnitude on the x axis, although
they have opposite directions; the y component is still zero
after measurement. To extract the most amount of work, the
resultant Bloch vector should be rotated around the y axis with
a certain angular (Rabi) frequency � such that it lies entirely
on the negative z axis of the Bloch sphere (see Fig. 2). This
particular rotation around the y axis is achieved via an opti-
mal feedback [24,25,35,36]. We assume that the feedback is
performed almost instantaneously such that the density matrix
after the optimal feedback is given by ρFB = ( I − |z f |σ̂z )/2.
The average energy of the system after this feedback is given
by

E f = 1
2 h̄ω0

[
1 −

√
1 + e−Q

(
z2

0 − 1
)]

. (6)

Essentially, after the feedback, the Bloch vector is on the
negative z axis and closer to the ground state than the initial
state of the qubit. This signifies that the energy of the qubit has
decreased, and converted into a form of work that has been
extracted by our engine. The average work extracted from
measurement after applying optimal feedback is

〈Wext〉 = 1
2 h̄ω0

[
z0e− Q

2 +
√

1 + e−Q
(
z2

0 − 1
)]

. (7)

The work extracted is always non-negative regardless of the
measurement outcome, and tends to zero when κ → 1/2. In
the strong measurement limit, i.e., when κ → 0 or 1, Wext →
1
2 h̄ω0. Such a measurement yields the maximum possible en-
ergy transduction and, therefore, maximum work extraction.

Since information acquisition of the demon violates the
second law of thermodynamics [23,26,27,37], the memory
of the demon (characterized by the measurements) must be
erased after each measurement. To formulate the work done
to perform this erasure, we follow Landauer’s erasure protocol
[23,26,27] and take the number of possible measurements as
the number of possible states, resulting in Wer = kBTD log(2),
where TD is the temperature of the demon [1], satisfying
TD 	 T . Since thermalization happens much slower than
weak measurement, the effects of the measurement on the
steady-state properties of the qubit can be ignored. Thus,
the hot reservoir properly thermalizes the qubit only after the
feedback is applied.

B. Heat engine and refrigerator

We define the efficiency of our engine as the ratio between
the work extracted after erasure (Wext − Wer) and the heat
source (EM) [1,38]. The efficiency of our Maxwell’s demon
heat engine can be expressed as

η = 1 −
1 −

√
1 + e−Q

(
z2

0 − 1
) + 2

h̄ω0
kBTD log(2)

1 + z0e
−Q

2

. (8)

Two important observations are in order for the qubit mea-
surement engine.

(1) The engine can extract nonzero work, even when the
reservoir is at zero temperature, by rectifying the measure-
ment induced noise to produce useful work.

(2) The work conversion efficiency Wext/EM (excluding
erasure cost) reaches unity in the strong measurement limit.
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FIG. 3. Efficiency (η) of a single discrete measurement as a
function of the measurement strength (κ ) for three different demon
temperatures (TD). For strong measurements (κ → 0, 1), η → 1,
whereas, for weak measurements (κ → 1

2 ), η → 0. We observe that
the efficiency is larger for smaller values of TD. In the inset, we
plot the efficiency of a single discrete measurement as a function
of the measurement strength for three different initial states. For
0.1 � κ � 0.9, we observe that the efficiency increases as z0 → 0
and takes a maximum value for κ → 0, 1 independent of the initial
state. For κ → 1

2 , the system extracts no work and does not operate
as a heat engine anymore. The device acts as a dissipator, yielding
negative efficiency. In this plot, we take h̄ω0 = 0.1kBT .

Both observations suggest quantum advantages in thermo-
dynamic cycles of a qubit, as they result from measurements
in a noncommuting basis, as well as feedback rotations
through a superposition of states, inaccessible for a classical
bit. Similar observations have also been made for a quantum
oscillator based measurement engine in Ref. [8]. As evident
from Fig. 3, the measurement engine yields maximum effi-
ciency at maximal measurement strength. For κ → 1/2, the
demon obtains no information. Consequently, work extraction
tends to zero, and the device acts as a dissipator and yields
negative efficiency, owing to the erasure cost Wer.

The thermodynamic cycle above can also be understood as
a refrigerator that extracts finite heat from the reservoir. The
coefficient of performance (C) for the refrigerator is given by

C = E0 − E f

EM − E0 + Wer
=

h̄ω0
(
z0 +

√
1 + e−Q

(
z2

0 − 1
))

h̄ω0z0
(
e

Q
2 − 1

) + kBTD log(4)
. (9)

In Fig. 4, we plot the coefficient of performance (C) as a
function of κ for different initial temperatures of the qubit.
We observe that the coefficient of performance is symmetric
around κ = 0.5 (similar to the case of efficiency; see Fig. 3).
However, it is a nonmonotonous function of κ and shows
maximum for a couple of intermediary values of κ (placed
symmetrically around κ = 0.5) and goes to zero for κ = 0.5.

C. Entropy changes

Here we explore the net entropy changes for the qubit in
a cycle. The change in entropy in the measurement process,
from preparation to measurement, would be given by 
SM =

FIG. 4. The coefficient of performance for a single discrete mea-
surement varying as a function of the measurement strength for three
different initial states (TD = 0.001T and h̄ω0 = 0.1kBT ).

S[ρM±] − S[ρ th
i ]


SM = 1

2

(
Q + γ (0) − |z f | ln

[
1 + |z f |
1 − |z f |

])
, (10)

where γ (0) = z0 ln[(1 + z0)/(1 − z0)] depends on the
initial temperature of the qubit via z0, and |z f | =√

1 + 4κ (1 − κ )(z2
0 − 1) is the length of the resultant

Bloch vector following measurement. The information
kept by the demon changes in the process of erasure and
hence changes the associated entropy, 
Ser = kB log(2).
Equation (10) shows that the change in entropy depends on
two components: the Q term depends on the trajectory of
the qubit unique to the measurement and z0 and z f terms
are boundary contributions. As shown in Fig. 5, the change
in entropy production associated with measurement (
SM)
is a monotonously decreasing function of Q, bounded from
above by Q/2. Note that unitary rotation associated with the
feedback process generates no entropy production.

FIG. 5. The change in entropy in the process between the mea-
surement and initial state as a function of Q for three different initial
states. The parameters are the same as in Fig. 4.
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FIG. 6. The change in entropy in the process between the mea-
surement and initial state (red, dotted line), and the total change in
entropy (blue, dashed line) and the change in entropy associated with
the process of erasure (black, dashed line) as a function of Q for
z0 = −0.05. In the inset, we plot the extracted work extracted as
a function of Q for z0 = −0.05. Other parameters are the same as
in Fig. 4.

In Fig. 6, we observe that, for Q � 7, 
SM exactly cancels
out 
Ser, giving zero net entropy production. An optimal
quantum measurement based engine (with least possible dis-
sipation) is achieved in a regime where the measurement can
extract the maximum amount of work (see the inset of Fig. 6).
When the measurement produces no extraction, all the work
done goes to dissipation.

III. CONTINUOUS WEAK MEASUREMENTS

We now proceed to discuss the time-continuous version
of the measurement engine for which the demon performs a
sequence of weak quantum measurements prior to applying
the feedback. As in the discrete case, the qubit is initially
attached to a thermal reservoir, but for the probe, we consider
a continuous-variable system, for example a photon under-
going collisional interactions with a superconducting qubit,
the quadrature of which is subsequently measured (homodyne
measurement). Such time-continuous quantum measurements
have been studied extensively in literature using different
theoretical tools [29,39–43], and experimental demonstrations
have been achieved [21,25,44]. An ensemble of identically
prepared photons may arrive sequentially, scatter off the qubit,
and get homodyne detected, implementing a sequence of weak
quantum measurements. The time delay between passages of
photons (δt) can be small enough (within the resolution of the
detector) such that a realistic time-continuous limit exists. If
the measurements continue for a duration much longer than
the characteristic measurement time (τ ), the qubit collapses
to one of the eigenstates of the measured observable. We as-
sume that the measurements will be performed in a timescale
much faster than the thermalization time. The work extraction
is similar to before. After a sequence of continuous weak
measurements, a feedback rotation is applied for extracting
work. In addition to making connections to a well-studied
time-continuous limit of weak quantum measurements for

the engine’s thermodynamics, such an analysis is also timely
given the feasibility of implementing real-time quantum feed-
back (work extraction), for example, in the superconducting
platform [25]. Additionally, the model also serves to describe
both cold atom [20] and superconducting platforms [21],
where the fluctuation relations for the quantum measurement
arrow of time have been probed in experiments.

The time-continuous weak quantum measurements of σ̂x

for the forward and backward measurements are described by
the Kraus operators [16,45]

M̂F/B =
(

δt

2πτ

) 1
4

e− δt (r∓σ̂x )2

4τ , (11)

respectively. The backward Kraus operator (MB) comes from
the measurement result rB = −rF , corresponding to “in-
verting” the measurement outcome that would erase the
information in the forwards measurement [16]. Equivalently,
this corresponds to measuring the time-reversed operator

σx


−1 = −σx, where 
 is the time-reversal operator. Here
δt is the time spent between measuring two readouts while τ is
the characteristic measurement time taken to separate the two
Gaussian distributions by two standard deviations [39]. The
measurement yields a normalized readout value r, which in
simulations is sampled from two Gaussian distributions with
mean values +1 (pointing towards the | + x〉 eigenvector) and
−1 (pointing towards the | − x〉 eigenvector) and variance√

τ
dt . Given this we also expect fluctuations in work extrac-

tion and efficiency. Thermodynamic cycles can be constructed
similar to the discrete quantum weak measurement example
we discussed before, and our objective again is to explore con-
nections between thermodynamic and information theoretic
variables of interest.

Recall that, in the discrete example, the work, heat, and
entropy changes did not have fluctuations, and therefore their
statistics were straightforward. A crucial difference in the
time-continuous limit is that the statistics of work, heat, and
entropy changes are not the same for individual realizations
of the measurement process. Computing their probability dis-
tributions corresponds to deriving exact finite-time statistics
of thermodynamic variables, which has gained lots of interest
in recent years in the stochastic thermodynamics of nanoscale
classical systems [46–48].

Finite-time statistics of work, heat, and entropy changes

We now proceed to derive the exact finite-time statics of
work, heat, and entropy changes, given that time-continuous
measurements of interest in this section are fundamentally
stochastic quantum processes of finite duration. To do so, we
make use of the knowledge of probability density of Q, which
can be expressed as [16,20]

P(Q) =
√

τ

2πT
eQ

√
eQ − 1

e(−T
2τ

− τ
2T [cosh−1(eQ/2 )]2 ), (12)

where T = ndt such that n is the number of independent
measurements made in one simulation and dt is the time inter-
val between two sequential measurements. These finite-time
distributions have been studied both experimentally and theo-
retically in both superconducting qubits as well as cold atoms
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[16,20,21]. To derive the finite-time statistics of other thermo-
dynamic variables, we may make use of the (corresponding
time-continuous limit of) identities we derived in Sec. II.
For example, the probability distribution of extractable work
in arbitrary finite time can be derived from the probability
distribution of the exponential of the quantum measurement
arrow of time. This is given by (see the Appendix for details)

P(Wext ) = − 4eQ

h̄ω0

1

z0eQ/2 + z2
0−1√

1+(z2
0−1)e−Q

P(Q), (13)

where using Eq. (7) we obtain the following relation between
e−Q and Wext:

e−Q =
[

2Wextz0

h̄ω0
+

√
1 + 4W 2

ext

h̄2ω2
0

(
z2

0 − 1
)]2

. (14)

Similarly, the probability distribution for the measurement
heat QM can be expressed as

P(QM ) = − 4eQ/2

h̄ω0z0
P(Q). (15)

From Eq. (5), we have e−Q = (2QM/h̄ω0z0 + 1)2. The aver-
age heat generated by the measurement can be expressed as

〈QM〉 = 1
2 h̄ω0z0

(
e− δt

2τ − 1
)
. (16)

We can use the same procedure to derive the theoretical expec-
tation for the probability distributions of the change in entropy
as well.

In Fig. 7, we compare the probability distribution plots
and the theoretical expectation for the probability distributions
for the work extraction (top panel), the change in entropy
after the final measurement (middle panel), and the total en-
ergy provided by the measurement (bottom panel) for 20 000
simulations of the work extraction process. We show that, for
weak continuous measurements, the engine is more likely to
extract work near zero and its probability to extract higher
work decreases as we approach the work extraction for the
strong measurement limit ( 1

2 h̄ω0). The entropy of the qubit
decreases after all the measurements. Hence, 
SM is negative.
For weak measurements, we are most likely to get no change
in entropy and the probability of change in entropy decreases
as the entropy decreases further. In the case of energy supplied
by measurement, similar to the case of work extraction and
entropy change we are most likely to find QM near zero,
with its average given by Eq. (16). We also show that our
theoretical expectations accurately match the simulations.

IV. CONCLUSIONS

We investigated the thermodynamic as well as heat ex-
change properties of a single qubit based device driven by
weak quantum measurements. We find interesting statistical
connections between the relevant thermodynamic variables,
work, heat, entropy production, and the demon’s perceived
arrow of time. Considering time-continuous weak quantum
measurements, we derive the exact finite-time statistics of
work, heat, and entropy changes, and relate them to the known
statistics of the quantum measurement arrow of time.

units of

units of

FIG. 7. Probability distribution of the work extraction (top
panel), entropy production between the final measurement and initial
state of the qubit (middle panel), and the change in energy due to a se-
ries of measurements (bottom panel) for dt/τ = 0.01 and z0 = −0.1.
The simulation is done for 15 sequential continuous measurements
with feedback application only at the end. The distributions are for
20 000 simulations. We take h̄ω0 = kBT .

Our paper has implications for understanding the funda-
mental links between work, heat, entropy, and information
flows in simple quantum devices, the constraints imposed
on them by the principles of thermodynamics, as well as
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the potential to probe them in feasible experiments. Both
superconducting quantum circuits and ultracold atoms serve
as immediate platforms where the above discussed identities
can be probed in experiments. The results discussed here
also open directions of research towards achieving on-demand
thermal control in simple quantum systems, for example,
by controlling the accessible information flows (by measure-
ments and feedback operations) across a chain of qubits in
such a way that they determine the heat and entropy cur-
rents below a certain threshold. We defer this analysis to a
future work.
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APPENDIX: LINEAR ENTROPY PRODUCTION AND THE
DISTRIBUTION OF WORK EXTRACTION

The linear entropy can be defined as

SL(ρ) = 2(1 − Tr{ρ}2). (A1)

If ρ th
i and ρM± are the initial thermal state and the state of the

qubit after measurement, respectively, the linear entropy and
the quantum measurement arrow of time satisfy the following

relation:

SL(ρM±) = exp(−Q)SL
(
ρ th

i

)
. (A2)

Averaging over many realizations, we obtain the following
equality:

〈e−Q+
F 〉 = 1, (A3)

where 
F = log SL(ρ th
i ) − log SL(ρM±) gives the logarithmic

difference between the linear entropies of the initial state and
the state after the measurement. In the spirit of Refs. [2,20,21],
the above result can be understood as a “fluctuation theorem”
relating the arrow of time to linear entropy changes in the
measurement process, when the initial states are strictly im-
pure.

For the continuous weak measurement case, Eq. (A2) can
be rewritten as

S̃L = SL(ρM±)

SL(ρ th
i )

= e−Q = sech2

(
δtr

τ

)
. (A4)

Using Eq. (12), the probability density of S̃L can be
expressed as

P(S̃L ) = −eQP(Q). (A5)

The work extraction can be written in terms of S̃L as

Wext = h̄ω0

2

[
z0

√
S̃L +

√
1 + (

z2
0 − 1

)
S̃L

]
. (A6)

The distribution for work can be written as

P(W ) = 4

h̄ω0

1
z0√

S̃L

+ z2
0−1√

1+(z2
0−1)S̃L

P(S̃L ). (A7)
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