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We address the question of how to compute the probability distribution of the time at which a detector clicks
in the situation of n nonrelativistic quantum particles in a volume � ⊂ R3 in physical space and detectors placed
along the boundary ∂� of �. We previously [Tumulka, Ann. Phys. (NY) 442, 168910 (2022)] argued in favor
of a rule for the one-particle case that involves a Schrödinger equation with an absorbing boundary condition
on ∂� introduced by Werner; we call this rule the “absorbing boundary rule.” Here, we describe the natural
extension of the absorbing boundary rule to the n-particle case. A key element of this extension is that, upon
a detection event, the wave function gets collapsed by inserting the detected position, at the time of detection,
into the wave function, thus yielding a wave function of n − 1 particles. We also describe an extension of the
absorbing boundary rule to the case of moving detectors.
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I. INTRODUCTION

The question of how to compute the probability distri-
bution of the time at which a detector registers a quantum
particle from the initial wave function ψ0 of that particle
has attracted considerable interest in the literature (see, e.g.,
[1–12] and the references therein). However, the most con-
vincing equations for this, written down in 1987 by Werner
[13], have received little, if any, attention. We proposed [14]
to take these equations as a rule for computing the detection
time distribution of an ideal detector (and thus as the defini-
tion of an “ideal detector”); we call this rule the absorbing
boundary rule. We pointed out in [14] why it achieves ex-
actly what one should hope for in such a rule and gave a
different derivation of it. In the present paper, we develop
an extension of the absorbing boundary rule to the case of
n particles able to trigger detectors, as well as an extension to
the case of moving detectors (resulting in a Galilean-covariant
theory).

A brief remark about the name: The absorbing boundary
rule involves a boundary condition that we call the absorbing
boundary condition. These names do not mean that a wave
reaching the boundary will be completely absorbed; in fact,
a significant part of it will be reflected [14, Sec. 3]. The
names mean only that some part of the wave gets absorbed, in
contrast to the well-known boundary conditions of Dirichlet
and Neumann. (And in the Bohmian picture, the particle gets
absorbed with certainty when reaching the boundary.) Our
goal here is not to model an ideal absorber, but an ideal
detector.

Absorbing boundaries have also been considered in nu-
merical analysis for the purpose of solving the Schrödinger
equation in unbounded regions while avoiding any unphysical
reflection of the wave from the boundary of the numerical grid
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[15–17]. However, for this aim it is preferable to use methods
that absorb more of the wave than the boundary condition
considered here, but also the question of how to treat several
particles arises (see remark 3 in Sec. VI).

We presented an analogous rule for the Dirac equation (for
one or more particles) in [18]; an alternative derivation of the
one-particle rule through a suitable limit of repeated position
measurements was described in [19].

Suppose that n particles are, at the initial time t0, located
in a region � ⊂ R3 in physical space with wave function
ψ0 ∈ L2(�n) and that detectors are placed along the boundary
∂� of �. For each particle i ∈ {1, . . . , n}, we consider the
time Ti and the location X i ∈ ∂� where it gets detected and
write Zi = (Ti, X i ); if it is never detected, we set Zi = ∞.
The n-particle rule proposed in this paper specifies the joint
probability distribution of Z1, . . . , Zn in terms of ψ0. It is of
the form

Probψ0{(Z1, . . . , Zn) ∈ B} = 〈ψ0|E (B)|ψ0〉 (1)

for all sets B ⊆ ([t0,∞) × ∂� ∪ {∞})
n

with a certain positive
operator-valued measure (POVM) E (·). Like the rule for a
single particle, it provides an example of an observable that
is not given by a self-adjoint operator [for which E (B) would
be projections] but a proper POVM instead.

The status of the proposed n-particle rule is partly that of
a definition of a concept of an “ideal detector” and partly the
upshot of a theoretical analysis of this kind of experiment.
Although there is no self-adjoint time operator, quantum me-
chanics makes a prediction for this experiment by treating
the detectors as an N-particle quantum system, solving the
Schrödinger equation for the whole system of N + n parti-
cles, and computing from that wave function the probability
at any given t � t0 that the detector at x ∈ ∂� is in a trig-
gered state. Since this method of obtaining a prediction is
impractical, it is desirable to make idealizing assumptions,
and any rule for the joint distribution of Z1, . . . , Zn in terms
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of ψ0 would involve some such assumptions. We describe the
reasoning and assumptions that lead to the proposed rule in
Sec. V.

This paper is organized as follows. In Sec. II, we describe
the absorbing boundary rule for a single particle with fixed
detectors as in [14]. In Sec. III, we describe our extension to
moving detectors. In Sec. IV, we describe our extension to n
particles, and in Sec. V we provide a derivation. Finally, in
Sec. VI, we provide further remarks and discussion.

II. STATEMENT OF THE RULE FOR A SINGLE PARTICLE

Consider a single nonrelativistic particle of mass m > 0.
According to the absorbing boundary rule, the particle’s wave
function ψ evolves according to the Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ (2)

in � with potential V : � → R and boundary condition

∂ψ

∂n
(x) = iκψ (x) (3)

at every x ∈ ∂�, where κ > 0 is a constant characterizing the
type of detector (the wave number of the sensitivity) and ∂/∂n
denotes the outward normal derivative on the surface ∂�, i.e.,
∂ψ/∂n := n(x) · ∇ψ (x), with n(x) being the outward unit
normal vector to ∂� at x ∈ ∂�. It is known [13,20] that (2)
and (3) together have a unique solution ψt for every ψ0 ∈
L2(�). Assuming that ‖ψ0‖2 = ∫

�
d3x |ψ0(x)|2 = 1, the rule

asserts that the distribution of Z = (T, X ), where T is the exit
time and X is the exit location on ∂�,

Probψ0 (t1 � T < t2, X ∈ B) =
∫ t2

t1

dt
∫

B
d2x n(x) · jψt (x)

(4)
for any t0 � t1 < t2 and any set B ⊆ ∂�, with d2x being the
surface-area element and jψ being the probability current
vector field defined by ψ , which is

jψ = h̄

m
Im ψ∗∇ψ. (5)

(By (3), the integrand in (4) can also be written as h̄κ
m |ψt (x)|2.)

Finally,

Probψ0 (Z = ∞) = 1 −
∫ ∞

t0

dt
∫

∂�

d2x n(x) · jψt (x) (6)

= lim
t→∞

∫
�

d3x |ψt (x)|2. (7)

It is easy to verify [14] that (4) and (6) define a probability
distribution on Z = [t0,∞) × ∂� ∪ {∞}, the value space of
Z .

The distribution (4) can equivalently be characterized as
the probability distribution of the space-time location where
a Bohmian trajectory X (t ) [21], starting at time t0 from a
|ψ0|2-distributed random initial position in �, will cross ∂�

if guided, according to Bohm’s equation of motion dX/dt =
jψt (X )/|ψt (X )|2, by ψt obeying (2) and (3) (and Z = ∞ if
the Bohmian particle never reaches ∂�) [14,22]. In fact, in
the Bohmian picture a detector clicks when and where the
particle arrives, but the presence of detectors has an influence

on the particle’s motion even before any detection, as (3)
would have to be dropped in the absence of detectors. The
boundary condition (3) enforces that the particle can cross the
detecting surface ∂� only outward, in fact at a velocity whose
normal component is h̄κ/m.

The distribution (4) corresponds to a POVM Eκ (·) on Z
that can be expressed as

Eκ (dt × d2x) = h̄κ

m
W †

t−t0 |x〉〈x|Wt−t0 dt d2x, (8)

Eκ ({∞}) = I − Eκ ([t0,∞) × ∂�) = lim
s→∞W †

s Ws, (9)

with the dagger (†) denoting the adjoint operator and Ws being
the (nonunitary) linear operator that maps ψt0 = ψ0 to ψt0+s,
solving (2) and (3). The operators Ws for s � 0 have the
properties W0 = I , WtWs = Wt+s, and ‖Wsψ‖ � ‖ψ‖; that is,
they form a contraction semigroup. The quantity ‖ψt‖2 equals
the probability that T � t . Werner [13] based his terminology
of exit time and exit location on an arbitrary contraction semi-
group and presented the boundary condition (3) only as an
example; later on, he turned to other approaches concerning
the detection time distribution [23].

The absorbing boundary rule describes detectors that get
triggered immediately when the particle reaches the surface
∂�—a concept that might have seemed impossible in view
of the quantum Zeno effect [5,24–26]. The rule also makes
clear which wave function to attribute to the particle as the
collapsed wave function, should the experiment (i.e., the at-
tempted detection) be terminated without a detection event at
any time t � t0; that collapsed wave function is ψt/‖ψt‖. It is
different from what the wave function would have been in the
absence of detectors, i.e., from the solution of the Schrödinger
equation (2) in R3 without a boundary at ∂� and without
boundary condition (3).

III. EXTENSION TO MOVING BOUNDARIES

We now allow the region � = �(t ) to be (smoothly)
time dependent, which corresponds to moving detectors and
defines a space-time region S = {(t, x) : t � t0, x ∈ �(t )}
available to the particle. In this case, the value space of the
random variable Z is Z = ∂+S ∪ {∞}, where ∂+S is the set of
boundary points (t, x) of S with t > t0 [since (t, x) with t = t0
and x ∈ �(t0) are not exit points]. We propose the following
variant of the absorbing boundary rule.

The wave function satisfies the Schrödinger equation (2)
inside S with the boundary condition (3) replaced by

n(t, x) · ∇ψ (t, x) = iκ (t, x) ψ (t, x) (10)

for x ∈ ∂�(t ), where n(t, x) is the outward-pointing unit nor-
mal vector of ∂�(t ) at x ∈ ∂�(t ). The admissible values of
κ (t, x) are constrained by the condition

h̄κ (t, x)

m
� vn(t, x), (11)

where vn is the (possibly negative) normal velocity at which
the boundary is moving outward. The constraint (11) can
be understood in Bohmian mechanics as ensuring that all
Bohmian trajectories on the boundary are crossing the bound-
ary in the outward direction; since it forces the normal
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outward velocity to be h̄κ (t, x)/m, this value must be greater
than the speed at which the boundary is moving outward,
or the trajectory cannot reach the boundary (and, instead, a
trajectory begins at this boundary point and continues inside
�). The condition (11) replaces the condition κ � 0, and
indeed, κ (t, x) can be negative when vn(t, x) is, as long as (11)
is satisfied. The appropriate value of κ (t, x) when all detectors
have a wave number of sensitivity κ is

κ (t, x) = κ + mvn(t, x)

h̄
. (12)

The probability distribution of (T, X ) is then exactly the
distribution of where the Bohmian trajectory, starting at time
t0 at a location X (t0) that is |ψ0|2 distributed, hits ∂+S. Explic-
itly, for any B ⊆ ∂+S,

Prob(Z ∈ B) =
∫

B
dt d2x [n(t, x) · jψt (x) − vn(t, x) |ψt (x)|2]

(13)

=
∫

B
dt d2x |ψt (x)|2

(
h̄κ (t, x)

m
− vn(t, x)

)
. (14)

Note that the integrand is non-negative by virtue of (11).
Furthermore, again, Prob(Z = ∞) = limt→∞ ‖ψt‖2.

This theory of a moving detecting surface is invariant un-
der Galilean transformations. Indeed, under a Galilean boost
with relative velocity v, every space-time point (t, x) gets
new coordinates (t, x + vt ), and a one-particle wave function
transforms according to

ψ̃t (x) = exp

(
im

h̄

(
v · x − 1

2
v2t

))
ψt (x − vt ). (15)

The detecting surface transforms to ∂+S̃ = {(t, x + vt ) :
(t, x) ∈ ∂+S}, which still has the same normal vectors in
space, ñ(t, x + vt ) = n(t, x), but a different normal veloc-
ity ṽn(t, x + vt ) = vn(t, x) + v · n(t, x), and κ in (10) gets
replaced by κ̃ (t, x + vt ) = κ (t, x) + mv · n(t, x)/h̄ (as ex-
pected in view of the Bohmian trajectories).

IV. PROPOSED RULE FOR SEVERAL PARTICLES

Now consider n particles that can be detected, and let I
be an index set of size n containing the labels of the particles
(e.g., I = {1, . . . , n}). We write x = (xi )i∈I for a configu-
ration of the n particles. (The symbol i can denote either a
particle label or

√−1; it should always be clear which one is
meant.) For simplicity, we return to the scenario of nonmoving
detectors; the general case of n particles and moving detectors
is described in remark 1 in Sec. VI. We can allow the greater
generality of having a separate detecting surface for each
particle i, so let �i ⊆ R3 be the region in which particle i is lo-
cated initially, and suppose that detectors sensitive to particle
i are located along ∂�i.1 We take for granted that the initial

1This includes the possibility that �i = R3 for some particles for
which no detectors are present. It is also straightforward to deal with
the possibility that some particles (for which suitable detectors may
or may not be present) get reflected, rather than absorbed, at certain
surfaces; this would correspond to imposing, instead of (3) or (18),

wave function ψ0(x) is supported in the region � := ∏
i∈I �i

of 3n-dimensional configuration space. We will denote by T j

and X j the time and location of the jth detection event, while
Ti and X i (with lower indices) denote the time and location of
the detection of particle i; therefore, 0 � T 1 � T 2 � · · · . We
write I j for the label for the jth detected particle, and Z j =
(T j, I j, X j ). We take for granted that a detected particle gets
absorbed (or removed from the system; for another possibility
see remark 6 in Sec. VI). Thus, after the first detection event,
the other n − 1 particles continue to move around, and the
detectors wait for any of them to arrive. If fewer than n clicks
occur, say, only r < n, then we set Z j = ∞ for j > r. Writing
Zi (with a lower index) for the detection time and location of
the ith particle, Z1, . . . , Zn are more or less the reordering of
Z1, . . . , Zn (if I = {1, . . . , n}) in the order of detection. Our
rule will specify the joint distribution of Z = (Z1, . . . , Zn) in
Z = ([t0,∞) × I × (∪i∂�i ) ∪ {∞})

n
. The boundary ∂� of

� in R3n is the union of n faces,

Fi = ∂�i ×
∏

k∈I \{i}
�k (16)

for i ∈ I , together with a set of lower dimension (edges)
that can be ignored because the probability current into that
set vanishes. Put differently, the configuration reaches the
boundary of � exactly when, for one i ∈ I , particle i reaches
∂�i.

A. Statement of the n-particle rule

The wave function evolves according to the Schrödinger
equation

ih̄
∂ψ

∂t
= −

∑
i∈I

h̄2

2mi
∇2

i ψ + V ψ (17)

in � ⊆ R3n with the boundary condition

ni(xi ) · ∇iψ (x) = iκiψ (x) (18)

for all x ∈ Fi and i ∈ I , with positive constants κi. We assume
that the potential is of the form

V (x) =
∑
i∈I

Vi(xi ) + 1

2

∑
i, j∈I

i �= j

Vi j (xi, x j ). (19)

As in the one-particle case, the probability current at the
boundary ∂� is always outward pointing. We postulate that,
assuming ‖ψ0‖2 = ∫

�
d3nx |ψ0(x)|2 = 1, the joint distribu-

tion of T 1, I1, and X 1 is given by

Probψ0 (t1 � T 1 < t2, I1 = i, X 1 ∈ B)

=
∫ t2

t1

dt
∫

B
d2xi

∫
∏

k �=i �k

d3n−3x′ ni(xi ) · jψt
i (x′, xi ) (20)

a boundary condition implying n · j = 0, such as a homogeneous
Dirichlet or Neumann condition, on some boundary surfaces.
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for any B ⊆ ∂�i, where ji is the three-vector that is the com-
ponent of the current 3n-vector for particle i,

jψi (x) = h̄

mi
Im ψ∗(x)∇iψ (x). (21)

Correspondingly,

Probψ0 (Z1 = ∞) =1 −
∑
i∈I

∫ ∞

t0

dt
∫

∂�i

d2xi

∫
∏

k �=i �k

d3n−3x′

× ni(xi ) · jψt
i (x′, xi ) (22)

= lim
t→∞ ‖ψt‖2. (23)

In case Z1 �= ∞ and given T 1, I1, and X 1, restart the problem
with the new set of labels I ′ = I \ {I1}, the new [3(n −
1)]-dimensional configuration space �′ = ∏

i∈I ′ �i with el-
ements x′ = (xi )i∈I ′ , the new initial time t ′

0 = T 1, the new
potential

V ′(x′) =
∑
i∈I ′

Vi(xi ) + 1

2

∑
i, j∈I ′

i �= j

Vi j (xi, x j ), (24)

and the new (n − 1)-particle initial wave function

ψ ′
0(x′) = N ψT 1 (x′, xI1 = X 1) (25)

with normalization constant N . Set T 2 = T 1′, I2 = I1′, and
X 2 = X 1′, and repeat the procedure. This completes the state-
ment of the n-particle rule.

B. Other formulations

Equivalently, the rule can be stated in terms of Bohmian
trajectories as follows. At the initial time, choose a Bohmian
configuration X0 in � according to the |ψ0|2 distribution.
Evolve ψ according to the Schrödinger equation (17) with
boundary condition (18), and let the Bohmian configuration
X (t ) = (X 1(t ), . . . , X n(t )) move according to Bohm’s equa-
tion of motion,

dX (t )

dt
= jψt (X (t ))

|ψt (X (t ))|2 . (26)

As soon as X (t ) reaches ∂�, i.e., as soon as one of the parti-
cles, say, particle i, reaches its boundary ∂�i, set T 1 = t, I1 =
i, and X 1 = X i(t ). Now remove particle i from the configu-
ration while keeping the configuration of the other particles;
replace the wave function by the appropriate “collapsed”
wave function, viz., by (25); this kind of wave function,
obtained by inserting the actual particle position into some
(but not all) of the variables, is well known in Bohmian
mechanics as the “conditional wave function” [21,27,28].
It follows that the new configuration is |ψ ′|2 distributed
with respect to the new wave function ψ ′. Now repeat the
procedure.

Another equivalent formulation of the rule is that

Probψ0{(Z1, . . . , Zn) ∈ B} = 〈ψ0|F (B)|ψ0〉 (27)

with POVM F (·) on Z given by

F (dt1 × {i1} × d2x1 × · · · × dtn × {in} × d2xn)

= L1† · · · Ln†Ln · · · L1 dt1 d2x1 · · · dtn d2xn, (28)

L j =
√

h̄κi j /mi j 〈xi j = x j |WI j−1,t j−t j−1 , (29)

F (dt1 × {i1} × d2x1 × · · · × dtr × {ir} × d2xr × {∞}n−r )

= L1† · · · Lr†
(

lim
t→∞W †

I r ,tWI r ,t
)
Lr · · · L1 dt1 d2x1

· · · dtr d2xr, (30)

where I j = I \ {i1, . . . , i j}, I 0 = I , t0 = t0, WI ,s is
the time evolution according to (17) and (18) on HI =
L2(

∏
i∈I �i ), and 〈xi = x| is the mapping from HI to

HI \{i} defined by inserting the value x for the variable xi.
The POVM E (·) in (1) is given by E (·) = F (h−1(·)), where h
is a function such that h(Z1, . . . , Zn) = (Z1, . . . , Zn).

V. DERIVATION OF THE n-PARTICLE RULE

We give a derivation along the lines of the derivation of the
absorbing boundary rule in [14]; many of the considerations
there apply here as well, and we will focus particularly on
what is different in the many-particle case. The derivation
is particularly easy to understand in the Bohmian picture,
although it also works in any other picture of quantum me-
chanics.

Regard the detectors as a big quantum system D with
configuration space QD = R3N (say, N > 1023); let P denote
the n-particle system with configuration space QP = R3n and
S = P ∪ D denote the composite, with configuration space
QS = QP × QD. The S system evolves unitarily with wave
function � on QS , starting from �0 = ψ0 ⊗ φ0. Let �D de-
note the set of D configurations in which the detectors have
not clicked but are ready and ϒD denote the set of those
in which a detector has fired, so the initial wave function
of D, φ0, is concentrated in �D, and �0 is concentrated in
� × �D ⊂ QS .

As soon as the first of the n P particles, say, particle i,
reaches its boundary ∂�i, the P configuration reaches ∂�,
and the S configuration gets quickly transported from the
region � × �D to the region ϒS = QP × ϒD. In the interior
of � × �D, however, no interaction between P and D occurs.
As discussed in [14], the simplest model capturing the right
kind of boundary behavior is given by the Schrödinger equa-
tion with boundary condition ∂ψ/∂n = iκψ , which in our
setting corresponds to (17) and (18) for all i ∈ I .

Upon arrival of particle i at ∂�i, the S configuration gets
moved, more specifically, to the region ϒS,T1,I1,X 1 = QP ×
ϒD,T1,I1,X 1 in which the detector at X 1 sensitive to particle
number I1 is in the triggered state since T1. (For definiteness,
the apparatus may be taken to include a clock and a recording
device, although the qualitative behavior would presumably
be the same without that.) Since the region ϒD,T1,I1,X 1 is
macroscopically different from ϒD,t,i,x for any other t , i, or x,
the part of the wave function in that region, which depends on
ψ0 only through ψT1 (xI1 = X 1), will never again overlap with
the parts in other regions ϒS,t,i,x or � × �D. Thus, conditional
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on this detection event, the wave function of the configuration
x′ of the remaining undetected particles is given by (25). Now
the procedure repeats.

VI. REMARKS

(1) Suppose now that the boundaries are moving, �i =
�i(t ). The rules formulated in Secs. III and IV can be com-
bined as follows. The appropriate boundary condition is

ni(t, xi ) · ∇iψ (t, x) = iκi(t, xi ) ψ (t, x), (31)

with ni(t, x) being the outward unit normal vector to ∂�i(t )
at x and κi(t, xi ) = κi + mivi(t, xi )/h̄, where vi(t, x) is the
normal velocity (positive, negative, or zero) at which ∂�i(t )
moves outward at x. The Schrödinger equation is still (17),
valid for �(t ) = ∏

i∈I �i(t ). For any B ⊆ {(t, x) : t > 0, x ∈
∂�i(t )},

Probψ0 (I1 = i, (T 1, X 1) ∈ B)

=
∫

B
dt d2xi

∫
∏

k �=i �k (t )
d3n−3x′ [ni(xi ) · jψt

i (x′, xi )

−vi(t, xi )|ψt (x
′, xi )|2], (32)

and

Probψ0 (Z1 = ∞) = lim
t→∞ ‖ψt‖2. (33)

In the case with Z1 �= ∞ and given T 1, I1, and X 1, change
the wave function according to (25), set I ′ = I \ {I1}, and
repeat the procedure.

(2) Suppose now that the particles have spin 1
2 , so ψt :

� → (C2)⊗n. Then the rule does not require any change if
we understand ψ∗ in the formula for the current j as the
conjugate transpose of ψ (so that ψ∗φ is the inner product
in spin space) and |ψ |2 as ψ∗ψ (i.e., the norm squared in
spin space). (However, in the case with spin there is another
natural candidate for the formula for j besides (5), along with
a different absorbing boundary condition than (3); see Eq. (2)
in [18].) We can allow the potential V in the Schrödinger
equation to be Hermitian matrix valued (as it would be in
the Pauli equation in the presence of a magnetic field). Note
that the wave function ψ ′ after a detection still takes values
in an n-particle spin space (C2)⊗n, although it depends on
the positions of only n − 1 particles; it is thus different from
a usual wave function of n − 1 particles. That is because,
according to the simplest possible concept of an ideal detector,
the detector does not interact with the spin degrees of freedom,
so that, after a detection, the spin degrees of freedom of
the detected particle continue to be entangled with the spin
and position degrees of freedom of the other particles, so
they cannot be eliminated from the wave function, whereas
the position degrees of freedom of the detected particle get
disentangled from the other particles (and the spin) by the
detection.

In the case that, after a detection, no interaction occurs
any longer between the spin of the detected particle and the
position or spin degrees of freedom of the other particles, the
spin of the detected particle becomes irrelevant to the joint
distribution of (Z1, . . . , Zn), and we can trace it out without

affecting that distribution, thus replacing a wave function with
3n − 3 position variables and n spin indices by a density
matrix in the Hilbert space of 3n − 3 position variables and
n − 1 spin indices. This replacement would lead to the wrong
Bohmian trajectories but remain empirically equivalent.

An alternative treatment is to equip the detectors with
an apparatus that carries out, immediately upon detection
of particle i at (t, x), a quantum measurement of u · σ, the
component of spin in some direction u = u(t, x, i) [where
σ = (σx, σy, σz ) is the triple of Pauli spin matrices]. Then the
outcome of the detection is Z j = (T j, I j, X j, � j ), with � j =
±1 representing the outcome of the spin measurement, and
〈xi j = x j | in (29) must be replaced by 〈xi j = x j |〈u(t j, x j, i j ) ·
σ = � j |. The postdetection wave function ψ ′ then involves
the spins (as the positions) of n − 1 particles.

(3) For a soft detector represented by an imaginary po-
tential [3], one can ask the same question we asked in
Sec. IV: In a system of several particles that get detected at
different times, what is the joint probability distribution of
(Z1, . . . , Zn)? We mean Z j = (T j, I j, X j ) (unless Z j = ∞),
but now X j is not limited to a surface but could lie anywhere
in the detector volume.

The natural answer, analogous to our rule in Sec. IV, goes
like this: Let �i(t, x) � 0 denote the detection rate of particle
i at time t and location x ∈ R3. The wave function ψ : R3n →
C evolves according to

ih̄
∂ψ

∂t
= −

∑
i∈I

h̄2

2mi
∇2

i ψ + V ψ − ih̄

2

∑
i∈I

�i(t, xi ) ψ, (34)

with potential V : R3n → R of the form (19). The joint distri-
bution of T 1, I1, and X 1 is given by

Probψ0 (t1 � T 1 < t2, I1 = i, X 1 ∈ B)

=
∫ t2

t1

dt
∫

B
d3xi

∫
R3n−3

d3n−3x′ �i(t, xi ) |ψt (x
′, xi )|2

(35)

for any B ⊆ R3. At detection, remove the detected particle,
and restart the problem with I ′ = I \ {I1}, initial time t ′

0 =
T 1, the new potential V ′ as in (24), and the initial (n − 1)-
particle wave function

ψ ′
0(x′) = N ψT 1 (x′, xI1 = X 1) (36)

with normalization factor N .
Selstø and Kvaal [17] considered essentially the same

stochastic process for the wave function, although they did not
write it down; they wrote down instead the evolution equa-
tion of the corresponding density matrix ρt . They aimed at
methods for the numerical simulation of systems of quantum
particles in R3 (or unbounded regions) and therefore needed
to remove particles that travel to infinity from the simulation.
For our purposes, the density matrix ρt would not be useful
because it represents an average over Z1 = (T 1, I1, X 1) and
thus does not allow extracting the joint distribution of Z1 and
Z2. But for Selstø and Kvaal, Z1 is not a physical event (such
as the detection of a particle) but rather the time and place
at which a particle was removed from consideration; their
interest lay in computing the state of the remaining particles,
and for this the average was appropriate.
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In a follow-up work, Selstø [16] developed this scheme
further and proposed to expand the part of the n-particle wave
function lost between t and t + dt into Fourier modes for
the removed particle and to collect this information. For our
purposes, this option is not available because we ask about
the detection times and places, so we need to use the position
basis and not the momentum basis.

Dalibard et al. [29] considered a process for ψt similar to
(34)–(36) but with R3n replaced by a set with two elements
corresponding physically to an excited state and the ground
state of an atom, with Hilbert space C2, with a driving term in
the Hamiltonian that will rotate the ground state to the excited
state, with � = diag(1, 0), and with collapse to the ground
state—without any reduction in particle number.

(4) For proposed trajectories other than Bohm’s, such as
Deotto and Ghirardi’s [30] and Nelson’s [31,32], no linear
boundary condition that would represent ideal detectors that
click when and where the particle reaches ∂� seems to exist.
This fits with the fact that those trajectories (in contrast to
Bohm’s) are often able to move back and forth between rather
well-separated wave packets, so that the detector cannot be
expected to be (irreversibly) triggered when and where the
particle arrives; that is, the derivation of the absorbing bound-
ary rule given here (and in [14] for the single-particle case)
would not go through using Deotto and Ghirardi’s or Nelson’s
trajectories. Note also that all three theories (Bohm’s, Deotto
and Ghirardi’s, and Nelson’s), since they all imply that the
configuration of the system and apparatus together at any
time t is |�t |2 distributed, make exactly the same empirical
predictions, including for detection times, and thus cannot be
tested experimentally against each other. The same is true (for
the same reason) of different versions of Bohmian mechanics,
as long as they preserve the |�|2 distribution.

(5) Another absorbing surface was considered in [33], viz.,
the space-time singularity S of Schwarzschild space-time.
Also there, the particle number was decreasing with time,
leading to the use of Hilbert spaces with different particle
numbers. Of course, no detectors are present along S , and
S is spacelike, whereas the boundary in our case should be
thought of as timelike. Also, the equations in [33] are based
on the Dirac equation, while our discussion here is nonrel-
ativistic. However, a deeper difference is that the dynamics
of the quantum state in [33] involves the reduced quantum
state instead of the conditional quantum state used here. A
reduced quantum state is obtained by tracing out the absorbed
degrees of freedom and thus corresponds to taking the average
over the absorbed degrees of freedom, whereas the conditional
quantum state [here, the conditional wave function (25)] cor-
responds to conditioning on a certain (random) value of the
absorbed degrees of freedom. For our problem of detection
probabilities, there is no question that conditioning is the
correct rule; for one thing, the random value (here, X 1) gets
measured and recorded, and we are interested in the joint dis-
tribution of (among other variables) X 1, . . . , X n, but even if
we ignore the value of X 1 (and of T 1), decoherence caused by
the detector will make sure that the coherence is lost between
parts of the wave function corresponding to different values
of X 1 (or T 1). In contrast, for the question considered in [33],
the behavior at the space-time singularity S , there seem to
be two possibilities for the fundamental Bohmian equation of

motion in Schwarzschild space-time, corresponding to using
the reduced or the conditional quantum state. The one using
the reduced state was spelled out in [33] and leads to a de-
terministic evolution of a fundamental density matrix ρt ; the
other amounts to inserting the (random) space-time location of
absorption (on S ) into the n-particle quantum state and trac-
ing out the spin of the absorbed particle, leading to a (random)
conditional density matrix ρ̃t [34]. In fact, ρt is the average
of the random ρ̃t . It seems that the two resulting Bohmian
theories are empirically equivalent and equally natural. While
it is not unusual that two different Bohm-type theories are
empirically equivalent, it seems to be very rare for them to
be equally natural.

(6) Suppose now that detected particles do not get removed
from the picture but continue to exist and move on outside of
�. Then the collapsed wave function ψ ′ should be, instead of
(25),

ψ ′
0(x′, x′

i ) = N ′ δ3(x′
i − X 1) ψT1 (x′, xi = X 1) (37)

in the case with I1 = i. That is, the detected particle gets
disentangled from the others, and its wave function is a three-
dimensional Dirac δ function; the collapsed wave function ψ ′
is still a wave function of n particles. The equations governing
the further evolution of ψ ′ in the x′

i variable after T 1 depend
on the physical setup: They may or may not restrict x′

i to the
complement of �i (or to some other region), and they may
or may not involve no further detectors capable of detecting
particle i again at a later time.

(7) My final remarks are of a more philosophical nature.
The absorbing boundary rule (for one or n particles) arises
in a particularly natural way from Bohmian mechanics. Now
the Bohmian picture runs against the widespread (and, in
my humble opinion, exaggerated) positivistic attitude that in
physics one should not talk about the microscopic reality but
only about the outcomes of experiments. This attitude often
goes with taking the outcomes of experiments as something
like the definition of reality; for example, this attitude is re-
flected in calling the time T of detection the “time of arrival”:
What else, asks the positivist, could “time of arrival” mean
than the time at which a detector clicks? According to the
positivist, it would be unscientific or even meaningless to talk
about an unobserved event such as the arrival of a particle
at a certain surface in the absence of detectors there, and
if we want to talk about the probability distribution of the
arrival time, then we must be talking about the distribution
of the detection time. However, that is not right; in a universe
governed by Bohmian mechanics (and, for all we know, ours
might be one), it is entirely meaningful and appropriate to
talk about an unobserved arrival. Correspondingly, Bohmian
mechanics illustrates how the expression “time of arrival” can
be ambiguous: Also in the absence of detectors, the particle
may arrive at some time τ at a certain surface, but this time
τ may be different from the time T at which the particle
would arrive at the same surface if detectors were present at
that surface throughout the experiment; the time τ has been
studied in, e.g., [12,22,35–38].

The positivistic attitude may seem to have a trait of mod-
esty (as it would urge us that we claim no more than what
we can confirm experimentally), but in practice it can easily
lead to the mistake of conflating T and τ . Put differently,

042220-6



DETECTION-TIME DISTRIBUTION FOR SEVERAL … PHYSICAL REVIEW A 106, 042220 (2022)

unwillingness to consider reality independently of observation
can easily make us reason as if the presence of the detector had
no back effect on the particle because it keeps us from making
the relevant comparison between the cases with and without a
detector. The idea that the detector should not have a back ef-

fect may have contributed to why the absorbing boundary rule
was not discovered earlier and not much appreciated after its
discovery. In this rule, after all, the back effect is manifest in
that part of the wave function gets reflected from the detecting
surface, i.e., the reflection coefficient is nonzero [14].
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