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Preferred basis of states derived from the eigenstate thermalization hypothesis
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We study the long-time average of the reduced density matrix (RDM) of a central system that is locally coupled
to a large environment, under a Schrödinger evolution of the total system. We consider a class of interaction
Hamiltonian, whose environmental part satisfies the so-called eigenstate thermalization hypothesis ansatz with
a constant diagonal part in the energy region concerned. Relations among elements of the averaged RDM are
derived. When steady states of the central system exist, these relations imply the existence of a preferred basis,
which is given by the eigenbasis of a renormalized self-Hamiltonian that includes certain averaged impact of the
system-environment interaction. Numerical simulations performed for a qubit coupled to a defect Ising chain
confirm the analytical predictions.
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I. INTRODUCTION

Properties of small open quantum systems, which are cou-
pled to large quantum environments, have attracted significant
attention and been studied extensively in recent decades in
various fields of physics [1–5]. Such a central system is
described by its reduced density matrix (RDM) and may
approach a steady state in many situations. For example, it
is now well known that the phenomenon of decoherence,
due to interactions with huge quantum environments, may
happen in such a way that a RDM becomes approximately
diagonal on a so-called preferred (pointer) basis of states
(PBS) [6–11]. Under pure-dephasing interactions, decoher-
ence has been studied well, with PBS given by eigenbases
of self-Hamiltonians [12–14]. However, under strong interac-
tions and complex environments, with the self-Hamiltonians
negligible, PBS may be given by eigenbases of the interaction
Hamiltonians [6,12].

The situation is much more complicated with a generic
dissipative interaction, whose Hamiltonian is not commutable
with the central system’s self-Hamiltonian, due to the in-
terplay of decoherence and relaxation. In this generic case,
knowledge about PBS is still far from being complete. Under a
sufficiently weak interaction and by a first-order perturbation
theory, it was found that the system’s eigenbasis is approx-
imately a PBS under a quantum chaotic environment [15].
When the total system’s eigenfunctions possess certain special
randomness, a PBS (if existing) is given by the eigenbasis
of a renormalized self-Hamiltonian [16]. These results are
in agreement with a generic expectation for Markovian pro-
cesses described by Lindblad master equations, as exemplified
in solvable models [2,3,13]. When non-Markovian effects
due to dynamics of the total system are taken into account,
nonnegligible off-diagonal elements of RDM have been found
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at long times in various spin-boson models on the spin’s
energy basis [17–21].

In this paper, we go further in the study of properties of
steady states of small open systems, by directly computing
their long-time averaged RDM under overall Schrödinger
evolutions of total systems. A key point of our approach is
to consider those environments, for which the environmen-
tal parts of the interaction Hamiltonians satisfy the so-called
eigenstate thermalization hypothesis (ETH) ansatz [22–27]
and their diagonal elements in the ansatz may be treated as
constants within the energy regions of relevance. We are to
derive 1

2 (m − 1)(m + 2) relations among elements of such an
averaged RDM for a central system with a number of m levels.
When steady states exist, these relations imply that the central
system should have a PBS, which is given by the eigenbasis of
a renormalized self-Hamiltonian that includes a certain impact
of the system-environment interaction.

The paper is organized as follows. In Sec. II we specify
the systems to be studied. In Sec. III we derive the above-
mentioned relations. Some further discussions are given in
Sec. IV. Numerical simulations are presented in Sec. V, to
illustrate validity of the analytical predictions for a qubit as
the central system and a defect Ising chain as the environment.
Finally, conclusions and discussion are given in Sec. VI.

II. SETUP

In this section, we discuss basic properties of the Hamilto-
nians of the systems to be studied. We use S to denote the
central system and use E to denote its (large) environment
which consists of N particles (N � 1). Hilbert spaces of S and
E are denoted by HS and HE , respectively, with dimensions
m and dE . The value of m is required to be much smaller
than the number of environmental levels that are of relevance
effectively to the time evolution.

The Hamiltonian of the total system is written as

H = HS + HI + HE , (1)
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where HS and HE are self-Hamiltonians of S and E , respec-
tively, which are obtained in the weak coupling limit, and
HI represents a local interaction Hamiltonian. Normalized
eigenstates of the total system are denoted by |n〉 with energies
En in the increasing-energy order,

H |n〉 = En|n〉. (2)

Normalized eigenstates of HS and of HE are denoted by |α〉
and |i〉, respectively, with labels α and i as positive integers
starting from 1. The corresponding eigenenergies are denoted
by eS

α and ei, respectively, both in the increasing-energy order,

HS|α〉 = eS
α|α〉, (3a)

HE |i〉 = ei|i〉, (3b)

where for brevity we have omitted a superscript E for ei. We
use �S to indicate the energy scope the central system S:

�S := eS
m − eS

1. (4)

We use H0 to indicate the uncoupled Hamiltonian,

H0 = HS + HE . (5)

Its eigenstates are written as |α〉|i〉, in short, |αi〉, satisfying
H0|αi〉 = Eαi|αi〉, where Eαi = eS

α + ei. The expansion of a
state |n〉 on the basis given by |αi〉 is written as

|n〉 =
∑
αi

Cn
αi|αi〉, (6)

with expansion coefficients Cn
αi. For the simplicity in discus-

sion, we consider a product form of HI ,1

HI = λHIS ⊗ HIE , (7)

where HIS and HIE are Hermitian operators acting on the two
spaces of HS and HE , respectively, and λ is a parameter for
characterizing the coupling strength. Elements of HIS and HIE

on |α〉 and |i〉 are written as

HIS
αβ = 〈α|HIS|β〉, (8a)

HIE
i j = 〈i|HIE | j〉. (8b)

To describe locality of the interaction, we further divide the
environment E into a small part denoted by E1 and a large part
denoted by E2, such that the system S is coupled to E1 only.
Then HIE is written as

HIE = HIE1 ⊗ IE2 , (9)

where HIE1 is an operator that acts on the Hilbert space of
E1 and IE2 indicates the identity operator on the Hilbert space
of E2.2

Although the exact condition under which the ETH ansatz
proposed in Ref. [24] is applicable is still unclear, it is usually
expected valid at least for local operators of many-body quan-
tum chaotic systems [26,27]. Here we assume that this ansatz

1Generalization to a generic local interaction Hamiltonian will be
briefly discussed in Sec. IV B.

2As a local operator, HIE1 does not change with the environmental
particle number N .

is applicable to the operator HIE . According to this hypothe-
sis, (1) diagonal elements HIE

ii on average vary slowly with the
eigenenergy ei; (2) fluctuations of HIE

ii possess certain random
feature and are very small, scaling as e−S(e)/2, where S(e) is
proportional to the particle number N of E and is related to
the microcanonical entropy in a semiclassical treatment; and
(3) off-diagonal elements HIE

i j with i �= j behave in a way
similar to fluctuations of HIE

ii [22–26,28]. These predictions
are written in the following concise form, usually referred to
as the ETH ansatz:

HIE
i j = h(e)δi j + e−S(e)/2g(e, ω)Ri j, (10)

where e = (ei + e j )/2, ω = e j − ei, h(e) is a slowly varying
function of e, g(e, ω) is some smooth function, and Ri j indi-
cate random variables with a normal distribution (zero mean
and unit variance).3

Analytical expressions of the functions h(e) and g(e, ω) are
still lacking. Numerically, three regimes have been observed
for |g(e, ω)| with respect to the order of per-site energy de-
noted by ξ , provided that e lies in the central region of the
spectrum [5,26]. That is, for ω � ξ , it shows a plateau with a
height proportional to N1/2 and a width proportional to N−2

[25,30]; for large ω � ξ , it decays exponentially; and, for
ω ∼ ξ , it is proportional to ω−1/2 in diffusive one-dimensional
systems [31–34].

For the simplicity in discussion, we set the initial state of
the total system at a time t = 0 as a pure state with a product
form,4 that is,

|	(0)〉 = |φS〉 ⊗ |E0〉. (11)

Here |φS〉 indicates an arbitrary normalized state of the central
system S, written as

|φS〉 =
∑

α

c0α|α〉, (12)

and |E0〉 is an arbitrary environmental state that lies within an
energy shell denoted by �E

0 ,

|E0〉 =
∑

ei∈�E
0

c0i|i〉. (13)

The energy shell �E
0 is centered at an energy e0 and has a

width δe0,5 namely,

�E
0 = [e0 − δe0/2, e0 + δe0/2]. (14)

III. MAIN RESULT

In this section we derive the main result of this paper as
relations among elements of the long-time averaged RDM.

3Certain correlations among Ri j have been observed numerically in
some chaotic systems [29], but we do not discuss this possibility in
this paper.

4Discussions to be given below may be generalized, in a straightfor-
ward way, to a generic initial state written as |	(0)〉 = ∑

α c0α|α〉 ⊗
|E0α〉, if all the environmental states |E0α〉 lie in the same energy shell
�E

0 in Eq. (14).
5See Sec. III D for a discussion about restriction to the width δe0.
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Specifically, we give some formal discussions in Sec. III A
and then, in Sec. III B, derive an upper bound to the envi-
ronmental energy region, which is of relevance effectively to
the wave function at all times. The main result is derived in
Sec. III C, and properties of a main condition used in it are
discussed in Sec. III D.

A. Preliminary discussions

The total system undergoes a Schrödinger evolution,

|	(t )〉 = e−iHt/h̄|	(0)〉. (15)

We write |	(t )〉 in the following expansion with respect to the
central system’s states |α〉,

|	(t )〉 =
m∑

α=1

|α〉|Eα (t )〉, (16)

and call |Eα (t )〉 the environmental branches of |	(t )〉. These
branches, as vectors in the environmental Hilbert space, are
written as

|Eα (t )〉 = 〈α|	(t )〉 (17)

and are usually not normalized. Under the initial condition in
Eq. (11), it is direct to find that

|Eα (t )〉 =
∑

β

c0β〈α|e−iHt/h̄|β〉|E0〉 (18)

and

ih̄
d

dt
|Eα (t )〉 = Hαα|Eα (t )〉 +

∑
β �=α

Hαβ |Eβ (t )〉, (19)

where Hαβ indicate operators that act on the Hilbert space of
the environment, as defined below:

Hαβ := 〈α|H |β〉. (20)

By definition, the RDM of the system S, denoted by ρS (t ),
is given by ρS (t ) = TrEρ(t ), where ρ(t ) = |	(t )〉〈	(t )|. It is
easy to check that elements of the RDM on the basis {|α〉},
namely, ρS

αβ (t ) = 〈α|ρS (t )|β〉, have the following expression:

ρS
αβ (t ) = 〈Eβ (t )|Eα (t )〉. (21)

Making use of Eq. (19), after some deviation, one finds
that the elements ρS

αβ (t ) satisfy the following equation (see
Appendix A):

ih̄
dρS

αβ (t )

dt
= W (1)

αβ + λW (2)
αβ , (22)

where

W (1)
αβ = (

eS
α − eS

β

)
ρS

αβ (t ), (23a)

W (2)
αβ =

m∑
γ=1

HIS
αγ Fβγ (t ) −

m∑
γ=1

HIS
γ βFγα (t ). (23b)

Here Fαβ (t ) indicate c-number quantities defined below:

Fαβ (t ) := 〈Eα (t )|HIE |Eβ (t )〉, (24)

and, from them, we define the following operator:

F (t ) :=
∑
αβ

Fαβ (t )|α〉〈β|. (25)

It is easy to check that W (1)
αβ and W (2)

αβ have the following
concise expressions:

W (1)
αβ = 〈α|[HS, ρS (t )]|β〉, (26a)

W (2)
αβ = 〈α|[HIS, F T (t )]|β〉, (26b)

where F T indicates the transposition operator of F , which is
defined on the eigenbasis of HS .

We use an overline to indicate the long-time average of
a term. For example, the long-time average of the RDM is
written as ρS ,

ρS = lim
t→∞

1

t

∫ t

0
ρS (t ′)dt ′. (27)

Clearly, in the case that a steady state of the RDM exists,
it is given by ρS . Since the elements ρS

αβ (t ) have bounded
values, the long-time average of dρS

αβ (t )/dt must be zero, i.e.,

dρS
αβ (t )/dt = 0. Then Eq. (22) gives that

W
(1)
αβ + λW

(2)
αβ = 0. (28)

Substituting the explicit expressions of W (1)
αβ and W (2)

αβ in
Eq. (23) into Eq. (28), one finds the following formal relation
for the long-time averaged RDM:(

eS
α − eS

β

)
ρS

αβ + λ

m∑
γ=1

[
HIS

αγ Fβγ − HIS
γ βF γα

] = 0. (29)

It is straightforward to check that a concise form of Eq. (29)
is written as

[HS, ρS] + λ[HIS, F
T

] = 0. (30)

B. Effective environmental energy region

In this section, we discuss an environmental energy region,
within which all the branches |Eα (t )〉 effectively lie for all
the times t , and indicate it by �E . We do not need to find
the smallest one of this type of region. Instead, we consider a
region that has the following simple form:

�E = [e0 − δe/2, e0 + δe/2], (31)

centered at the initial center e0 and with a width δe.
Below we derive an expression for δe, as an upper bound

to the width of the energy region that effectively contains all
|Eα (t )〉. For this purpose, we need to analyze the components
〈i|Eα (t )〉,

〈i|Eα (t )〉 =
∑
β,n

∑
e j∈�E

0

c0βc0 jC
n∗
β jC

n
αie

−iEnt , (32)

which is directly obtained by making use of Eqs. (11)–(13)
and (15)–(17). Initially, with e−iEnt = 1 at t = 0, due to cor-
relations among the terms of (Cn∗

β jC
n
αi ) of different indices

n, which originate from the completeness of the states |n〉
as a basis in the total Hilbert space, nonzero values of the
rhs of Eq. (32) are restricted within the initial energy region
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�E
0 . With increase of the time t , the phases e−iEnt gradually

destroy the above-mentioned correlations and, as a result, the
energy region that is effectively occupied by |Eα (t )〉 expands.
Cutting all the correlations by taking an absolute value for
each summed term on the rhs of Eq. (32), one gets an upper
bound to |〈i|Eα (t )〉|:

|〈i|Eα (t )〉| �
∑

e j∈�E
0

∑
β,n

∣∣c0βc0 jC
n∗
β jC

n
αi

∣∣. (33)

When using the rhs of Eq. (33) to get an upper bound to the
environmental energy region that effectively contains |Eα (t )〉,
exact values of the nonzero coefficients c0β and c0 j are not
important. Hence, we may focus on the values of Cn∗

β jC
n
αi. In

particular, for the eigenfunction (EF) Cn
αi of each state |n〉,

what is of relevance is its main-body region, within which the
main population lie up to a small error indicated by ε. Ener-
getically, such a main-body region consists of those uncoupled
states |αi〉, whose energies Eαi are around the exact energy En

within a scope which we indicate by wε
n. More exactly, the set

of the indices of these uncoupled states, indicated by �ε
n, is

written as

�ε
n = {

(α, i) : |Eαi − En| � 1
2wε

n

}
. (34)

Then the main-body region of the EF Cn
αi satisfies the follow-

ing requirement:∑
(α,i)∈�ε

n

∣∣Cn
αi

∣∣2 .= 1 − ε (ε � 1), (35)

where “
.=” means that the set �ε

n is chosen such that the left-
hand side of Eq. (35) is the closest to its right-hand side.

For a product Cn∗
β jC

n
αi to give a nonnegligible contribution

to the rhs of Eq. (33), both of the two basis states |β j〉 and
|αi〉 should lie in the main-body region of |n〉. As as result,
the expansion from �E

0 to �E should be influenced mainly by
two factors: widths of main-body regions of the EFs and the
central system’s energy differences. We use wε

max to indicate
the maximum value of wε

n for those states |n〉 that are of
relevance to the time evolution of the initial state. Then, noting
that �S in Eq. (4) gives the maximum of |eS

α − eS
β |, we find the

following expression of δe:

δe = δe0 + 2�S + wε
max, (36)

as illustrated in Fig. 1.
Two remarks are in order: (1) At λ = 0, the real width

is just δe0, smaller than δe. (2) When the states |αi〉 are
sufficiently coupled by the interaction, it is possible for δe in
Eq. (36) to be close to the width of the energy region that is
really occupied.

C. Relations among elements of averaged RDM

In this section, we derive the main result, as relations that
the elements of ρS satisfy. To this end, let us expand the
environmental branches |Eα (t )〉 as

|Eα (t )〉 =
∑

i

fαi(t )|i〉 (37)

with expansion coefficients fαi(t ). Substituting Eq. (37) into
Eqs. (21) and (24), taking the long-time average, and making

FIG. 1. A schematic illustration for the energy region �E . Upper
panel: the environmental branch that moves to the farthest left from
the initial shell �E

0 due to the system-environment interaction. Lower
panel: the branch that moves to the farthest right.

use of the fact that all the environmental branches effectively
lie within the energy region �E , one finds the following ex-
pressions of ρS

αβ and Fβα:

ρS
αβ =

∑
i

f ∗
βi fαi �

∑
ei∈�E

f ∗
βi fαi, (38)

Fβα =
∑
i, j

f ∗
β j fαiH

IE
ji �

∑
ei,e j∈�E

f ∗
β j fαiH

IE
ji . (39)

Substituting the ETH ansatz (10) into Eq. (39), one gets that

Fβα �
∑

ei∈�E

h(ei ) f ∗
βi fαi + �αβ, (40)

where �αβ indicates a fluctuation term, given by

�αβ =
∑
i, j

f ∗
βi fα je

−S(e)/2g(e, ω)Ri j . (41)

Generically, the two operators F and ρS do not have a
simple relationship. One key observation made here is that
they may possess a simple relationship, if the function h(e) is
approximately a nonzero constant within the energy shell �E .
More exactly, the condition is that∣∣∣∣ 1

h0
�h

∣∣∣∣ � εh with εh � 1, (42)

where εh is a parameter much smaller than 1, h0 ≡ h(e0) with
h0 �= 0 (even in the limit of N → ∞), and �h indicates the
maximum difference between h0 and h(ei ) within �E :

�h = max
ei∈�E

|h(ei ) − h0|. (43)

To show the above-mentioned relationship, we note that,
when the condition in Eq. (42) is satisfied, Eqs. (38) and (40)
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imply that

Fβα � h0ρ
S
αβ + �αβ, (44)

or, equivalently,

F
T � h0ρ

S + �, (45)

where � is a fluctuation operator:

� :=
∑
α,β

�αβ |α〉〈β|. (46)

From the rhs of Eq. (41), one sees three factors that
influence the N dependence of �. The first one is the expo-
nential decay of e−S(e)/2, with S(e) ∼ N . The second factor is
given by the unknown ETH-ansatz function g(e, ω), for which
numerical simulations show a polynomial increase of Nγ ,
with γ = 1/2 in some (diffusive one-dimensional) systems
[26,35]. The third factor lies in the summation over the indices
i and j and the long-time average term f ∗

βi fα j . As shown
in Appendix B, due to the randomness of Ri j , contribution
from the third factor is negligible compared with the first
factor. [See Eq. (B11) for an upper bound to the norm of �.]
Therefore, the N-scaling behavior of the fluctuation operator
� is dominated by the exponential decay term e−S(e)/2. Due
to this exponential decay, as well as the fact that h0 �= 0 in the
limit of large N and that each RDM has a unit trace, one gets
that

‖�‖ � ‖h0ρ
S‖ at sufficiently large N . (47)

Then Eq. (45) gives the following relation between the two
operators of F and ρ:

F
T � h0ρ

S at sufficiently large N . (48)

The main result of this paper is obtained by substituting
Eq. (48) into Eq. (30),

[H̃S, ρS] � 0, (49)

which holds under the condition of Eq. (42) and at sufficiently
large N . Here H̃S is a renormalized self-Hamiltonian of the
central system, defined by

H̃S := HS + λh0HIS, (50)

which includes certain averaged impact of the system-
environment interaction. From Eq. (49), one sees that, if a PBS
exists, it should be given by the eigenbasis of the renormalized
self-Hamiltonian H̃S . Writing Eq. (49) explicitly, one gets that(

eS
α − eS

β

)
ρS

αβ + λh0

∑
γ

[
HIS

αγ ρS
γ β − ρS

αγ HIS
γ β

] � 0. (51)

This gives m(m − 1)/2 relations among elements of the aver-
aged RDM for α �= β and (m − 1) relations for α = β.

As an illustration of the above result, let us consider a
nondegenerate two-level system (TLS), with eS

2 �= eS
1. From

Eq. (51) with α �= β, one gets that

ρS
12 � ληrh0

1 − ληdh0

(
ρS

22 − ρS
11

)
, (52)

where

ηd = HIS
11 − HIS

22

eS
2 − eS

1

, ηr = HIS
12

eS
2 − eS

1

. (53)

The quantity ηd gives a relative measure for the strength of
dephasing, while, ηr gives a relative measure for the strength
of relaxation (dissipation). Meanwhile, in the case of α = β,
one gets that

HIS
12 ρS

21 − ρS
12HIS

21 � 0, (54)

which implies approximate realness of the product HIS
12 ρS

21.

D. N and λ relevance to the condition (42)

In this section, we discuss relevance of the particle num-
ber N to Eq. (42), a main prerequisite for the above-derived
main result, as well as relevance of the interaction strength
λ.6 Basically, Eq. (42) requires that the environmental energy
shell �E should be “sufficiently narrow,” such that the func-
tion h(e) may be approximately taken as a constant within it,
compared with its nonzero central value h0. Below we give a
detailed discussion of the exact meaning of “being sufficiently
narrow.”

1. Relevance of the particle number N

Relevance of N to Eq. (42) comes mainly from two aspects:
the width δe of �E in Eq. (36) and the ETH-ansatz func-
tion h(e). The width δe = δe0 + 2�S + wε

max contains three
terms. Clearly, �S , the central system’s energy scope, is N-
independent. The N dependence of δe0 is usually determined
according to the problem at hand, particularly, to quantities of
final interest; e.g., it may be taken as a constant, or as some
polynomial function of N .

The situation with wε
max, the maximum width of relevant

EFs of the total system on the uncoupled energy basis, is
more complicated. In fact, presently, still not much is known
analytically about widths of the EFs. It seems reasonable to
assume that wε

max ∼ Nμ with some parameter μ the value of
which may be model-dependent. By a first-order perturbation-
theory treatment to long tails of EFs in certain model, it
was found that μ < 0 [36]; while, a study of higher-order
contributions is still under investigation [37] by making use
of a semiperturbative theory [38–41].

The ETH ansatz does not assume any specific form of the
function h(e). According to numerical simulations with the
help of some analytical analysis [26,33,42,43], h(e) was found
approximately a function of per-site energy,

h(ei ) ≈ h̃(ei/N ), (55)

where h̃(x) is some smooth function of x, independent of N .
Then Taylor’s expansion gives that

h(ei ) − h(e j ) = h̃′(ei/N )
ei − e j

N
+ O2

(
ei − e j

N

)
, (56)

where h̃′(x) indicates the derivative of h̃(x) and O2 represents
the second and higher order terms of the expansion.

6One may note that Eq. (42) is always satisfied, in the case that EFs
of the quantum chaotic environment may be effectively described
by the random matrix theory (RMT). In fact, in this case, h(e) is a
constant, given by h(e) = tr(HIE )/dE [26].
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To be specific, let us discuss a case, in which the initial
width δe0 increases slower than N such that

lim
N→∞

δe0

N
= 0. (57)

This case may be met quite often practically. Note that
Eq. (57) does not really require narrowness of the initial shell
�E

0 ; e.g., it holds for δe0 ∼ Nb with a parameter b < 1. Then,
as long as μ < 1 for wε

max ∼ Nμ, Eq. (57) implies that

lim
N→∞

δe

N
= 0. (58)

This implies that the ratio |ei − e j |/N should approach zero in
the limit of large N for ei, e j ∈ �E . If h̃′ �= 0, then, according
to Eq. (56), the difference [h(ei ) − h(e j )] is approximately
given by the first-order term at sufficiently large N . As a
consequence, h(e) is approximately a linear function within
�E and �h in Eq. (43) is written as

�h ≈ δe

2N

∣∣∣̃h′
(e0

N

)∣∣∣. (59)

One sees that, as long as |̃h′(e0/N )| has a finite upper bound,
�h/h0 → 0 in the limit of N → ∞. Otherwise, i.e., if h̃′ =
0, one may consider the second-order term (if nonzero) in
Eq. (56) and, following arguments similar to those given
above, reach the same conclusion. Similar arguments also ap-
ply when higher-order terms dominate. Therefore, for systems
with μ < 1, under an initial condition satisfying Eq. (57), the
condition (42) is usually fulfilled at sufficiently large N .

2. Relevance of the interaction strength

Among the three terms of �S , δe0, and wε
max in δe, only

the EF width wε
max depends on the interaction strength λ.

As is well known, usually, wε
max increases with increasing

λ, when other parameters in the total Hamiltonian are fixed.
It is reasonable to expect that dependence of wε

max on the
pair of (N, λ) may behave in a quite complicated way. A full
understanding of this behavior is beyond the scope of this in-
vestigation. Below, for the sake of clearness in discussion, we
usually consider a fixed value of N when discussing influence
of λ.

To study influence of the interaction strength λ on the
condition in Eq. (42), let us consider a case in which Eq. (42)
is satisfied at λ = 0 with wε

max = 0. For example, one has such
a case, if the initial shell �E

0 is sufficiently narrow and the
value of �S is sufficiently small. With increase of λ from 0,
the value of δe increases due to the increase of wε

max. At a
small λ, the width wε

max is still small and, as a result, Eq. (42)
is also satisfied.

When the value of λ increases beyond some regime,
usually, it is possible for �h to become sufficiently large
such that Eq. (42) gradually becomes invalid. Note that the
width wε

max has no upper bound, because it should increase
(approximately) linearly with λ when the interaction Hamil-
tonian dominates in the total Hamiltonian. To be quantitative,
related to breakdown of Eq. (42), one may consider a value of
λ, indicated as λh, at which the value of |�h/h0| first reaches
εh when λ increases from 0. Making use of Eqs. (59) and (36),

from Eq. (42) one gets that

δe0 + 2�S + wε
max(λh) ≈ 2Nεh

∣∣∣∣∣ h0

h̃′( e0
N

) ∣∣∣∣∣. (60)

Two properties are seen from Eq. (60): (1) Since the width
wε

max usually increases with increasing λ, for systems with
μ < 1, the value of λh may increase with increasing N ; and
(2) λh should increase with decreasing �S , if other parameters
are fixed.

IV. FURTHER DISCUSSION

In this section, we discuss two situations, in which some
modified versions of the RDM relations given in the main re-
sult still hold when some restrictions used above are loosened.
In Sec. IV A we derive RDM relations in the weak coupling
limit, without the restriction of Eq. (42). In Sec. IV B we show
that the main result may be generalized to a generic local
interaction Hamiltonian.

A. Offdiagonal elements at very weak couplings

In this section, in the weak coupling limit of λ, without
using the condition in Eq. (42), we derive an expression for
offdiagonal elements of the averaged RDM of nondegenerate
levels, by employing a first-order perturbation treatment. In
this limit, diagonal elements of RDM keep approximately
constants, directly given by the initial condition:

ρS
αα � |c0α|2 for nondegenerate levels α. (61)

To be specific, below, we consider two arbitrary nonde-
generate levels of the central system S, indicated by α and β

with eS
β �= eS

α . The zeroth-order branches, denoted by |E0th
α (t )〉,

are computed by the Schrödinger evolution of the initial state
|	(0)〉 under the uncoupled Hamiltonian H0. Noting Eq. (11),
one directly gets that∣∣E0th

α (t )
〉 = 〈α|e−iH0t |	(0)〉 = c0αe−ieS

αt
∑

e j∈�E
0

e−ie j t c0 j | j〉.

(62)

Substituting Eq. (62) into Eq. (21) and noting that eS
β �= eS

α ,
one sees that ρS

αβ has a vanishing zeroth-order term.

The zeroth-order term of Fαβ , indicated as F
0th
αβ , is com-

puted by substituting Eq. (62) into Eq. (24) and taking the
long-time average. Noting that the chaotic environment E has
a nondegenerate spectrum, direct computation gives that7

F
0th
αβ = |c0α|2h1δαβ, (64)

7For an environment that possesses a degenerate spectrum, one
may divide the set of those labels i, for which ei ∈ �E

0 , into subsets
according to the degeneracy. We denote the subsets by Dq with a
label q, such that ei = e j for all i, j ∈ Dq. Then it is easy to find that

h1 =
∑

q

∑
i, j∈Dq

c∗
0iH

IE
i j c0 j . (63)
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where

h1 =
∑

ei∈�E
0

|c0i|2HIE
ii . (65)

Now we compute the first-order term of ρS
αβ . For this purpose,

let us rewrite Eq. (29) as follows:

ρS
αβ = λ

eS
β − eS

α

m∑
γ=1

[
HIS

αγ Fβγ − HIS
γ βF γα

]
. (66)

Substituting the above-obtained zeroth-order terms F
0th
αβ into

the rhs of Eq. (66), one gets the following expression of ρS
αβ

up to the first-order term:

ρS
αβ � λHIS

αβh1

eS
β − eS

α

(|c0β |2 − |c0α|2). (67)

Finally, we compare two results obtained above, Eq. (67)
and Eq. (52), the latter of which is a TLS case of the main
result in Eq. (51). The two results were gotten under different
conditions: Eq. (67) was derived merely under the condition
of very weak coupling, while, Eq. (51) was derived under
a condition that includes three requirements: ETH ansatz in
Eq. (10), Eq. (42), and largeness of N . We would remark
that the above two conditions are sufficient conditions for
the corresponding results, but not necessary conditions. For
example, it is possible for Eq. (52) to hold in some cases, even
when Eqs. (10) and (42) are not fulfilled. In addition, none of
the two conditions includes the other.

To show consistency of the above two results, let us con-
sider a case in which both conditions are satisfied. In fact,
under Eqs. (10) and (42), it is easy to see that h1 in Eq. (65)
satisfies that h1 � h0. Then, in the weak coupling limit with
Eq. (61), Eq. (67) is written as

ρS
αβ � ληrh0(|c0β |2 − |c0α|2). (68)

Clearly, Eq. (68) gives the same prediction as Eq. (52) in this
case.

B. A generic interaction

In this section, we give a brief discussion for a generic
local interaction Hamiltonian HI , which is written as a sum
of direct-product terms. Suppose that there are MLIT such
terms, with the subscript “LIT” standing for “local interaction
terms.” Then HI is written as

HI =
MLIT∑
ν=1

λνHIS,ν ⊗ HIE,ν , (69)

where λν are parameters and HIE,ν are local operators of the
environment. The operators HIE,ν are assumed to satisfy the
ETH ansatz, with functions hν (e), respectively. For such a
generic HI , the operator F (t ) in Eq. (25) is written as

F (t ) =
MLIT∑
ν=1

F ν
αβ (t )|α〉〈β|, (70)

where

F ν
αβ (t ) = 〈Eα (t )|HIE,ν |Eβ (t )〉. (71)

Following arguments similar to those given in Sec. III,
with appropriate generalizations, one may study the long-time
average of this generic operator F (t ) and get similar results.
More exactly, the main generalization is that Eq. (42) is now
written as ∣∣∣∣ 1

hν
0

�hν

∣∣∣∣ � εh

MLIT
with εh � 1 (∀ν), (72)

where hν
0 = hν (e0) and

�hν = max
ei∈�E

|hν (ei ) − hν
0|. (73)

The final result is that, at a sufficiently large N ,

[H̃S, ρS] � 0, (74)

where

H̃S = HS +
MLIT∑
ν=1

λνhν
0HIS,ν . (75)

V. NUMERICAL TESTS

In this section, we present numerical simulations that have
been performed for checking analytical predictions given
above. Specifically, we discuss the employed model and
analytical predictions in Sec. V A, and discuss numerical sim-
ulations in Sec. V B.

A. The model

In numerical simulations, we employ a TLS as the central
system S and one defect Ising chain as the environment E . The
TLS has a self-Hamiltonian written as

HS = qsS
z, (76)

where qs is a parameter and Sz indicates the z-component
Pauli matrix divided by 2.

The defect Ising chain is composed of a number N of
1
2 -spins lying in an inhomogeneous transverse field, whose
Hamiltonian is written as

HE = Bx

N∑
l=1

Sx
l + d1Sz

1 + d5Sz
5 + Jz

N∑
l=1

Sz
l Sz

l+1, (77)

where Sx
l and Sz

l indicate Pauli matrices divided by 2 at the lth
site. Here, Bx, Jz, d1, and d5 are parameters, which are adjusted
such that the defect Ising chain is a quantum chaotic system.
That is, for levels not close to edges of the energy spec-
trum, the nearest-level-spacing distribution P(s) is close to the
Wigner-Dyson distribution PW (s) = π

2 s exp(−π
4 s2), the latter

of which is almost identical to the prediction of RMT [44–46].
Exact values of the parameters used are Bx = 0.9, Jz = 1.0,
d1 = 1.11, and d5 = 0.6; and N is between 10 and 13. In
our numerical computation of EFs, the periodic boundary
condition was implied and the so-called Krylov-space method
was used.

The TLS is coupled to the kth spin of the defect Ising chain.
We have studied two specific forms of the local interaction
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Hamiltonian, indicated as HI
(1) and HI

(2),

HI
(1) = λSx ⊗ Sx

k , (78a)

HI
(2) = λ(Sx + Sz ) ⊗ Sx

k . (78b)

Their difference lies in that the TLS part of HI
(1) has no overlap

with HS in Eq. (76), while, HI
(2) has some. According to

Eqs. (4) and (53), one finds that �S = qs, ηd = 0 and ηr = 1
2qs

for HI
(1), and ηd = − 1

qs
and ηr = 1

2qs
for HI

(2). Numerically,
we have checked that the ETH ansatz is applicable to local
operators in the defect Ising chain (see Appendix C).

Below, we discuss predictions for properties of the long-
time-averaged RDM element ρS

12 of the TLS, which are given
by analytical results of previous sections. We discuss in the
increasing order of the interaction strength λ:

(1) Regime of very small λ (weak coupling limit): As
discussed in Sec. IV A, ρS

12 should satisfy Eq. (67) at very
small λ. Since the ETH ansatz is applicable to the defect Ising
chain, when Eq. (42) is satisfied, this prediction coincides with
Eq. (52), which is the TLS case of the main result in Eq. (51).

(2) Regime of small but not very small λ: (a) Eq. (42) being
valid at λ = 0. In this case, Eq. (42) is also valid at small λ.
As a result, ρS

12 should satisfy the main prediction Eq. (52) at
sufficiently large N . (b) Eq. (42) being invalid at λ = 0. In this
case, there is no definite analytical prediction for ρS

12 beyond
the weak coupling limit.

(3) Regime of λ below λh with Eq. (42) valid. As discussed
in Sec. III D 2, Eq. (52) is applicable for λ below λh. The value
of λh, which satisfies Eq. (60), is expected to increase with
increasing N if μ < 1, while, increase with decreasing �S .

As discussed previously, Eq. (42) belongs to a sufficient,
but not necessary, condition for validity of Eq. (52). This
implies that Eq. (52) might be useful even beyond λh. To
directly study validity of Eq. (52), one may compute the value
of λ, indicated by λc, at which the relative error first reaches
some small parameter indicated by εc when λ increases
from 0, ∣∣∣∣ρS

12 − ρS
12,th

ρS
12

∣∣∣∣
λ=λc

= εc, (79)

where ρS
12 indicates the exact value of the RDM element and

ρS
12,th is for the prediction of Eq. (52).

We have no definite analytical prediction for behaviors of
λc. It seems reasonable to expect that, at least in some cases,
λc may show some behavior qualitatively similar to that of λh

as discussed in prediction (3).

B. Numerical simulations

We have numerically checked the above predictions for
various values of the parameters concerned. The environmen-
tal initial state was taken as a typical state within an energy
shell �E

0 , which is given by e0 = −1.2 and δe0 = 0.1.
Two values of qs has been studied, namely, qs = 0.3 and

0.05. For qs = 0.3, we found that |�h/h0| � 0.6 at λ = 0
and N = 13, implying invalidity of Eq. (42). With qs changed
to qs = 0.05, we found |�h/h0| � 0.1, implying validity of
Eq. (42). In both cases, h1 � h0.

FIG. 2. Values of |ρS
12| (triangles) vs the coupling strength λ in

the logarithm scale, under two interaction Hamiltonians of HI
(1) and

HI
(2). Left panels: qs = 0.05 and right panels: qs = 0.3. The solid

lines (red) represent predications of the main result Eq. (52), and
the dashed-dotted lines (blue) show predications of Eq. (67) for very
weak couplings. The vertical dot lines (black) indicate positions of
λc, which were computed by Eq. (79) with εc = 0.1. Parameters:
(c01, c02) = (0.51, 0.86), N = 13, e0 = −1.2, δe0 = 0.1, and k = 7.

Variations of |ρS
12| versus the interaction strength λ are

shown in Fig. 2, for the above-mentioned two values of qs

and for the two interaction Hamiltonians in Eq. (78). One sees
that there is in fact no qualitative difference between results
for the two interaction Hamiltonians. In the computation of
the rhs of Eq. (52), exact values of ρS

11 and ρS
22 were used. In

agreement with prediction, both the main result of Eq. (52)
(solid lines) and the weak-coupling prediction of Eq. (67)
(dashed-dotted lines) work well at very small λ, more exactly,
at λ around 0.001 and smaller. Consistently, the mean nearest-
level spacing of the total system was found about 7.3 × 10−4

in the considered energy region at N = 13.
With λ increased above 0.001, as expected, the weak-

coupling predictions (dashed-dotted lines in blue) gradually
deviate from the exact values of |ρS

12| (triangles). Meanwhile,
consistent with the prediction of (2)(a), for qs = 0.05 with
Eq. (42) valid, predictions of Eq. (52) (solid lines in red)
remain close to the triangles, up to λ ∼ 0.1. It is of interested
to note that, even in the case of qs = 0.3 with Eq. (42) unsat-
isfied, predictions of Eq. (52) remains valid up to λ � 0.01.

To get further understanding for the above-discussed be-
haviors of |ρS

12|, we have studied variation of the maximum
width wε

max, which is responsible to the λ dependence of the
width δe(= δe0 + 2qs + wε

max ) of �E , versus λ, as well as
variation of |�h/h0| (Fig. 3). It is seen that, at qs = 0.05 and
N = 13, the value of wε

max keeps small for small λ and begin to
increase fast around λ = 0.1; and, consistently, |�h/h0| (tri-
angles down) behaves in a similar way. Similar behaviors are
seen at qs = 0.3 and N = 13, except that |�h/h0| is already
large at λ = 0.

We have also studied impact of the particle number N . As
seen in Fig. 3, the width wε

max is almost independent of N for N
from 10 to 13, which implies a negligible value of μ, i.e., μ ≈
0. Meanwhile, the value of |�h/h0| decreases with increasing
N , in agreement with a prediction of Eq. (59) that �h may
scale as 1/N at a fixed value of e0/N [insets of Figs. 3(c) and
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FIG. 3. (a) Variation of wε
max vs λ, with λ in the logarithm scale,

for qs = 0.05, N ∈ [10, 13], and ε = 0.05. The interaction Hamil-
tonian is HI

(1). Inset: both axes in the logarithm scale, showing that
wε

max has approximately a λ2 behavior in the middle regime of λ.
(b) Similar to (a), but for qs = 0.3. (c) Variation of |�h/h0| vs λ for
qs = 0.05. Inset: |�h/h0| vs N at λ = 0.1, showing a 1/N behavior,
as predicted by Eq. (59). (d) Similar to (c), but for qs = 0.3, with
some difference in the scale of the vertical axis. Other parameters
are the same as in Fig. 2, except that e0 is determined by keeping
e0/N constant.

3(d)]. Moreover, with μ ≈ 0, according to prediction (3), λh

may increase with increasing N ; in other words, Eq. (52) may
work better at larger N , which is seen by comparing Fig. 4 and
Fig. 2.

Finally, we discuss numerically obtained values of λh for
validity of Eq. (42) and values of λc for practical use of
Eq. (52). The values of λh may be directly gotten from Fig. 3.
Taking εh = 0.1, we found that Eq. (42) is valid for no value
of λ at qs = 0.3 and N = 10, 11, 12, 13, which is indicated
as λh = none in Table I; and, similarly, for qs = 0.05 and
N = 10. Thus, λh has definite values only at qs = 0.05 and
N = 11, 12, 13. If the restriction of εh = 0.1 is loosed a little,
i.e., if taking εh larger than 0.1 but still small (e.g., 0.15), λh

may have definite values in more cases, which is clear from
Fig. 3(c). In all the cases in which λh has definite values
for Eq. (42), we found that larger value of λh corresponds to
larger value of N , meanwhile, larger value of λh corresponds
to smaller value of qs, in agreement with prediction (3).

Values of λc were computed by making use of Eq. (79)
with εc = 0.1. At qs = 0.05 with Eq. (42) valid, as seen in
Table I, λc increases with increasing N and is close to λh

for N = 11, 12, 13. But, at qs = 0.3 with Eq. (42) invalid, λc

FIG. 4. Similar to Fig. 2(a) but for N = 10 and 12.

TABLE I. Values of λc and λh, obtained with εh = εc = 0.1, the
interaction Hamiltonian is HI

(1).

N = 10 N = 11 N = 12 N = 13

λh(qs = 0.05) None 0.04 0.07 0.1
λh(qs = 0.3) None None None None
λc(qs = 0.05) 0.025 0.04 0.07 0.1
λc(qs = 0.3) 0.1 0.015 0.025 0.015

shows a quite complicated behavior; more exactly, it does not
increase monotonically with N and is unexpectedly large at
N = 10.

VI. CONCLUSIONS AND DISCUSSION

In this paper, the long-time averaged RDM has been stud-
ied for a generic small central system S with m levels, which is
locally coupled to a large many-body chaotic environment E ,
with the total system undergoing a Schrödinger evolution. Be-
side largeness of the particle number of E , the only restriction
is that the environmental part of the interaction Hamiltonian
satisfies the ETH ansatz, with the diagonal term in the ansatz
[namely, the function h(e)] approximately a constant within
the energy region of relevance. For such a total system, on the
eigenbasis of the central system, 1

2 (m − 1)(m + 2) approxi-
mate relations have be derived among elements of its steady
states (if existing).

The above-discussed relations imply that the steady RDM
should be commutable with a renormalized Hamiltonian H̃S

of the central system, which includes certain averaged impact
of the system-environment interaction. As a consequence,
decoherence happens on the eigenbasis of the renormalized
Hamiltonian, even under a system-environment interaction
that is dissipative for the original Hamiltonian HS , and leads
to a PBS given by the eigenbasis of H̃S . This enriches ana-
lytical knowledge about PBS for systems under nonweak and
dissipative system-environment interactions, which had been
previously observed numerically in some specific models (see,
e.g., Ref. [47]).8 Moreover, results of this paper give an ex-
plicit way of constructing renormalized Hamiltonian for PBS.

In fact, renormalized Hamiltonian is also used in a stan-
dard master-equation approach to RDM. There, at an initial
stage before the derivation begins, the self-Hamiltonian of the
central system is taken as certain renormalized Hamiltonian,
which we indicate as HS

mas with “mas” standing for “master
equation,” given by HS

mas = HS + λHIStr(HIEρE
th ), where ρE

th
denotes a thermal state of the environment. Under the ETH
ansatz and the condition in Eq. (42), HS

mas has almost the same
expression as H̃S in Eq. (50), if the state ρE

th lies effectively
within the energy shell �E .

8We would note a difference between the type of models studied in
this paper and the spin-boson models used in Refs. [17–21]. That
is, in a spin-boson model, the environment (the bosons) is not a
quantum chaotic system and the ETH ansatz is usually inapplicable.
Due to this difference, even if a PBS may exist in a spin-boson model,
the mechanism should be quite different from that discussed in this
paper.
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However, there is a big difference between the physical
meanings of HS

mas and H̃S . In fact, in our approach, the opera-
tor H̃S is derived by faithfully taking the long-time average
over the overall Schrödinger evolution; and it indicates the
existence of a PBS, if the RDM may approach a steady state.
While, in the master-equation approach, the operator HS

mas
is mainly employed for the sake of convenience in deriva-
tion, though with deep physical intuition lying behind it.
Only after a certain type of analytical solution to a derived
master equation is found, which is usually a hard task ex-
cept in some special models, could it become clear whether
HS

mas may indeed be of relevance to a PBS. Moreover, as
an approach based a perturbative treatment, validity of the
master-equation approach at long times is a subtle issue.

Finally, we would mention that, beside the field of decoher-
ence, results of this paper may also be useful in other fields in
which properties of steady states of small and open quantum
systems are of relevance, such as quantum thermodynamics
[36,48–50].
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APPENDIX A: DERIVATION OF Eq. (22)

In this Appendix, we derive Eq. (22). Using Eq. (21), the
time evolution of the RDM is written as

ih̄
dρS

αβ (t )

dt
= ih̄

d

dt
〈Eβ (t )|Eα (t )〉 = A1 + A2, (A1)

where

A1 = ih̄

(
d

dt
〈Eβ (t )|

)
|Eα (t )〉, (A2a)

A2 = ih̄〈Eβ (t )|
(

d

dt
|Eα (t )〉

)
. (A2b)

Making use of Eq. (19), one finds that

A1 = −
∑

γ

〈Eγ (t )|Hγ β |Eα (t )〉. (A3)

From Eqs. (7) and (20), one gets that

Hαβ = 〈α|H |β〉 = eS
αδαβ + λHIS

αβHIE + HEδαβ. (A4)

Then we write Eq. (A3) as

A1 = − eS
β〈Eβ (t )|Eα (t )〉 − λ

∑
γ

HIS
γ β〈Eγ (t )|HIE |Eα (t )〉

− 〈Eβ (t )|HE |Eα (t )〉. (A5)

Noting Eqs. (21) and (24), the above equality gives that

A1 = −eS
βρS

αβ (t ) − λ
∑

γ

HIS
γ βFγα (t ) − 〈Eβ (t )|HE |Eα (t )〉.

(A6)

Similarly, one finds

A2 = eS
αρS

αβ (t ) + λ
∑

γ

HIS
αγ Fβγ (t ) + 〈Eβ (t )|HE |Eα (t )〉.

(A7)
Putting the above results together, one gets Eq. (22).

APPENDIX B: SCALING OF THE
FLUCTUATION OPERATOR

In this Appendix, we show that the main N-scaling behav-
ior of the fluctuation operator �,

� =
∑
αβ

�αβ |α〉〈β|, (B1)

is an exponential decay with increasing N . For this purpose,
let us compute the Frobenius norm of �,

||�||2F =
∑
αβ

|�αβ |2. (B2)

Making use of Eq. (41), direct derivation shows that

||�||2F =
∑
αβ

∣∣∣∣∣∑
i j

g(e, ω)e−S(e)/2 f ∗
βi fα jRi j

∣∣∣∣∣
2

=
∑
αβ

∑
i ji′ j′

g(e, ω)e−S(e)/2 f ∗
βi fα jRi j

× g∗(e′, ω′)e−S(e′ )/2 fβi′ f ∗
α j′ R∗

i′ j′ . (B3)

Note that g(e, ω) = g∗(e,−ω) and Ri j = R∗
ji. To proceed, let

us discuss the statistical average of ||�||2F , taken over the
random variables Ri j , which is indicated by 〈·〉. This averaging
procedure results in that [26,51]

〈Ri jR
∗
i′ j′ 〉 = δii′δ j j′ + δi j′δi′ j, (B4)

and, as a consequence,〈‖�‖2
F

〉 =
∑

i j

|g(e, ω)|2e−S(e)

×
(∑

αβ

∣∣ f ∗
βi fα j

∣∣2 + f ∗
βi fα j · fβ j f ∗

αi

)

� 2
∑

i j

|g(e, ω)|2e−S(e)
∑
αβ

∣∣ f ∗
βi fα j

∣∣2

� 2 max
i j

(|g(e, ω)|2e−S(e) )
∑

i j

∑
αβ

∣∣ f ∗
βi fα j

∣∣2
. (B5)

To compute f ∗
βi fα j , we make use of the fact that fα j =

〈α j|	(t )〉. This gives that

f ∗
βi fα j = 〈	(t )|βi〉〈α j|	(t )〉

=
∑
mn

〈	(0)|n〉〈n|βi〉ei(En−Em )t 〈α j|m〉〈m|	(0)〉. (B6)

Note that the environment E , as a quantum chaotic system,
has a nondegenerate spectrum. Under a generic system-
environment interaction, the spectrum of the total system is
nondegenerate too. Then one has ei(En−Em )t = δmn, and, as a
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result,

f ∗
βi fα j =

∑
n

〈	(0)|n〉〈n|βi〉〈α j|n〉〈n|	(0)〉. (B7)

This gives that

| f ∗
βi fα j |2 =

∑
nm

〈	(0)|n〉〈n|βi〉〈βi|m〉〈m|	(0)〉

× 〈	(0)|m〉〈m|α j〉〈α j|n〉〈n|	(0)〉. (B8)

Then, making use of the completeness of the basis of |α〉
and that of |i〉, one gets that∑

αβi j

| f ∗
βi fα j |2 = 1

L0
, (B9)

where L0 is the so-called participation function of the initial
state |	(0)〉, defined by

L0 = 1∑
n |〈	(0)|n〉|4 . (B10)

As is known, L0 gives a measure to the localization length, i.e.,
to the number of those levels En that are effectively occupied
by the state |	(0)〉. For a large environment and an initial shell
not extremely narrow, the value of L0 is large.

Substituting Eq. (B9) into Eq. (B5), we get an upper bound
to the averaged norm 〈||�||2F 〉:

〈||�||2F 〉 � 2

L0
max

i j
|g(e, ω)|2e−S(e) ∼ 2N2γ

L0
e−S(e). (B11)

Since the averaging procedure does not change the N-scaling
behavior of the norm ||�||2F and the exponential-decay term
e−S(e)/2 already exists in the exact expression of �αβ in
Eq. (41), from Eq. (B11) one sees that the N-scaling behavior
of fluctuation operator � should be dominated by the expo-
nential decay e−S(e)/2.

APPENDIX C: VERIFICATION OF ETH ANSATZ

Due to the hypothesis feature of the ETH ansatz in Eq. (10),
we have checked its validity in the model employed in this
paper. We did this for the two local operators Sx

k and Sz
k at the

site k = 7 in the defect Ising chain.
Diagonal ETH. Let us first discuss predictions of Eq. (10)

for diagonal elements of local observables. Expectation values
of the two local observables,(

Sa
k

)
ii = 〈i|Sa

k |i〉 with a = x, z, (C1)

are plotted in Fig. 5. It is seen that, in agreement with ETH,
the diagonal elements fluctuate around certain slowly varying
function h(e) and the fluctuations decrease with increasing the
particle number N . Note that the horizontal axis is labeled by
ei/N . For a = z, the values of h(e) are close to zero, while, for
a = x, most of |h(e)| are notably larger than zero.

To study quantitatively the fluctuations of (Sa
k )ii, we have

computed the standard deviations σ a
d ,

σ a
d =

√√√√ 1

N�E
0

∑
ei∈�E

0

∣∣(Sa
k

)
ii − μa

∣∣2
, (C2)

FIG. 5. Upper panel: Diagonal matrix elements of two local
observables Sz

k and Sx
k (k = 7) of the defect Ising chain vs the envi-

ronmental energy εi = ei/N for different chain size N . In agreement
with the ETH ansatz in Eq. (10), these elements fluctuate around cer-
tain slowly varying functions of e, respectively, and the fluctuations
decrease with the increase of the particle number N . Lower panel:
Locally averaged values of the above elements (within windows with
a width 0.01), showing a feature of approximate size independence.

where

μa = 1

N�E
0

∑
ei∈�E

0

(
Sa

k

)
ii. (C3)

FIG. 6. (a) Exponential decay of the deviation σ a
d in Eq. (C2)

with the increase of N , for fluctuations of the diagonal elements of
Sx

k (empty squares) and of Sz
k (solid circles). (b) Exponential decay of

σ a
nd in Eq. (C4) for fluctuations of offdiagonal elements. The results

are in agreement with the prediction of ETH in Eq. (10).
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FIG. 7. Distributions of fluctuations of the diagonal elements of
Sz

k (a) and of Sx
k (b), rescaled by σ z

d and σ x
d , respectively. Distributions

of the offdiagonal elements of Sz
k (c) and of Sx

k (d), rescaled by
σ z

nd and σ x
nd , respectively. The dashed curves represent the Gaussian

distribution with unit variance.

As seen in Fig. 6(a), the fluctuation decays exponentially with
the increase of N , as predicted by the term e−S(e) in the second
part on the rhs of Eq. (10). Moreover, in agreement with the
prediction of ETH, the distributions of [(Sa

k )ii − μa]/σ a
d are

close to the Gaussian form [Figs. 7(a) and 7(b)].

FIG. 8. Locally averaged values (in the logarithm scale) of the
absolute square of off-diagonal elements of (a) Sz

k and (b) Sx
k , within

an energy shell centered at −1.2 and with a width 0.2, vs ω = e j − ei.
Local averages were taken within small windows with width 0.01.

Off-diagonal ETH. Next, we discuss the offdiagonal ele-
ments (Sa

k )i j . In agreement with the prediction of ETH, the
probability distributions of (Sa

k )i j/σ
a
nd have a Gaussian form

[Figs. 7(c) and 7(d)], where σ a
nd are the standard deviations

for the offdiagonal elements,

σ a
nd =

√√√√ 1

N�E
0

(N�E
0

− 1)

∑
i �= j∈�E

0

∣∣(Sa
k

)
i j

∣∣2
. (C4)

These standard deviations also decay exponentially with the
increase of N [Fig. 6(b)].

To get some knowledge about shapes of the function
g(e, ω), which lacks an analytical expression, numerical sim-
ulations have been performed for locally averaged values of
|(Sz

k )i j |2 and |(Sx
k )i j |2 for off-diagonal elements. As seen in

Fig. 8, the function shows a size-independent feature, with an
exponential-type decay at large ω.
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