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Sphere on a plane: Two-dimensional scattering from a finite curved region
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Nonrelativistic particles that are effectively confined to two dimensions can, in general, move on curved
surfaces, allowing dynamical phenomena beyond what can be described with scalar potentials or even vector
gauge fields. Here we consider a simple case of piecewise uniform curvature: a particle moves on a plane with a
spherical extrusion. Depending on the latitude at which the sphere joins the plane, the extrusion can range from
an infinitesimal bump to a nearly full sphere that just touches the plane. Free classical motion on this surface
of piecewise uniform curvature follows geodesics that are independent of velocity, while quantum mechanical
scattering depends on energy. We compare classical, semiclassical, and fully quantum problems, which are all
exactly solvable, and show how semiclassical analysis explains the complex quantum differential cross section in
terms of interference between two classical trajectories: the sphere on a plane acts as a kind of double slit.
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I. INTRODUCTION

Considerable study has been given to the quantum dynam-
ics of a nonrelativistic particle confined to an arbitrary curved
two-dimensional surface embedded in flat three-dimensional
space. While it has been necessary even recently just to point
out that in a curved space the Laplacian in the Schrödinger
equation must become the appropriate Laplace-Beltrami op-
erator [1], much of the literature has concerned the addition
of potential terms involving the intrinsic [2] or extrinsic [3–6]
curvature of the surface of motion, whether arising from
dynamical confinement in the full three-dimensional dynam-
ics [3,4,6] or from considerations of operator ordering in
constrained quantization [2,5,6]. The theory has moved be-
yond these basic points: quantum motion in curved space has
been given a phase space representation [7], vector potentials
have been incorporated [8], and relativistic extensions have
been provided in the form of theories for Dirac electrons on
curved surfaces of topological insulators [9] or even in worm-
hole geometries realized with graphene [10]. Scattering of
two-dimensional particles from curved regions has been ana-
lyzed perturbatively in the Born approximation [11], including
lattices of small surface bumps; perturbative scattering from
curved surfaces with delta-function defects has been studied
in Ref. [12]. An experiment studying electrons on the curved
inner surfaces of multielectron bubbles in liquid helium has
even been reported [13].

Explicit exact solutions for quantum particle motion on a
curved surface have only been provided in a few simple cases,
however, including spheres [5], ellipsoids [1,14], and tori [6].
Here we provide explicit solutions for a significantly different
kind of curved surface, namely, one formed by joining a
portion of a sphere to an infinite plane to make a bump or

bubble that bulges out of the plane, which is otherwise flat.
This sphere-on-a-plane surface thus has piecewise uniform
curvature, namely, zero (in the planar portion) and negative
(on the spherical portion). Three examples of the kind of sur-
face we mean are shown in Fig. 1. We will consider the finite
curved portion of this surface—the spherical extrusion—as
a scatterer, and compute its differential cross section: classi-
cally, semiclassically, and quantum mechanically. Our paper
can thus be considered complementary to Ref. [11], inasmuch
as we consider a single class of simple geometries rather than
a generic bumpy surface, but go beyond Born approximation.

We do this because we wish to consider particle deflection
by surface curvature as an analog to the specular reflection
from hard walls which defines dynamical billiards [15,16].
Billiard models are good tools for examining the relationship
between quantum and classical mechanics, because in billiard
models the classical trajectories do not depend on energy. Any
particle trajectory can be traversed at any energy, depending
on how fast the particle travels the path. Even though the
classical phase space is four-dimensional, therefore, one can
describe the classical motion completely in terms of orbits
in the two-dimensional position space, and then compare
this to quantum wave functions in two-dimensional position
space—and only the quantum energy needs to be considered
as a varying parameter, because the classical paths are energy
independent.

This convenient and instructive feature of billiard models
is shared by curved surfaces, in which the classical motion
is at arbitrary constant speed along geodesics that are the
same for all speeds, and thus independent of particle energy.
The ultimate interest in motion on curved surfaces in general
may lie in complex geometries that provide chaotic motion
as billiards can, but our contribution here will only be to
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FIG. 1. Surfaces of piecewise uniform curvature: A portion of a
sphere inserted into a plane. The radius of the sphere, and the latitude
at which the sphere joins the plane, are independent parameters. We
express this latitude as a polar angle from the top of the sphere,
denoted with α. The examples shown here have α = π/4, π/2, and
3π/4, from left to right.

consider the simplest case of scattering, in an infinite plane,
from an inserted spherical extrusion. The billiard analog of
our spherical extrusion would be a hard disk barrier. While the
only thing a hard disk can do is to reflect particles specularly,
the spherical extrusion can affect particle motion slightly or
greatly, depending on whether the spherical extrusion is only
a tiny bump or a nearly full sphere.

A. Structure of the paper

In Sec. II, we will describe our geometry precisely and
introduce our notation, and then solve the classical scattering
problem, deriving a surprisingly compact exact expression for
the classical differential cross section for spheres of arbitrary
size and joining latitude.

In Sec. III, we will then briefly discuss the issue of
whether the potentials applied to three-dimensional quantum
particles, to constrain their low-energy motion to follow a
two-dimensional surface, must always induce a nonconstant
effective potential within that surface. Although particular
effective potentials have been derived in the literature, we
will show that, in general, any potential whatsoever is possi-
ble, depending on exactly how the three-dimensional motion
is constrained to a surface. We will argue that it is there-
fore legitimate to consider the simplest case in which the
two-dimensional potential vanishes and two-dimensional dy-
namics involves only the intrinsic geometry of the surface. We
will then exactly solve the quantum scattering problem for our
sphere-on-a-plane geometry with zero potential.

In Sec. IV, we will construct the semiclassical approx-
imation for the sphere-on-a-plane scattering problem and
compare it to both our classical and quantum results. The
semiclassical approximation to the differential cross sec-
tion will turn out to be essentially the classical result, except
with a kind of two-slit interference pattern superimposed on it.
We will find the semiclassical approximation to be excellent
whenever the quantum wavelength is shorter than the radius
of the circle on which the sphere meets the plane.

Finally, in Sec. V, we will briefly discuss our results and
conclude.

II. THE CLASSICAL PROBLEM

A. Motion on the sphere-in-a-plane

1. Notation and coordinates

Our geometry will be described as follows. The radius
of the spherical extrusion will be denoted R. The sphere is

FIG. 2. View of our surface in section from the side. The radius
of the sphere is R; it is joined to the plane at polar angle α. For α <

π/2, as in (a), the spherical part of the surface is a convex bump. For
α > π/2, as in (b), it is a more-than-hemispherical bubble. In both
cases, the radius of the junction circle, within the plane, is R sin α.

joined to the plane at polar angle α, so the radius in the plane
of the joining circle is R sin α. See Fig. 2 for a side view
of our extrusion geometry, which looks somewhat different
for α < π/2 and α > π/2. The two cases of α < π/2 and
α > π/2 will sometimes need to be considered separately in
our derivations, but all our results will come out as unified
formulas that apply in both regimes.

The Lagrangian for a classical particle of mass M on a two-
dimensional surface is

L = M

2

2∑
i, j=1

gi j
dri

dt

dr j

dt
, (1)

where r1,2 are arbitrary coordinates in the surface and gi j is
the two-dimensional metric tensor for the surface in those co-
ordinates. Since our problem has rotational symmetry around
the center axis of the sphere, we will use dimensionless polar
coordinates ρ = r/R and φ such that the embedding of our
surface in three-dimensional flat space is expressed in 3D
Cartesian coordinates as

⎛
⎝x

y
z

⎞
⎠ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝R cos φ sin ρ

R sin φ sin ρ

R cos ρ

⎞
⎠, ρ < α

⎛
⎝R(ρ − α + sin α) cos φ

R(ρ − α + sin α) sin φ

R cos α

⎞
⎠, ρ > α.

(2)

This implies the two-dimensional metric(
gρρ gρφ

gφρ gφφ

)
= R2

(
1 0
0 g(ρ)

)
, (3)

where

g(ρ) =
{

sin2 ρ, ρ < α

(ρ − α + sin α)2, ρ > α.
(4)

We will use these coordinates and this metric throughout this
paper; in this classical section, we will also use the Cartesian
x, y coordinates for straight-line trajectories in the plane. We
note that the metric (3) with g(ρ) given by (4) has the usual
trivial singularity of polar coordinates at ρ = 0, but is other-
wise free of singularities and zeros, since the (ρ − α + sin α)2

form only applies for ρ > α, where ρ − α + sin α� sin α > 0.
(We exclude the case α = π , where sin α = 0, because it is the
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singular case in which a complete sphere merely touches the
plane at one point.)

2. Geodesics

In this classical problem, the trajectories on planes and
spheres are well-known: The geodesics are straight lines on
the plane, and on the sphere they are great circles. If α � π/2,
there will exist some closed great circle orbits, such as the
equator, which remain on the sphere and never enter the plane.
There are likewise many trajectories in the plane that simply
pass by the sphere without ever touching it. We are interested
here, however, in trajectories that cross from the plane onto
the sphere and then back into the plane. These must consist of
half lines and great circle arcs which connect on the contact
circle; the nontrivial question is, Which half-lines and arcs
must connect together to make up a total trajectory?

This problem can be solved with two-dimensional geo-
metrical constructions, using the fact that great circles on the
sphere become ellipses with semimajor axis R when projected
into the x, y plane. It is both faster and more easily related
to less symmetrical problems, however, to use the Euler-
Lagrange equations of motion for the Lagrangian (1). For the
φ coordinate, they yield

MR2g(ρ)
dφ

dt
= J (5)

for some constant J . By differentiating our embedding (2)
with respect to t , we can confirm that J is nothing but the
angular momentum of the particle about the central axis of
the sphere:

J ≡ M

[
x(t )

d

dt
y(t ) − y(t )

d

dt
x(t )

]
. (6)

This Cartesian form for J is convenient for the straight-line
trajectories in the plane.

The radial equation for ρ has the energy as a first integral,
allowing the usual reduction to a first-order equation,

dρ

dt
= ± v

R

√
1 − J2

M2v2R2g(ρ)
, (7)

for a constant v > 0 that can be seen by inserting (6) and (7)
in (2), to be the particle’s constant speed. Every incident
trajectory begins on the − branch of the ±, with ρ decreasing
monotonically towars its minimum value, where the trajectory
makes its closest approach to the north pole of the sphere.
There, where ρ̇ is instantaneously zero, the branch changes
from − to +, and thereafter ρ increases monotonically, as the
particle exits the sphere and continues away in the plane to
infinity.

3. Scattering trajectories

In the plane, Eqs. (5) and (7) are simply polar represen-
tations of straight lines, which can also be represented more
simply in Cartesian terms. Without loss of generality, we can
take an initial straight-line trajectory which encounters the
spherical extrusion from the negative x direction, moving in

the positive x direction,(
x(t )
y(t )

)
in

=
(

x(0)
b

)
+ vt

(
1
0

)
, (8)

where b is the impact parameter. Unless |b| < R sin α, the
incident particle will simply pass by the spherical extrusion
without any scattering, so we can restrict our attention to
these cases. For later convenience, we will define the angle
β ∈ [−π/2, π/2] such that

b = R sin α sin β. (9)

By construction, therefore, this incident particle trajectory
meets the spherical extrusion at ρ = α, φ = π − β. The an-
gular momentum J of this trajectory is determined by the
velocity v and impact parameter b: it is easily found from (6)
that

J = −Mvb. (10)

Once the particle moves onto the spherical surface, it main-
tains its constant speed v but follows the unique great circle
on the sphere which (i) has angular momentum J = −Mvb
and (ii) meets the joining circle at (ρ, φ) = (α, π − β ). The
exactly equivalent description of this motion in polar coor-
dinates, less geometrically clear but more computationally
convenient, is that the particle’s radius ρ will decrease from
ρ1 = α [the − branch in (7)] until it reaches the turning point
ρ0 at which dρ/dt = 0, then change to the + branch of (7)
and increase until it again reaches ρ = α, where the particle
exits from the spherical extrusion and reenters the plane. The
particle’s angle coordinate at this time, φ = φexit , can be com-
puted explicitly from

φexit = π − β + 2
∫ ρ0

α

dρ
dφ/dt

dρ/dt

= π − β + 2
∫ ρ0

α

dρ
sin α sin β

sin ρ
√

sin2 ρ − sin2 α sin2 β

= π − β + 2 tan−1

(
sin α sin β cos ρ√
sin2 ρ − sin α sin β

)∣∣∣∣
ρ=α

ρ=ρ0

= π − β + 2

(
tan−1(cos α tan β ) − π

2

)

= 2 tan−1(cos α tan β ) − β. (11)

The same result can be reached from great circle geometry but
the derivation is longer.

Returning now to Cartesian coordinates for the further mo-
tion in the plane, the point of exit from the sphere and reentry
to the plane is (

x
y

)
reentry

= R sin α

(
cos φexit

sin φexit

)
, (12)

and therefore the final part of the trajectory which continues
further into the plane and has the same energy constant �,
hence the same speed v, must be(

x(t )
y(t )

)
out

= R sin α

(
cos φexit

sin φexit

)
+ v(t − texit )

(
cos θ

sin θ

)
(13)

for some scattering angle θ .
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The angular momentum (6) of this exiting trajectory must
also be the same J = −Mvb = −MvR sin α sin β of the inci-
dent trajectory. We therefore have

− sin β = cos φexit sin θ − sin φexit cos θ ≡ sin(θ − φexit ).
(14)

One solution to this equation would be θ →
2 tan−1(cos α tan β ) ± π , but this would imply ρ̇ =
−(v/R) cos(β ) < 0 at the moment of exit, when at this
point we must be on the + branch of (7). Hence, the only
scattering angle which satisfies the radial equation of motion
as well as (14) is

θ = 2[tan−1(cos α tan β ) − β] mod(2π ). (15)

For our use in Sec. IV, below, we recall that sin β =
b/(R sin α) = −J/(MvR sin α), which means that sin β →
−m/(kR sin α) when in the quantum problem J → h̄m and
Mv → h̄k. This means that the classical scattering angle is a
function of α and J/(MvR) → m/(kR) =: μ,

θ = 	

(
α,

J

MvR

)

	(α,μ) = 2 sin−1

(
μ

sin α

)
− 2 tan−1

(
μ cos α√

sin2 α − μ2

)
.

(16)

The classical scattering angle θ will appear in the semiclassi-
cal theory of Sec. IV, in this form as 	(α,μ).

4. Scattering angle for given impact parameter

We recall that |β| � π/2 by definition, because for scatter-
ing the impact parameter b = R sin α sin β must lie between
±R sin α. If we vary the impact parameter from −R sin α to
+R sin α, tan β increases monotonically from −∞ to +∞.
If α > π/2, then cos α tan β decreases monotonically from
+∞ to −∞, and hence both tan−1(cos α tan β ) and −β de-
crease monotonically from π/2 to −π/2. This means that θ

decreases from 2π to −2π , modulo 2π . In other words, when
the spherical extrusion is larger than a hemisphere, the scat-
tering angle covers the full circle, so every possible scattering
angle, including directly backward, occurs for some impact
parameter. In fact, θ actually sweeps through a range of 4π ,
meaning that every scattering angle is obtained twice for two
different values of the impact parameter b.

If α < π/2, on the other hand, so the spherical extrusion
is less than a hemisphere, then tan−1(cos α tan β ) increases
monotonically with b while −β decreases. As a result, θ does
not change monotonically with b, but has an extremum when

dθ

dβ
= 2

(
cos α

1 − sin2 α sin2 β
− 1

)
→ 0

�⇒ β → ±βc = ± sin−1

(
1

2 cos α
2

)

�⇒ θ → ±θc = ±2 sin−1

(
tan2 α

2

)
. (17)

So, if the extrusion is smaller than a hemisphere, no particles
are scattered by more than the angle ±θc, and these scattering
angles are caustic angles at which scattered trajectories pile
up because the scattering angle is reversing direction as a

a

b

FIG. 3. Classical scattering from a hard disk of radius a. Left: A
particle with impact parameter b = a sin β is reflected. Right: Polar
plot of the cardioid r = (1/4) sin(|θ |/2), which is the differential
cross section divided by the total cross section.

function of impact parameter. Those scattering angles |θ | < θc

which are realized are again each realized twice for different
impact parameters.

B. Differential cross sections

While θ (β ) is the natural solution to the particle motion as
an initial value problem, the differential cross section |db/dθ |
defines what infinitesimal range of impact parameters b
contributes to scattering within an infinitesimal range of scat-
tering angles θ . In this sense, it is a final value problem instead
of an initial value problem, but it is normally used to give
probabilistic answers to a probabilistically posed initial value
question: If an ensemble of incident particles encounters the
scatterer with an evenly distributed range of impact param-
eters, then |db/dθ | as a function of θ gives the probability
density for scattering at the angle θ .

1. Hard disk example

Since differential cross sections may be more familiar in
quantum mechanics than they are classically, we briefly re-
view this classical scattering theory for the simple example
of a hard disk scatterer of radius a. This geometry is shown in
Fig. 3, and from the figure we can immediately see that for im-
pact parameter b = a sin β > 0 the exit angle is θ = π − 2β.
For negative b, it is clear from the problem’s vertical reflection
symmetry that we must simply reverse the sign of θ . It follows
that, in general,

θ =
{
π sgn(β ) − 2β, β �= 0
π, β = 0.

(18)

To obtain the differential cross section, however, we must
invert this relation and find b = a sin β as a function of θ . For
the hard disk, this can be easily done: β = (1/2)(π sgn(θ ) −
θ ), so for b = a sin β we obtain

b(θ ) = a sgn(θ ) cos
θ

2
. (19)

The differential cross section is then∣∣∣∣ db

dθ

∣∣∣∣ = a

2
sin

|θ |
2

, (20)

which is the cardioid curve plotted in the right panel of Fig. 3.
The shape of the cardioid means that when an ensemble of
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particles with evenly distributed impact parameters strikes
the disk from the left, many are scattered nearly backward,
while only a few strike near enough to the edges of the disk
to receive only slight deflections. The total cross section is
identically equal to the disk diameter 2a, because the integral
of the differential cross section over the full range of scattering
angles is by definition equal to the integral over all b that
produce any deflection, which is the range −a < b < a.

2. Spherical extrusions

To compute the classical differential cross section for our
spherical extrusions, therefore, we need to invert our expres-
sion (15) for θ (β ) and obtain b = R sin α sin β as a function
of θ instead. Surprisingly, this can be done quite compactly if
we begin by using (15) to compute

sin
θ

2
= cos α sin β − sin β√

1 + cos2 α tan2 β

= sin β cos β
cos α − 1√

1 − sin2 α sin2 β
. (21)

Squaring both sides of (21) produces a quadratic equation for
sin2 β. Solving this and then applying trigonometric identities,
and checking the results against (15) itself to discard spurious
roots produced by the squaring of (21), eventually yields two
solutions for b = R sin α sin β for each θ , which we denote as
b(θ ) → b±(θ ):

b+ = −R sgn(cos α) sgn(θ ) cos2 α

2

×
(√(

1 + sin
|θ |
2

)(
tan2 α

2
+ sin

|θ |
2

)

+
√(

1 − sin
|θ |
2

)(
tan2 α

2
− sin

|θ |
2

))
,

b− = −R sgn(θ ) cos2 α

2

×
(√(

1 + sin
|θ |
2

)(
tan2 α

2
+ sin

|θ |
2

)

−
√(

1 − sin
|θ |
2

)(
tan2 α

2
− sin

|θ |
2

))
. (22)

For α < π/2, Eq. (22) is only valid for |θ | < θc =
2 sin−1(tan2 α

2 ) because no scattering occurs with angles
|θ | > θc. At the largest possible scattering angles, which
are either ±θc for α < π/2 or ±π for α > π/2, the two
branches b± coincide. For θ → 0±, b− → 0 while b+ →
∓R sgn(cos α) sin α. Examples of trajectory pairs b± with the
same scattering angle θ are shown in Fig. 4.

Since both branches of b± contribute scattering in the θ

direction, the differential cross section at θ has contributions
from both: |db/dθ | = ∑

± |db±/dθ |. It can be shown using
trigonometric identities or by plotting that for α > π/2, b±
are both monotonically decreasing functions of θ over their
full ranges of support in θ , while for α < π/2, b− is decreas-
ing and b+ is increasing. In the sum of the two branches,
therefore, the first square root terms in each b± always cancel

�1.0 �0.5 0.5 1.0
x�R

�1.0

�0.5

0.5

1.0

y�R

�1.0 �0.5 0.5 1.0
x�R

�1.0

�0.5

0.5

1.0

y�R

FIG. 4. Examples of pairs of trajectories with the same scattering
angle θ , for α = π/4 and θ = −0.25 (left panel) and α = 3π/4,
θ = 5π/8 (right panel). The trajectories are shown projected onto
the plane, so great circle arcs on the sphere appear as elliptical arcs.
In each case, the two trajectories enter the spherical extrusion from
the left with two different impact parameters b±(α, θ ), and exit at
two different exit angles φexit , but emerge from the extrusion on
parallel paths. One of the two trajectories in the right panel is shown
dashed to aid in distinguishing the two trajectories where their planar
projections cross. Portions of the trajectories between the entry and
exit tangents (dotted lines) are shown thicker, because the lengths
of these thicker portions will appear in the semiclassical theory of
Sec. IV.

each other in the differential cross section, while the second
square root terms add together.

The final result for the classical differential cross section of
the spherical extrusion is thus this surprisingly compact ex-
pression full of half angles:∣∣∣∣ db

dθ

∣∣∣∣ = 2R sin α D(α, θ ),

D(α, θ ) =
√

1 + sin |θ |
2

(
1 − 2 cos2 α

2 sin |θ |
2

)
4 sin α

√
tan2 α

2 − sin |θ |
2

. (23)

The integral of this differential cross section over all scattering
angles (i.e., from −θc to +θc for α < π/2 and from −π to +π

for α > π/2) is exactly 2R sin α, as indeed it must be, because
this is simply the full range of b for which the particle touches
the sphere and can be deflected. The dimensionless function
D(α, θ ) thus gives the angular distribution of scattered par-
ticles and is independent of R; it is plotted for a selection of
different values of α in Fig. 5. The area inside the closed curve
defined as having radius r(θ ) = D(α, θ ) is identically 1 for all
α, if we count the caustic limits ±θc as closing the curve for
α < π/2. The divergences of D(α, θ ) at the caustics are only
inverse square roots ∼(|θ | − θc)−1/2, which are integrable.

We can also note a few simple exact results for special
cases of α. For α → 0, the maximum scattering angle θc → 0
as well—a slight bump deflects only slightly—and so for all
the very small angles into which scattering occurs we can
write

lim
α→ε+

D(α, θ ) = 1/2

ε
√

ε2 − 2|θ |
. (24)

Here ε is a small (positive) value of the parameter α. If we
let α → 0 while increasing R ∼ 1/α so a = R sin α remains
fixed, then our spherical extrusion becomes a disk of finite ra-
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FIG. 5. Normalized differential cross section D(α, θ ) as polar
plots in θ for the different values of α shown by the plot labels. To
better show the shapes of the curves, the different plots are not all
drawn to the same scale; the true size of the contours is determined
by the fact that they all enclose unit area.

dius a with vanishing curvature. It nonetheless retains its finite
total cross section 2a—and this seems paradoxical, because in
this limit of vanishing curvature the spherical extrusion should
have no effect whatsoever on particle motion, since it is noth-
ing but an arbitrarily designated circular region in the plane.
The resolution of this paradox is in the definition of the cross
section as the measure of a set of trajectories that are affected
by the spherical region. This definition takes no account of
how greatly the trajectories are affected; any deflection at all
is accounted as scattering, no matter how slight the deflection
may be. When we take the limit of R → ∞ and α → 0 so
R sin α stays constant, we approach the case where the sphere
has no effect by keeping the same set of trajectories affected,
but reducing the amount by which they are deflected.

For α → π , we instead have

D(π, θ ) =
√

1 + sin |θ |
2

8
. (25)

So if we let R → ∞ while keeping a = R sin α fixed by let-
ting α approach π , then the finite contact circle of radius a
becomes the junction between the plane and a large spheri-
cal world into which particles can disappear from the plane

for a long time, emerging eventually at some different angle
from the one at which they entered, with a particular average
distribution of exit angles given by the expression above,
independent of R (for fixed a = R sin α).

Finally, for the hemisphere, we have

D

(
π

2
, θ

)
= 1

4
cos

θ

2
, (26)

which is exactly the same cardioid distribution of scattered
particles that would be emitted by a hard disk if the particles
were incident from the opposite direction.

III. THE QUANTUM PROBLEM

A. From three dimensions to two

Any two-dimensional problem may be considered theoreti-
cally, but to restrict the three-dimensional motion of a physical
particle to a two-dimensional surface, one must apply some
confining force in the perpendicular direction. In Ref. [4], it
was concluded that the effective two-dimensional theory in
quantum mechanics must therefore include a certain effective
potential determined by the extrinsic curvature of the surface.
In fact, this particular result for the effective potential is not
a universal formula at all, however, but only the special case
that applies if the strength of the perpendicular confinement
is kept uniform over the two-dimensional surface. It is easy
to see that even a small proportional variation of confinement
strength can produce an arbitrary effective potential within the
surface.

To confirm this, it suffices to take the trivial case in which
the two-dimensional surface to which three-dimensional mo-
tion should be confined is simply the plane z = 0 in Cartesian
coordinates. We let the confinement be enforced by a three-
dimensional potential which is very slightly nonuniform over
the plane,

V3D(x, y, z) = h̄2z2

2Mλ4

[
1 + ε2�

(
ε

x

λ
, ε

y

λ

)]2

, (27)

where M is the particle mass, λ is the transverse confinement
length, and ε � 1. The effectively two-dimensional limit ap-
plies when we consider particle energies that are low in
comparison to the transverse confinement scale,

E = [1 + 2ε2E]
h̄2

2Mλ2
, (28)

for dimensionless E = O(ε0).
We can then introduce the scaled planar coordinates

(x̃, ỹ) = (ε/λ)(x, y) and the ansatz

(x, yz) = e− z2

2λ2 [1+ε2�(x̃,ỹ)]
∞∑

n=0

ε4nψn

(
ε

x

λ
, ε

y

λ

)
H2n

(
z
√

1 + ε2�

λ

)
(29)

for the three-dimensional wave functions of energy eigenstates, with Hn being the Hermite polynomials. The orthogonality of
the Hermite polynomials then lets us read back out

ψn(x̃, ỹ) = ε−4n
∫

dz e− z2

2λ2 [1+ε2�(x̃,ỹ)]H2n

(
z
√

1 + ε2�

λ

)
(x, y, z). (30)
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Inserting (30) into the three-dimensional time-independent
Schrödinger equation then reveals

Eψ0 = −1

2

[
∂2

∂ x̃2
+ ∂2

∂ ỹ2

]
ψ0 + 1

2
�(x̃, ỹ)ψ0 + O(ε2). (31)

Even a proportionally very small nonuniformity ε2� in strong
perpendicular confinement will thus produce a significant
effective potential in the two-dimensional low-energy dynam-
ics.

For confinement to surfaces more complicated than a
plane, Ref. [4] has shown that there is a nontrivial effective
potential in two dimensions even when the perpendicular
confinement strength is uniform. We now point out, however,
that it may be a difficult matter in practice to achieve such
uniform confinement that the result of Ref. [4] is valid—
even when the surface to which motion should be confined
is as simple as a plane or a cylinder. If the three-dimensional
potential is complicated enough to confine the particle to a
more complicated surface, then it will surely be more difficult
still to make the confinement strength uniform. The particular
potential derived in Ref. [4] must therefore be considered as
a somewhat academic result. Quasi-two-dimensional motion
that is realized in an experiment is likely to be subject to an
effective potential that depends arbitrarily on the details of
exactly how the confinement to two dimensions is achieved.

Conversely, however, it is in principle possible for prac-
tically any two-dimensional potential to be achieved if the
perpendicular confinement is implemented appropriately. The
effects of local potentials on quantum motion in two dimen-
sions have long been familiar, while the kinetic effects of
spatial curvature, through a nontrivial Laplace-Beltrami op-
erator, are less well understood. It is therefore a worthwhile
theoretical contribution to analyze an informative model that
involves only the Laplace-Beltrami operator, since this simple
scenario is in principle no less realistic than the uniform
confinement scenario assumed in Ref. [4]. In this paper, we
will provide such a contribution by assuming that the effective
confinement from three dimensions to two has somehow been
achieved in such a way as to leave no potential term in the ef-
fectively two-dimensional Schrödinger equation for quantum
motion in the low-energy limit.

One result is easy to obtain immediately: Introducing a
curved region within an asymptotically flat plane that extends
to infinity can never create any bound states. If there were such
a bound state, then in the flat plane at infinity it would have to
decay exponentially. It would therefore have to have negative
energy, as usual for a bound state. There would therefore exist
a wave function, namely, the wave function of this bound
eigenstate, for which the expectation value of the Hamiltonian
was negative. The expectation value of the energy of a particle
on a curved surface without any potential, however, is

〈Ĥ〉 = h̄2

2M

2∑
i, j=1

∫
d2r

√
ggi j∂iψ

∗∂ jψ, (32)

where gi j is the contravariant metric tensor on the two-
dimensional surface and g is the determinant of its inverse
matrix (the covariant metric). The integral is invariant un-
der arbitrary coordinate changes, so we can show that the

integrand is everywhere positive definite, for all ψ (r), by
transforming at any point to coordinates in which the metric
tensor is gi j = δi j . No negative energy expectation values can
exist, therefore—and therefore no negative eigenvalues and
no bound states. Local curved regions can hold long-lived
quasi-bound resonances, however, as we will see.

For potential-free cases in which an asymptotically flat
plane contains a curved region, the quantum problem is thus
essentially a scattering problem: How do incident plane waves
from infinity propagate through the curved region? For the
simple case of the sphere on a plan, the quantum scattering
problem can, like its classical counterpart, be solved exactly,
albeit in the form of a Fourier series for the scattering am-
plitude in which the coefficients involve Legendre and Bessel
functions.

B. Time-independent Schrödinger equation
for the sphere on a plane

We consider a quantum particle of mass M that moves in
the geometry defined by the metric (3), with sphere radius R
and contact angle α as before. In a quantum energy eigen-
state of energy eigenvalue E = h̄2k2/(2M ), the wave function
ψ (r) of the particle obeys the time-independent Schrödinger
equation

h̄2k2

2M
(r) = − h̄2

2MR2

[
∂2

∂ρ2
+ 1

2

g′(ρ)

g(ρ)

∂

∂ρ
+ 1

g(ρ)

∂2

∂θ2

]
,

(33)
where r = (Rρ, θ ) in polar coordinates, with g(ρ) again given
by (4) and g′(ρ) ≡ dg/dρ. We can then further decompose
a generic energy eigenstate into simultaneous eigenstates of
energy and angular momentum,

(r) =
∑

m

Cmeimφψm(ρ), (34)

satisfying

(kR)2ψm(ρ) = −
[

∂2

∂ρ2
+ 1

2

g′(ρ)

g(ρ)

∂

∂ρ
− m2

g(ρ)

]
ψm. (35)

We note that h̄m is the quantum analog of the classical angular
momentum J and that the wave function depends on R and k
only through their product kR.

For ρ > α, (35) is just the usual Bessel equation for a radial
eigenfunction in the plane, with the ordinary radial coordinate
r = R(ρ − α + sin α) in the plane outside the sphere. So, the
normalized real solution for ρ > α can be written

ψm(ρ) = cos(δm)Jm(kR(ρ − α + sin α))

− sin(δm)Ym(kR(ρ − α + sin α))

≡ Re
(
eiδm Hm(kR(ρ − α + sin α))

)
, (36)

for some phase shift δm(kR), where Jm and Ym are the Bessel
and Neumann functions, respectively, and Hm = Jm + iYm is
the Hankel function. For ρ < α, however, (35) is the asso-
ciated Legendre equation of order λ such that λ(λ + 1) =
(kR)2:

λ(kR) =
√

(kR)2 + 1
4 − 1

2 . (37)
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This equation has only one solution that is regular
at ρ = 0, the associated Legendre function Pm

λ (cos ρ),
and so we must have ψm(ρ) = CmPm

λ (cos ρ) for some
real Cm(kR).

The coefficients Cm and δm are determined by imposing
continuity of ψm(ρ) and ψ ′

m(ρ) across the junction at ρ = α

between the sphere and the plane. The result for the phase shift
δm is

tan δm = kRPm
λ (cos α)J ′

m(kR sin α) + sin αJm(kR sin α)P′m
λ (cos α)

kRPm
λ (cos α)Y ′

m(kR sin α) + sin αYm(kR sin α)P′m
λ (cos α)

, (38)

where the primes denote differentiation of each function with
respect to its argument. In the two-dimensional version of
standard partial wave scattering theory, the δm determine all
scattering features, in the sense that an energy eigenstate of
the scattering form

k (r) = eikx + ψsc(r), lim
r→∞ ψsc =

√
2

πkr
ei π

4 f (θ )eikr,

(39)

can be composed out of many ψm as

k (r) =
∞∑

m=−∞
eiδm imeimθψm(ρ). (40)

This follows from the asymptotic forms of the Bessel and
Neumann functions and from the expansion of the two-
dimensional plane wave in polar coordinates. The result by
elementary algebra is just as for partial waves in three dimen-
sions,

f (θ ) =
∞∑

m=−∞
sin δmeiδm eimθ , (41)

which implies the two-dimensional optical theorem

σ := lim
r→∞ r

∮
dθ |ψsc|2 = 2

πk

∮
dθ | f |2

= 4

k

∞∑
m=−∞

sin2 δm = 4

k
Im[ f (0)]. (42)

We can therefore obtain exact differential cross sec-
tions dσ/dθ = 2| f (θ )|2/(πk) for arbitrary kR and α from the
Fourier series (41) for f (θ ), with δm given in terms of Bessel,
Neumann, and associated Legendre functions by (38). Using
the asymptotic behaviors of the Bessel functions at small
argument and of the associated Legendre functions at small
order λ, it is straightforward to show that for kR � 1, scat-
tering becomes approximately isotropic ( f (θ ) = √

kσ/4 ×
[1 + O(kR)2]), with

lim
kR→0

σ = 4π2k3R4 sin8 α

2
. (43)

For α � 1 as well as kR � 1, this agrees with the first Born
approximation result of σ = (π2/64)k3R4 sin8 α which is ob-
tained from Eq. (23) of Ref. [11], when we express our locally
curved surface in the notation of Ref. [11]. (The quantity
G(r) of Ref. [11] becomes G(r) → (r/R)θ (R sin α − r) in our
case, θ (x) being the step function, and the parameters λ1,2 of
Ref. [11] are both zero for us.) The first Born approximation
of Ref. [11] is only valid in our case when both α and kR
are small, so the total effect of the curved region can be a

small perturbation; the results of Ref. [11], on the other hand,
are valid for small local curvature deformations that are much
more general in form than our sphere on a plane.

Although at long wavelengths the isotropic quantum scat-
tering is simpler than the caustics and cardioids of the classical
differential cross section, at shorter wavelengths the angular
dependence of quantum scattering becomes more compli-
cated. See Fig. 6 for some examples, which illustrate most of
the typical features for all kR and α; the classical differential
cross sections in each case are shown in dots, for comparison.
Once kR is larger, we can recognize that the quantum differen-
tial cross section mainly oscillates around the classical value,
but beyond this there are significant differences.

At small deflection angles θ , there is a dramatic spike
of quantum scattering probability. In the limit of large kR,
where one might expect from classical correspondence that
the total quantum cross section would approach the classical
value 2R sin α, the narrow forward spike actually contributes
a further 2R sin α in the cross section all by itself, bringing
the total quantum cross section to 4R sin α as kR → ∞. As
we will see in the next section, however, this large forward
lobe in the differential cross section is actually such a basic
wave-mechanical scattering feature that it is not really due to
the peculiar geometry of the sphere on a plane. Any round
obstacle of the same size—for example, a hard disk—will
produce a very similar spike of forward scattering for wave-
lengths much shorter than the obstacle size. The effect is a
matter wave analog of the optical Poisson spot, and while it
is in principle a real phenomenon, it is in practice difficult to
observe because its existence depends on the incident particle
beam having a coherence width broader than the target width
(in this case 2R sin α). At large kR, furthermore, where the for-
ward spike is most dramatic, the spike becomes so narrowly
concentrated around deflection angle zero that it could be dif-
ficult to distinguish it in experiments from the background of
unscattered particles in the incident beam. There will usually
be little reason for experimentalists to work hard to resolve
the forward spike, moreover, since scattering experiments are
usually intended to probe the internal structure of the scat-
tering target, and the forward spike does not depend on this
internal structure. In effect, the forward spike is a dramatic
wave-mechanical effect that is not actually very important.

The oscillations of | f (θ )|2 around the classical db/dθ per-
sist at high kR; as we will see, they are a basic interference
effect due to the presence of two classical trajectories for
each scattering angle θ . The classical caustics which occur
for α < π/2 when these two trajectories merge are, as usual,
softened by wave mechanics. The quantum scattering proba-
bility extends smoothly beyond these classical caustics; the
appearance of quantum particles in a classically forbidden
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FIG. 6. Quantum differential cross sections divided by R, for kR = 20. Although Cartesian axes are shown because the plots extend so
far to the right, these are actually polar plots, with deflection angle θ = 0 corresponding to the horizontal-right direction, and radius from
the origin at (0,0) giving R−1dσ/dθ = 2| f (θ )|2/(πkR), for scattering into the corresponding deflection angle. The corresponding classical
differential cross sections divided by R, R−1db/dθ as given by (23), are superimposed as dashed contours. Upper panel: A slightly less-than
hemisphere (α = 0.47π ). Lower panel: A three-quarter sphere (α = 3π/4).

zone can be considered a form of tunneling even though we
do not have a potential barrier of the usual kind. A further
quantum effect which is not obvious in any individual plot of
| f (θ )|2 shows up when we plot the total cross-section σ as a
function of kR, as in Fig. 7. For superhemispherical cases α >

π/2, the cross section shows sharp resonance peaks whenever
kR = √

l (l + 1) for whole number l; these precise values cor-
respond to the energy levels h̄2l (l + 1)/(2MR2) of a particle
on an isolated full sphere of radius R, of which the correspond-
ing eigenfunctions are the spherical harmonics Ylm(ρ, θ ). At
higher l and for α closer to π , the resonances become nar-
rower and narrower but their location does not change and
they are present even for α only slightly greater than π/2. For
subhemispherical cases α < π/2, however, these peaks are
completely absent. A clue to what causes these sharp peaks
can be seen when we examine the partial wave scattering
probabilities sin2(δm), as shown in Fig. 8. For larger kR, these
probabilities generally fall abruptly to (essentially) zero for
|m| > kR sin α; this is because for |m| beyond this limit, the
centrifugal barrier prevents particles with energy h̄2k2/(2M )
from even reaching the contact circle at r = R sin α. When k
is close to

√
l (l + 1) for whole-number l , however, finite scat-

tering probability extends somewhat past the kR sin α limit
in an approximately half-Gaussian profile. The total cross
section is simply the sum of all the partial wave probabilities,
and so these additional non-negligible sin2 δm contributions
from |m| > kR sin α are responsible for the sharp peaks in
the cross section as a function of kR. As we will see in the
next section, these contributions to scattering from angular
momenta kR sin α < |h̄m| < kR are due to tunneling into res-
onances related to the closed classical orbits within the sphere,
when it overhangs the plane for α > π/2.

All these features can be understood analytically by us-
ing the WKBJ semiclassical approximation to the quantum
problem, at least qualitatively. Close quantitative agreement
between the exact quantum treatment and the semiclassical
approximation may require quite high kR, since the pro-

portional errors in the semiclassical results are of order
(kR sin α)−1/2, in general, and (particularly for small α) there
can be unfortunately large α-dependent prefactors. At large
enough kR sin α to make these errors small, computing the
exact differential cross section becomes numerically challeng-
ing; it also becomes a visual challenge to compare polar plots
with very many radial fringes. In the next section, we will
therefore develop the semiclassical theory which becomes ex-
act in the limit kR → ∞, and show with numerical plots that
for modest kR � 100 the agreement with the exact differential
cross sections is already good enough to confirm the large-kR
trend.

IV. THE SEMICLASSICAL PROBLEM

For the conventional Schrödinger problem of motion in a
potential, the semiclassical regime consists of cases in which
the quantum wavelength is short compared to the scale on
which the potential varies spatially. In this regime, we apply
the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approxima-
tion to solve the time-independent Schrödinger equation for
the quantum wave function using the method of charac-
teristics. The wave function propagates simply along the
characteristic curves in space, and these curves are a set of
classical trajectories. Because of the need to find these clas-
sical trajectories as the first step toward solving the quantum
problem, in general, the WKBJ method is significantly more
complicated in two or more dimensions than it is in the
one-dimensional case that is more commonly presented in
textbooks. Since our problem has exact rotational symmetry,
however, we can reduce it to a one-dimensional radial problem
before applying the WKBJ approximation. We will then see
that for the sphere on a plane, the WKBJ method provides
a good approximation to exact quantum scattering whenever
the wavelength is short compared to the contact radius R sin α

between the sphere and the plane.
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FIG. 7. Quantum total cross sections σ divided by sphere radius
R, as functions of kR, for a quarter sphere (α = π/4, upper panel)
and a slightly more-than hemisphere (α = 5π/8, lower panel). The
high-kR limit σ/R = 4 sin α is shown as a horizontal dashed line; the
semiclassical approximation with tunneling neglected, defined below
in Sec. IV, is shown as a dotted curve. For subhemispheres like the
case in the upper panel, the cross section oscillates as it approaches
the asymptotic limit, following the semiclassical curve closely for
kR � 1 but with a small systematic deficit. As α approaches π/2
from below, the oscillations at lower kR become more complicated
but settle down to sinusoidal oscillation around 4 sin α at higher kR.
For α > π/2, sharp peaks appear at all kR = √

l (l + 1) for whole
l (vertical grid lines in the right plot). As α approaches π and kR
increases, these peaks become narrower.

A. The WKBJ approximation

The WKBJ approximation requires, first, that kR be large.
One then expands

ψm(ρ) = exp

[
i

∞∑
n=0

(kR)1−n
∫ ρ

ρ0

dρ ′ Kmn(ρ ′)

]
(44)

and solves the dimensionless radial Schrödinger equation (35)
order by order in (kR)−1. The result is

ψm(ρ) =
(

g(ρ) − m2

(kR)2

)− 1
4 ∑

±
A±e±ikR

∫ ρ

ρ0
dρ ′ Km0(ρ ′ )

+ O(kR)−1 (45)

FIG. 8. Partial wave scattering probabilities sin2 δm (vertical
axes) as functions of angular quantum number m (horizontal axes),
for a nearly full sphere (α = 7π/8), at kR = 100 (top), kR = 101
(bottom), and kR = √

100 · 101 (middle). Vertical lines are at m =
kR sin α. Similar plots for almost all kR resemble the top and bottom
panels qualitatively, with complicated jumbles of points that all fall
to zero for |m| > kR sin α. Whenever kR is close to

√
l (l + 1) for any

whole number l , however, a few nonzero points extend past the usual
kR sin α limit. These anomalous points can, in general, be fitted quite
well to a Gaussian. Similar patterns are seen for all α > π/2.

for

Km0(ρ) =
√

1 − m2

(kR)2g(ρ)
, (46)

where as we recall from (4), g(ρ) = sin2 ρ for ρ < α (on
the sphere), while for ρ > α we instead have g(ρ) = (ρ −
α + sin α)2, which corresponds to 1/r2 for the usual radial
coordinate r = ρ − α + sin α in the plane.
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In (45), we have taken the lower limit of ρ integration in
the phase to be the turning point ρ0(kR/m) such that g(ρ0) =
m2/(kR)2. Choosing any other lower limit would simply shift
the coefficients A±, but choosing the turning point is conve-
nient because it is at this point that the fourth-root prefactor
in (45) diverges and the WKBJ approximation breaks down.
As usual, we can interpolate through this breakdown region
by approximating the radial Schrödinger equation there as an
Airy equation.

If we assume that for ρ < ρ0, where (45) is again valid, the
wave function ψm(ρ) consists only of the ± branch in (45)
that decays as ρ decreases (evanescent wave in the classically
forbidden region), then we obtain the condition A− = iA+.
This assumption about the behavior of ψm for ρ < ρ0 will turn
out to be valid except for a few special cases (the tunneling
resonances) that we will mention below. This means that for
large ρ → ∞, we will have

lim
ρ→∞ ψm(ρ) = 2

A+eiπ/4

√
r

Re
(

e−iπ/4eikR
∫ ρ

ρ0
dρ ′ Km0(ρ ′ )

)

≡ 2
A+eiπ/4

√
r

Re

(
ei(δm+ π

4 )e
ik
∫ r

|m|
k

dr′
√

1− m2

k2r2

)
(47)

for

δm = kR
∫ α

ρ0

dρ

√
1 − m2

(kR)2g(ρ)
− k

∫ r

|m|
k

dr′
√

1 − m2

k2r2
.

(48)
Since

lim
r→∞ Hm(kr) ∝ 1√

r
e−iπ/4e

ik
∫ r

|m|
k

dr′
√

1− m2

k2r2
, (49)

we can recognize by comparison with (36) above that δm

as given by (48) is indeed the semiclassical result for the
scattering phase shift. The integrals in (48) can be performed
explicitly, leading to our semiclassical expression for the scat-
tering amplitude f (θ ) = ∑

m eiδm eimθ sin δm.
For |m| > kR sin α, (48) implies immediately that δm = 0.

We can see this by considering ρ0 as a function of m/(kR), as
shown in Fig. 9. What Fig. 9 shows is that for |m| > kR sin α

we have ρ0 > α, so the turning point in ρ lies in the plane,
fully outside the spherical extrusion; the centrifugal barrier
turns the particle away before it reaches the contact circle at
r = R sin α. For |m| < kR sin α, in contrast, the turning point
ρ0 < α is on the spherical extrusion, where g(ρ) represents
the curved spherical surface. For |m| > kR sin α and hence
ρ0 > α, therefore, we have g(ρ) = (ρ − α + sin α)2 = r2/R2

and the two integrals in (48) cancel identically, leaving δm = 0
according to (48).

This conclusion conflicts, however, with the δm �= 0 for
|m| > kR sin α shown in the middle panel of Fig. 8, even
though the kR

.= 100 of Fig. 8 should be large enough for
semiclassical methods to work. To explain this discrepancy,
we must now note the exceptions to our assumption of purely
decaying ψm(ρ) for ρ < ρ0. As Fig. 9 shows, for α > π/2
and kR sin α < |m| < kR, there are two additional turning
points inside the outermost turning point ρ0. For large kR,
the tunneling transmission amplitude through the centrifugal

FIG. 9. The function λ2/g(ρ ) for a subhemispherical and a super-
hemispherical case (left panel, α = 0.45π ; right panel, α = 0.75π ),
and for selected examples of λ = m/(kR) (namely, 0.8 and 1.2 in
the left panel; 0.5, 0.8, and 1.1 in the right panel). The intersection
λ2/g(ρ ) = 1 occurs at the turning point ρ = ρ0. The vertical grid
line marks ρ = α in both cases, where the form of g(ρ ) changes;
for α > π/2, the change in g(ρ ) gives the centrifugal barrier a
maximum at ρ = α, with an inner well at smaller ρ. In the sub-
hemispherical left panel, we see that for |m| > kR sin α the turning
point is outside the junction circle, ρ0 > α, while for |m| < kR sin α

we instead have ρ0 < α. The same is true for the outermost turning
points in the superhemispherical right panel, but within the range
kR sin α < |m| < kR there are classical orbits at energy h̄2k2/(2M )
and angular momentum h̄m that remain inside the sphere (ρ < α).
Within this m range, the quantum particle can potentially tunnel
through the centrifugal barrier, modifying the scattering behavior.

barrier peak at ρ = α is still exponentially small, and so
for most k these additional turning points will have a neg-
ligible effect on scattering. For (kR)2 = l (l + 1) for integer
l , however, or very close, tunneling through the centrifugal
peak at ρ = α does significantly change the phase relation-
ship between A± in the ρ > ρ0 region. This is clearly what
is responsible for the anomalous δm �= 0 for |m| > kR sin α

that were noted for these special values of k and only for
α > π/2, in Fig. 8 above. We can therefore identify the sharp
peaks in the cross section at these same values of k, which
were noted in Fig. 7 (again only for α > π/2), as due to
tunneling through the centrifugal barrier peak into quasibound
resonances with angular momentum |m| > kR sin α. These
resonances correspond classically to closed great circle or-
bits on the spherical extrusion when it overhangs the plane
for α > π/2.

Although we are confident in this tunneling explanation
of the sharp scattering resonances at k = √

l (l + 1) for α >

π/2, we will now ignore these sharp resonances and leave
detailed study of these cases of tunneling to future work. The
project may be of some interest as an exercise in semiclassical
technique, though for large kR the resonances would likely be
too narrow to observe experimentally, even if the rest of our
model could be realized. We assume from now on that (48)
can be applied for all kR.

B. The forward scattering spike

This means that we take (48) as correctly implying that
δm = 0 for |m| > kR sin α. This lets us simplify the semiclas-
sical scattering amplitude fSC(θ ) by truncating the infinite
sum over m into a sum from −�kR sin α� to �kR sin α�,
where �kR sin α� is the largest whole number not greater than
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kR sin α:

fSC(θ ) =
�kR sin α�∑

m=−�kR sin α�
eimθ eiδm sin δm

= i

2

�kR sin α�∑
m=−�kR sin α�

eimθ
(
1 − e2iδm

)

≡ i

2

sin
((�kR sin α� + 1

2

)
θ
)

sin θ
2

+ f̃ (θ )

f̃ (θ ) := − i

2

�kR sin α�∑
m=−�kR sin α�

ei(2δm+mθ ). (50)

For large kR sin α, the first term in the third line of (50) is
a sharp peak around θ = 0: it is responsible for the large
forward spikes of scattering probability that we found in
our exact quantum calculations above. Because of the gen-
eral form of partial wave scattering amplitudes eiδm sin δm =
(i/2)(1 − e2iδm ), which is itself required by unitarity, this
forward-spike term only depends on one feature of δm—
namely, that it vanishes for |m| > kR sin α. This means, as
we mentioned above, that the same forward-scattering spike
will appear for any scattering target for which δm has the same
finite range of support in m. In the semiclassical limit, this
simply means that the scattering target has to have the same
classical cross section 2R sin α.

C. Classical paths

The remaining f̃ (θ ) part of the scattering amplitude does
depend on the particular form of δm, as given semiclassically
by (48). The integrals in (48) can be evaluated in closed form,

δm = kR

2
�

(
α,

m

kR

)
− m

2
	

(
α,

m

kR

)
,

�(α,μ) := 2 cos−1

(
cos α√
1 − μ2

)
− 2

√
sin2 α − μ2, (51)

where 	(α,μ) from (16) is the classical scattering angle,
as a function of sphere contact angle α and scaled angular
momentum μ. The path length difference R�(α,μ) is like-
wise the length of the portion of the classical path for α

and μ which is shown thick in Fig. 4, (i.e., the length of
the classical path between the tangents to the contact cir-
cle perpendicular to the incident and scattered directions),
minus 2R sin α (which would be the distance between those
two tangents, if there were no spherical extrusion and the
particle just continued straight). We have stated (51) sim-
ply as the result of performing the integrals in (48), which
it is, but of course this is not a mere coincidence of in-
tegration. It can be derived from the classical mechanics
for our system’s Lagrangian, and in appropriately general-
ized form it holds for any rotationally symmetric scattering
target.

Equation (50) gives f̃ (θ ) as a sum of exp (ikR S(m/(kR)))
over m, for

S(μ) = 2
δμkR

kR
+ μθ

= 2 cos−1

(
cos α√
1 − μ2

)

− 2
√

sin2 α − μ2 + μ(θ − 	(α,μ)). (52)

In the semiclassical limit of large kR sin α, it is accurate to
approximate this sum as an integral and also approximate
the integral using the method of stationary phase. This ap-
proximation is accurate even though, for most of the terms in
the sum, the change in the summand between one term and
the next is not small. In fact, the approximation is accurate
precisely because, for most terms in the sum, the summand
rotates in phase between one term and the next rapidly and
almost randomly: this means that most of the sum simply
cancels. Around certain values of m, however, the phase of
the summands changes only slowly with m, allowing the sum
to be treated as a Riemann sum. Which values of m it is, for
which kR S(m/(kR)) changes slowly, depends on θ and α;
the special values of m are found by treating μ as if were a
continuous variable and finding the points at which S(μ) is
stationary, dS/dμ = 0.

As may again seem like a miraculous coincidence, differ-
entiation of S(μ) with respect to μ, including differentiating
both 	 and �, yields exactly the result that one would obtain
if one forgot to differentiate 	 and �:

∂

∂μ
S(μ) = θ − 	(α,μ) and so

	

(
α,

m

kR

)
!= θ mod(2π ) (53)

determines the saddle points m±. This result is again no
coincidence, however, but can be derived from the classical
dynamics for any rotationally symmetric scattering target.
Even the mod(2π ) here appears inevitably, because in f̃ (θ )
we are evaluating a discrete sum of phases, after all, and a
phase which changes by nearly 2π between successive sum-
mand terms is equivalent to a slowly changing phase. The
result is that the f̃ (θ ) sum (48) is dominated by m around
precisely the classical angular momenta J/h̄ which contribute
to scattering into the angle θ , as given by (15). In particular,
we have two stationary points μ → m±kR for m±(α, θ ):

m± = −kb±(α, θ ), (54)

as given by (22) in Sec. II above.

D. Classical differential cross section

Let us now examine the higher derivatives of S(μ) with
respect to μ, at μ → m±kR. Since the classical impact param-
eters b±(α, θ ) as given in (22) are proportional to the sphere
radius R, but independent of momentum, we can further see
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that the Taylor series of S(mkR) around m∓ will be of the form

S((m± + �m)kR) = S(m±kR) +
∞∑

n=2

1

n!
Xn(α, θ )

(
�m

kR

)n

(55)
for coefficients Xn that do not depend on kR. This means
that in the limit kR → ∞, f̃ (θ ) in (48) is indeed given by
two Riemann sums for integrals with respect to μ = m/(kR),
each of which describes the integral of a complex exponential,
of which the phase has a large prefactor. We can therefore
indeed apply the method of stationary phase to these integrals,
approximating them as Gaussians, up to corrections that are
smaller by factors of 1/(kR).

In particular, we note the second derivative of S(μ) at
μ = b±/R:

∂2

∂μ2
S(μ) ≡ ∂

∂μ
(θ − 	(α,μ))

= R
∂	

∂b±
≡
(

1

R

∂b±
∂θ

)−1

. (56)

Our stationary phase approximation to f̃ (θ ) is therefore

f̃ (θ )
.= − i

2

∑
±

eik�(α,
m±
kR )

√
kR

∫ ∞

−∞
dξ ei R

2∂θ b± ξ 2

(57)

= −i

√
πk

2

∑
±

√
|∂θb±| eikR�

(
α,− b± (α,θ )

R

)
ei π

4 sgn ∂θ b± .

Finally, inserting (57) into (50), and using f (θ ) →
fSC(θ ) in the quantum differential cross section dσ/dθ =
2| f (θ )|2/(πk) yields the semiclassical differential cross sec-
tion as composed of three interfering terms:

dσ

dθ
=
∣∣∣∣∣ sin

(⌊
kR sin α� + 1

2

)
θ
)

√
2πk sin θ

2

−
∑
±

√
|∂θb±| eikR�(α,− b±

R )ei π
4 sgn ∂θ b±

∣∣∣∣∣
2

. (58)

The incoherently adding diagonal terms in this semiclas-
sical differential cross section consist of a sharp spike
which approaches 2R sin αδ(θ ) for kR → ∞, plus exactly the
classical differential cross section from Sec. II. The qual-
itatively nonclassical interference terms, however, do not
vanish for large kR; they simply oscillate more and more
rapidly with θ , providing many fine fringes. For large kR,
the two terms with

√|b±| factors dominate the differen-
tial cross section everywhere except at θ = 0, and these
can be recognized as a kind of double-slit interference pat-
tern due to the two classical paths which exist for every
scattering angle θ over the surface of the sphere on a
plane.

E. Comparison of exact and semiclassical
differential cross sections

Figure 10 compares the exact and semiclassical differential
cross sections for two cases, both with kR = 40, one with a
(slightly) less than hemispherical extrusion (α = 0.49π ), and
one with an almost full sphere (α = 0.85π ). It can be seen

FIG. 10. Exact (solid) and semiclassical (dashed) differential
cross sections (divided by R) for kR = 40 and α = 0.49π (upper
plot), α = 0.85π (lower plot). The classical differential cross sec-
tions are also shown (dotted) for comparison. The forward-scattering
spikes, suppressed to show detail for other angles, extend in the
exact differential cross sections to 25.1 (α = 0.49π ) and to 3.66
(α = 0.85π ), while the corresponding semiclassical values of | f (0)|2
are 26.6 and 4.31. The semiclassical approximation already captures
the angular spacing of the radial fringes well even at kR � 20, but
higher kR is required for the lengths of all the radial fringes to
converge on the exact values, especially for α < π/2. In particular,
the semiclassical approximation breaks down for α < π/2 near and
beyond the caustic |θ | = θc.

that the semiclassical approximation represents the angular
positioning of the interference fringes quite well, even for this
modestly large kR, though it does not always fully capture
their amplitudes.

It can further be noted that the semiclassical approxima-
tion works better for the super-hemispherical case than for
the subhemispherical one. There are two reasons for this.
First, the simple semiclassical method breaks down at the
caustic at θ = θc, where the two b±, and therefore the two
m±, coincide. Approximating the sum over m in (50) as two
separate Gaussian integrals is no longer a good approximation
as we approach θc. And for |θ | > θc there are no stationary
points m± because there are no classical trajectories, so the
simple semiclassical method does not work at all. Improved
semiclassical methods exist to resolve such problems [17], but
like the tunneling resonances above, we leave them for future
work.
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Second, however, the semiclassical approximation works
less well for α < π/2 even for |θ | < θc because although the
extrema of S(μ) at m±kR are both nice maxima for all θ , for
α < π/2 the extremum at μ = −b+/R is, for most |θ | < θc,
only a shallow dip within a steep slope. For sufficiently large
kR, this still implies a deep minimum in the phase kR S(μ),
but kR has to be considerably larger to make the stationary
phase approximation good around m+ for α < π/2 than it
does for α > π/2. Quantum corrections may therefore be
needed for accurate differential cross sections at moderate kR
for subhemispherical extrusions.

F. Exact and semiclassical total cross sections

Using the optical theorem σ (k) = (4/k)Im f (0), we can
conclude from (50) and (57), with our results b′

+(θ = 0) = 0
and b′

−(θ = 0) < 0 from Sec. II, that in the semiclassical limit
kR sin α � 1 we have

σ → R(σ̃SC(α, kR) + O(kR)−1),

σ̃SC = 4 sin α − 2
√

π cot α
2√

kR
cos

[
2kR(α − sin α) − π

4

]
.

(59)

The dotted curves in Fig. 7 are this σ̃SC. The agreement with
the full quantum cross section is indeed good for kR sin α �
1, except for the tunneling resonance spikes for α > π/2 that
we have already discussed, and for a small but systematic
discrepancy for α < π/2, which we presume is due to the
semiclassical failures at the classical caustics θ = ±θc.

Apart from the problems that we have postponed to fu-
ture work, concerning caustics for α < π/2 and tunneling
resonances for α > π/2, the semiclassical method clearly
describes quantum scattering from the sphere on a plane quite
well qualitatively for moderately large kR, with quantitative
convergence as kR → 0. The striking nonclassical features of
quantum scattering are well explained semiclassically by the
Poisson-spot-like forward spike and interference between the
two classical trajectories that exist for each scattering angle θ .

V. CONCLUSIONS

Our paper has been a technical exercise in theoretical
physics, addressing a problem which is not only idealized but
frankly exotic. We must admit that our question is mainly
interesting because of how thoroughly it can be answered.

The same admission must be made for many solvable model
problems, which nevertheless have their place in theoretical
physics. Geodesic motion in curved spaces really is phys-
ically important in the four-dimensional context of general
relativity; our two-dimensional example of piecewise uniform
curvature may at least be of pedagogical value in providing
some intuition about how curvature can affect motion.

More complicated two-dimensional cases than ours may
also be of interest for understanding subtleties in the rela-
tionships between quantum and classical mechanics, possibly
including subtleties of quantum chaos, because of the con-
venient billiardlike feature that the classical trajectories
do not depend on energy, and so the entirety of classi-
cal dynamics can be visualized in two dimensions without
loss of information, even though the phase space is actu-
ally four-dimensional. In our simple and symmetrical case,
quantum-classical correspondence has turned out to be rel-
atively straightforward, but interference and caustics and
tunneling have all appeared, even here. Further models of
free particles on curved surfaces may be useful for theoretical
studies of the quantum-classical frontier.

Experimental or even practical realizations of that general
problem may not even be so far-fetched, moreover. Curved
surfaces can be realized in graphene, for instance, and in such
cases curvature will certainly influence band structure. The
V (x, y) potential effects which have assumed to be absent
will surely be important in any such real two-dimensional
problems. Our results may nevertheless indicate an important
feature of the interaction between curvature and potential
energy, even though we have neglected the latter. We have
observed that curvature alone cannot induce bound states, but
as the right panel of Fig. 9 shows, curvature can have dramatic
effects on effective potentials: for instance, it can significantly
distort centrifugal barriers. If there is a potential well within a
region of negative curvature, like our spherical extrusion, the
softening of the centrifugal barrier due to curvature may allow
more bound states to exist than one would expect without
accounting for curvature. And we can conjecture, conversely,
that if regions of positive curvature could somehow be re-
alized, potential wells in these regions might possess fewer
bound states.
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