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Absorbers as detectors for unbound quantum systems
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Complex absorbing potentials are frequently employed in quantum calculations. One of the advantages that
such absorbers provide is the ability to attenuate outgoing waves in simulations of unbound systems, thus
allowing for truncating the numerical domain. Here we argue that the absorber may also be used to probe
outgoing waves so that physical information about absorbed particles may be retained. Moreover, under certain
conditions, the physical information extracted via the absorber is subject to loss in coherence, as is also the case
when collapsing the wave function upon measurement. Both these aspects demonstrate clearly how, and when,
the effect of introducing a complex absorbing potential corresponds to that of a detector.
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I. INTRODUCTION

Several theoretical and numerical studies of quantum sys-
tems make use of complex absorbing potentials (CAPs) [1–4].
Arguably, the most frequent application is simulations of un-
bound systems as they allow for applying truncated numerical
domains by attenuating outgoing waves without imposing ar-
tifacts such as unphysical reflections. They are also applied
to determine the characteristics of resonance states and to
describe many-particle tunneling decay, see, e.g., Refs. [3,5–
9]. Moreover, CAPs are used to calculate arrival times in
quantum systems [10–13]; arrival times may be determined
from the loss in the norm of the wave function, the absorp-
tion rate, that the CAP induces. In this context, CAPs or
other non-Hermitian Hamiltonians are typically introduced to
mimic continuous observation. In the case of strong absorbing
potentials, such rates are, in fact, suppressed, which, in turn,
is a manifestation of the quantum Zeno effect [14–16]. This is
an example of how a quantum system may be manipulated by
tailored measurements.

CAPs are usually imposed artificially, with the sole moti-
vation of facilitating numerical implementations. The works
presented in Refs. [13,17] represent exceptions to this rule,
however, as the authors arrived at effective CAPs from more
fundamental principles. In the case of Ref. [17], this was done
under very specific conditions, while a very generic approach
is presented in Ref. [13], one in which a detector was coupled
to an environment to encompass the irreversible nature of
measurement. This, in turn, underlines that detection really
is a Markovian process, and the proper framework is that of
open quantum systems.

Although works such as Refs. [2,11,13,17–20] highlight
the close connection between CAPs and detectors, the actual
effect of the CAPs is usually reduced to simply removing
parts of the wave function. However, since we know what we
remove, we can do better. We can use the CAP to probe the
outgoing waves and, thus, extract physical information about
the quantum system in question: physical information such as

energy or the ejection angle. After all, this is the main purpose
of imposing a detector. Moreover, the act of detection imposes
loss in coherence. Detector models which incorporate both
these aspects are more scarce.

It should be noted that a family of methods for extracting
information about unbound quantum particles prior to absorp-
tion, see, e.g., Refs. [21–26], or during absorption, see, e.g.,
Refs. [27–33], have been put forward. As will be apparent
in the following, the present approach differs from these in
several respects. In the one-particle case, the present scheme
may be formulated in a rather straightforward manner in
terms of continuous projective measurements. While slightly
less straightforward, it may also, along the lines explained in
Ref. [34], be generalized to any number of particles exposed
to any CAP acting as a one-particle operator. In addition
to studying how various ways of implementing CAPs may
be used to probe outgoing waves and determine distribution
functions for unbound particles, we will also explain how the
CAP characteristics affect the coherence properties of these
distributions. This, in turn, provides a clear criterion for when
a CAP may be considered to act as a detector.

In the next section the theory is explained with an emphasis
on unbound systems with one-particle. Its application is illus-
trated with two simple examples in Sec. III. The purpose of
these numerical examples is to demonstrate how information
about unbound particles may be retained despite absorption
and how different absorbers affect the coherence properties.
In Sec. III C a brief explanation is given on how the formal-
ism generalizes to a multiparticle context. The section also
features a brief comparison with some other approaches fea-
turing absoprtion or particle removal. Conclusions are drawn
in Sec. IV.

II. THEORY

Here we will explain the theory before we illustrate it
with two numerical examples. We will also outline how these
notions generalize to many-particle systems.
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A. Wave-function depletion

The evolution of the wave function for a quantum system
is dictated by the Schrödinger equation

ih̄
d

dt
� = H�, (1)

or generalizations thereof. The CAP is introduced by re-
placing the Hermitian Hamiltonian H with an effective
non-Hermitian Hamiltonian

Heff = H − i�, (2)

where the CAP � may be a local potential, i.e., one that
depends on position only, or a nonlocal one. In any case, it
should be chosen such that it only affects the dynamics near
the boundary of the numerical domain and leaves the interior
region unaffected. Here we will also insist that the � operator
is Hermitian and positive semi-definite,

�† = �, and � � 0. (3)

This ensures that the norm of the corresponding wave function
decreases for a system where there is an overlap between the
CAP and the wave function; from one time step to the next,
a part of the wave function will be removed. We wish to
analyze this part on the fly. To arrive at a properly normalized
expression, we find it instructive to do this in terms of the
corresponding pure state density matrix ρ = |�〉〈�|:

ρ(t + �t ) = ρ(t ) − i

h̄
[H, ρ]�t − 1

h̄
{�, ρ}�t + O(�t2).

(4)
The part which has been removed from the density matrix
during this time step is given by the anticommutator above.
In a context in which only the remainder is under study, a
normalization of the density matrix may be imposed, which,
in turn, leads to a nonlinear master equation for the time evo-
lution [35–37]. Here, on the other hand, we want the trace of
ρ to decrease according to Eq. (4). For a single-particle
system, the anticommutator in Eq. (4) adds to an effective
one-particle density matrix σ :

dσ = 1

h̄
{�, ρ} dt . (5)

The notion of σ as a density matrix should not be taken too far,
however. While it is a Hermitian operator, σ is not, in general,
positive semi-definite.

B. Momentum and energy differential spectra

Suppose now that we are interested in, e.g., the probability
distribution differential in momentum for a single unbound
particle ∂P/∂ p. This can be estimated by aggregating the
diagonal elements in the momentum eigenstates |p〉:

d

dt

∂P

∂ p
= 〈p|dσ

dt
|p〉 = 1

h̄
〈p|{�, ρ}|p〉, (6)

or, alternatively, in terms of projective measurements

∂P

∂ p
=

∫ t=∞

t=0
Tr (|p〉〈p|dσ ). (7)

For the CAP, the simplest and, arguably, most natural
choice is that of a local potential, i.e., one that is diagonal

in position x:

�x =
∫

dx γ (x)|x〉〈x|, (8)

where |x〉 are position eigenstates and the CAP position
function γ (x) is zero in the interior of the domain and
positive closer to the boundary of the numerical domain.
Here “

∫
dx” is to be taken as the definite integral over all

space, in all dimensions. Now, according to Eqs. (6) or (7),
the momentum-differential probability distribution of the un-
bound part of the wave function reads

∂P

∂ p
=

∫ t=∞

t=0
Tr (|p〉〈p|dσx )

= 2

h̄
Re

∫ ∞

0
dt[F{�(x; t )}(p)]∗F{γ (x)�(x; t )}(p), (9)

where F is the Fourier transform. There may, of course,
be other physical quantities of interest than momentum; in
Eq. (6) we may very well substitute the momentum pro-
jections with projection onto eigenstates of other physical
observables such as energy or, as we will address in Sec. II C,
position. While the CAP may affect the physical system by
inducing artificial reflections, Eq. (9) should at least produce
the actual asymptotic distribution of the unbound quantum
particle in the limit that the CAP function vanishes, γ → 0+.

Note that Eq. (9) provides a coherent sum of absorbed
contributions obtained at different times; a wave contribution
absorbed at a specific time may add constructively or destruc-
tively to waves aggregated from earlier absorption. Another,
related observation is the fact that the distribution does not
only depend on the overlap between the CAP and the wave
function, it also depends on the wave function beyond the
CAP region. Thus, it is crucial that the support of the states
we project onto is not limited to the CAP region.

Also, when it comes to the CAP itself, we are not restricted
to one that is diagonal in position. We could choose one that
is diagonal in momentum or energy instead. Such a CAP
would not be given by any local potential. Examples of non-
local CAPs seen in the literature are the transformative CAP
[38,39], the reflection-free CAP [40] or infinite range exterior
complex scaling [41]. In our context, we insist that the CAP
remains Hermitian, cf. Eq. (3); otherwise, the physics of the
particle undergoing absorption is altered in an artificial way.
We also insist that the CAP is written in terms of projections
as in Eq. (8). However, a straightforward replacement of the
position x with the momentum p in Eq. (8) is not adequate
as such an implementation would introduce absorption to
the entire domain, including the inner interaction region. We
propose the following energy absorber:

�ε =
∫

dε μ(ε)|ϕε〉〈ϕε|, (10)

where the |ϕε〉’s are energy-normalized eigenfunctions of the
Hamiltonian

Hε = H + Vε(x) where Vε(x) =
{∞, x ∈ DI ,

0, x /∈ DI .
(11)

Here, DI is the interior of the numerical domain; typically
it is given by |x| � R for some finite distance R from the
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origin. With this the eigenfunctions ϕp(x) = 〈x|ϕp〉 are only
supported for x /∈ DI . Correspondingly, the CAP of Eq. (10)
is both energy and position dependent, contrary to the strictly
position-dependent CAP of Eq. (8). The positive CAP func-
tion μ(ε), however, is purely energy dependent.

In obtaining the momentum or energy distribution using
the CAP of Eq. (10), we will, instead of using the momentum
basis, conveniently project onto the |ϕε〉 basis, in which the
CAP is diagonal

∂P

∂ε
=

∫ t=∞

t=0
Tr(|ϕε〉〈ϕε|dσε )

= 2

h̄

∫ ∞

0
dt μ(ε)|〈ϕε|�(t )〉|2. (12)

We note that, contrary to Eq. (9), this integral is incoherent
and manifestly nonnegative. Moreover, it only features con-
tributions from projection onto states which are supported in
the CAP region exclusively. Again, the correct, asymptotic
distribution should be obtained by extrapolating the strength
of the CAP function, in this case μ(ε), to zero. However, as
we will see, spectra obtained with finite-valued μ(ε) are also
of interest as they allow us to simulate detection.

C. Angular distribution

In addition to energy or momentum differential distribu-
tions, distributions differential in position, or rather, direction
are also of interest experimentally. For a three-dimensional
system we may write the position eigenstate |x〉 in terms of
spherical coordinates as |r,�〉 and introduce the additional
assumption on the local CAP of Eq. (8) that it is isotropic

�r =
∫

r2drd� γ (r)|r,�〉〈r,�|. (13)

As in the case of Eq. (12), the position distribution obtained
from the position diagonal CAP of Eq. (13) becomes an in-
coherent integral. As the distribution in radial distance r is
usually less interesting than the distribution in �, we integrate
out the r dependence and arrive at

∂P

∂�
= 2

h̄

∫ ∞

0
dt

∫ ∞

0
r2dr γ (r)|�(r,�; t )|2. (14)

The analogous expression in two-dimensional polar coordi-
nates reads

∂P

∂θ
= 2

h̄

∫ ∞

0
dt

∫ ∞

0
rdr γ (r)|�(r, θ ; t )|2. (15)

III. NUMERICAL EXAMPLES

In the following we will illustrate the approaches outlined
above to absorption and analysis of two particular unbound
one-particle systems. As they are both rather simple and
generic, they serve well to illustrate the scheme presented
here, with particular emphasis on the close correspondence
between detectors and absorbers.

A. Energy spectra for a dynamic one-dimensional system

In our first example, which is one-dimensional, a particle
is initially trapped in the ground state of a confining potential

FIG. 1. Left column: Energy distribution from the unbound part
of the wave function obtained from a local CAP. Right column:
Energy distributions calculated for the same system albeit with an
energy CAP. In this case, both analyzing the outgoing waves and
expressing the CAP is done in terms of projections onto eigenstates
which are only supported in the CAP region. The spectra are plotted
for various CAP strengths, be it diagonal in position, γ0 in Eq. (8),
or energy μ0 in Eq. (10). The upper panels display the spectra with a
linear axis while the lower ones have a logarithmic y axis. The energy
spectrum obtained by conventional means, without absorption, is
also included for comparison. The vertical dashed lines in the lower
panels indicates nh̄ω for n = 1, 2, and 3.

V (x), which features a finite number of bound states and
a continuum. The particle is exposed to an explicitly time-
dependent perturbation; the total (Hermitian) Hamiltonian of
the system reads

H = − h̄2

2m

d2

dx2
+ V (x) + qE (t )x, (16)

where q is the charge of the particle and

E (t ) = EPulse(t ) + EPulse(t − T − τ ) where (17a)

EPulse(t ) =
{

E0 sin2
(

π
T t

)
sin(ωt ), 0 � t � T,

0, otherwise.
(17b)

The system may serve as a model atom exposed to two con-
secutive laser pulses.

The time-dependent Schrödinger equation, Eq. (1), is
solved with the effective Hamiltonian of Eq. (2) with the
Hermitian part given by Eq. (16). First we employ a local
CAP, cf. Eq. (8), with a square CAP function

γ (x) =
{
γ0(x − R)2, |x| > R,

0, otherwise.
(18)

The interference between outgoing wave components lib-
erated at different times causes a rich structure in the emerging
energy distribution of the unbound particle. The left column
of Fig. 1 shows this distribution calculated by using Eq. (9). It
is plotted against energy rather than momentum. In the CAP

042213-3



SØLVE SELSTØ PHYSICAL REVIEW A 106, 042213 (2022)

region, the confining potential may safely be neglected so that
ε = p2/2m.

We use units defined by choosing h̄, m, and −q as the unit
of their respective quantities. In these units, i.e., atomic units
(a.u.), the confining potential, which is a negative Gaussian,
has the depth V0 = 0.6 and the width σV = 3. The corre-
sponding ground-state energy is −0.48. The time-dependent
perturbation is characterized by the strength E0 = 2, the an-
gular frequency ω = 1, and the delay τ between the pulses is
5 time units. Each pulse has a duration corresponding to ten
optical cycles and the CAP onset R = 200 length units.

The energy spectra are calculated using various absorber
strengths γ0. It is striking to see that not only does the spec-
trum converge as the strength of the CAP function decreases,
but apart from the low-energy region, it is virtually indepen-
dent of the CAP strength. This feature in no way relies on
the specific shape of the CAP function; other choices than the
one of Eq. (18) display the same behavior (not shown). The
discrepancies we see at low energies are clearly unphysical
not only because of the γ0 dependence, but also because
they produce “negative probabilities.” This undesired feature,
which diminishes with decreasing γ0, seems to be related to
the fact that hard absorption does induce artificial reflections
[11].

With the perturbation of Eq. (17) interpreted as an external
electric field, the structure seen in the upper panels of Fig. 1
corresponds to absorption of one photon. With a logarithmic
y axis, we also clearly see structures corresponding to the
absorption of two and three photons as well (lower panels). A
somewhat stronger γ0 dependence is seen at the multiphoton
peaks. For a direct comparison, we also calculated the energy
spectrum obtained by conventional means, i.e., by projecting
the unabsorbed wave function onto the appropriate scattering
states, in the panes of Fig. 1.

It may appear less than intuitive that we, in fact, arrive
at spectra which agree very well with the correct one using
projection onto plane waves, which, contrary to the appropri-
ate scattering states, do not take the nature of the potential V
into account. Of course, the analysis is based on the overlap
between the CAP operator and the absorbed density matrix;
the potential may safely be neglected in the CAP region. How-
ever, as discussed in regard to Eq. (9), the resulting formula
depends on the overlap between the wave function and the
scattering states in the inner region as well. As it turns out, the
analysis is quite insensitive to the shape of the scattering states
in the inner region. But the ability to preserve coherence relies
on the fact that the scattering states are supported throughout
the space, not just the CAP region. This will be illustrated
further in the following.

We will now study the same type of spectra using the
energy CAP of Eq. (10). We chose a CAP function of the form

μ(ε) = μ0
6
√

ε. (19)

The energy distribution of the liberated and absorbed particle
is now provided by Eq. (12), as opposed to Eq. (9) in the
preceding case. The results are displayed for various values
of μ0 in the right column of Fig. 1. They differ from the ones
in the left column in several respects. One difference is that
these spectra are all strictly nonnegative, in accordance with
Eq. (12). A more striking difference is how strongly these

spectra depend on the CAP strength μ0. Specifically, ripples
are not resolved at all at hard absorption, while the resolution
of the structure improves as the absorption strength decreases.
Although the spectra depend strongly on the CAP strength in
this case, they do converge towards the same asymptotic form
as in the previous case.

These observations are concordant with the following pic-
ture: As a particle enters into the CAP region, with some
probability, it is gradually attenuated and the energy of the
absorbed part is recorded as dictated by Eq. (12). Suppose
another outgoing wave reaches the energy CAP at a later
stage; its energy contribution is, again, recorded and added
to the total distribution - in an incoherent manner. Thus, these
two waves are not allowed to interfere; absorption is detrimen-
tal to any interference patterns which would have emerged
otherwise. The same would be the case if an energy detector
placed in extreme vicinity with the quantum system induced a
collapse in the wave function prior to interference. This loss in
coherence together with the record of absorbed and measured
data motivates how an energy-diagonal CAP simulates the
action of a detector.

In more technical terms, when the measurement consist in
projection onto the |ϕε〉-basis, the pure state wave function
collapses,

|�〉〈�| →
∫

dε ζ (ε)|ϕε〉〈ϕε|, (20)

where ζ (ε) is the distribution function for ε, the outcome of
a series of energy measurements. This outcome may depend
on the characteristics of the detector: where it is placed and
how it is coupled to the system. Now, is it reasonable to
interpret the energy distribution of Eq. (12), i.e., the energy-
diagonal of the effective, accumulated density matrix σε, as
such a distribution function? Probability considerations re-
quire that the integral of ζ (ε) coincides with the trace of σε;
they should both equal the probability of the particle being
unbound. Moreover, the distribution is calculated as a cumu-
lative projective measurement onto states which are supported
in the region of measurement or absorption only. Contribu-
tions picked up at different times should all contribute in a
manifestly nonnegative manner. The energy distribution of
Eq. (12) does, in fact, comply with these criteria; it can be
identified with a distribution function such as ζ (ε) of Eq. (20).
Correspondingly, a CAP could act as an energy detector iff it
is diagonal in the basis of projection.

As we have seen, the situation is quite different when
energy or momentum spectra are calculated using a local
CAP, Eq. (8), instead. Here, the absorbed waves are projected
onto states in which the CAP is not diagonal, states which
are supported beyond the CAP region. According to Eq. (9),
outgoing waves absorbed and recorded at different times are
added together in a coherent manner; effectively, they are
allowed to interfere in momentum space also after absorption.
Thus, even hard absorption allows interference patterns to be
seen and the emerging spectra turns out to be quite insensitive
to the strength of the CAP function.

This suggests that, in terms of implementation and simu-
lation, local CAPs are numerically favorable for determining
energy spectra as they allow for resolving fine structures while
still admitting a strong truncation of the numerical domain.
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FIG. 2. Upper panel: The initial situation; a wave function of
narrow spatial extension in the propagation direction (red) is incident
on a high wall with two narrow gaps (green). At the other side, the
outgoing waves are absorbed by a local CAP (blue). Lower panel:
The angular interference pattern emerging from a particle passing
through a double slit. It is obtained by probing the outgoing waves
with absorbers placed at various distances from the double slit.

The energy CAP of Eq. (10), on the other hand, has the
interesting trait that it simulates the effect of imposing a de-
tector. While experimental situations usually involve detectors
placed far away and with very large extension, R → ∞ and
μ0 → 0+, we do find the ability to perform such dynamical
studies to be an interesting one. As the CAP function μ(ε)
could be virtually any positive function, there is a large degree
of flexibility in modeling the detector and thus manipulate the
quantum system in specific ways [13,14].

B. Double slit interference

In the next example we will turn the table and use a local
potential, Eq. (8), to model a detector instead. We will study
the well-known interference pattern emerging from a quantum
particle passing through a double slit. An initial wave function
with narrow spatial extension in the propagation direction
travels towards a wall with two narrow gaps. Physically, the
interference pattern that emerges on the other side of the slit
will be altered if a wave emerging from one slit is subject to
a position measurement before it has had time to overlap with
waves emerging from the other slit.

Such a distortion is shown in the lower panel of Fig. 2.
As illustrated in the upper panel, we imposed a local CAP
which is a two-dimensional analog of Eq. (13) with a CAP
function of the same form as in Eq. (18), with x replaced by

r, the distance from the midpoint between the two slits. The
angular distribution of the absorbed particle is calculated from
Eq. (15). In units defined by, again, setting h̄ and the particle
mass to 1, the initial wave travels towards the wall with the
mean de Broglie wavelength λ = 2π/k = 2; the initial width
in the propagation direction is equal to λ. The slits, which
have a rather smooth shape, are separated, center to center,
by 20 length units, and their widths are both 1.5 units. The
CAP strength γ0 = 0.03.

As we see, the interference pattern is strongly affected
by absorption close to the double slit, while it converges
as the onset of the CAP moves outwards. We explain this
analogously to the case of the right column of Fig. 1: From
Eq. (15) we see that absorbed waves are accumulated in an
incoherent manner. Consequently, if a wave passing through
one slit reaches the CAP and is absorbed, or, correspondingly,
reaches the detector and is collapsed, before it has had time to
overlap appreciably with the waves emerging from the other
slit, it will not be subject to the interference which would have
taken place otherwise. Figure 3 serves to illustrate this.

C. Concluding remarks

In the present work we only considered one-particle sys-
tems. In Ref. [34] numerical examples similar to that of the
left column of Fig. 1 were described with two particles in-
stead of one. Contrary to the Schrödinger equation, Eq. (1),
the Gorini-Kossakowski-Sudarshan-Lindblad (GKLS) equa-
tion [42,43] allows for maintaining the remaining particle as
the other undergoes absorption [19,44]. The remaining parti-
cle, which in general will not be in a pure state, is described
by a density matrix ρ1. This particle may go on to be absorbed
as well and, thus, also contribute to an energy differential
probability distribution. In both cases, i.e., in going from two
to one particle and in going from one to zero particles, the
information about the removed particle may be aggregated as
effective one-particle density matrices in a manner analogous
to Eq. (5). Specifically, information from the first absorption
is retained in the effective one-particle density matrix given
by

dσ2→1 = 1

h̄
{�̂,�}dt where (21a)

� = 2
∫∫

dxdx′ φ(x, x′)|x〉〈x′| with (21b)

φ(x, x′; t ) =
∫

dy �2(x, y; t )�∗
2 (x′, y; t ). (21c)

Here �2(x, y) is the wave function of the two-particle part,
which remains in a pure state. The second absorption is
recorded via

dσ1→0 = 1

h̄
{�̂, ρ1} dt, (22)

where ρ1, as mentioned, is the one-particle subsystem emerg-
ing from the first absorption. The effective one-particle
density matrix � in Eq. (21b) may conveniently be expressed
in terms of second quantization, see Ref. [34] for details. Both
these effective density matrices, i.e., σ2→1 and σ1→0, may be
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FIG. 3. The left panels show snapshots of the part of the wave
function which has traveled through the double slit. Its initial mo-
mentum points in the x direction. The length units in both the x and
y directions are defined by setting h̄ and the particle mass to unity.
The wave packet is subject to an absorber with an onset R indicated
by the white dashed curve; the upper case corresponds to R = 20
while R = 50 for the lower panels. The thick black lines to the left
illustrates the wall. As the wave packet enters the absorption region,
the amount of absorption at each position is aggregated. The right
panels illustrate this aggregation. The interference patterns shown in
the lower panel of Fig. 2 is precisely this distribution, with the radial
distance r integrated out, see Eq. (15).

analyzed on the fly by continuous projective measurements in
the exact same manner as explained in Sec. II.

This also applies to energy-absorbers, Eq. (10), as also
these may be expressed as one-particle operators in a multi-
particle context. Thus, the arguments presented here on the
correspondence between CAPs and detectors are not limited
to the one-particle case.

It should be stressed that neither the idea of CAPs as
detectors nor the general idea of using CAPs actively to
probe outgoing waves is not unprecedented in literature. In
Ref. [27] it was explained how different decay products in
a breakup process may be distinguished via matrix elements
explicitly involving CAP functions. This method, which has
the advantage of being apt for implementation within the
multiconfigurational time-dependent Hartree approximation

[45], exploits the possibility of assigning different CAPs to
the various decay channels.

Another technique used for analyzing unbound particles
encountered in the literature is referred to as virtual detectors,
see, e.g., Refs. [21,22]. In the present context, the naming calls
for some disambiguation. Along with a number of similar
techniques, see, e.g., Refs. [23–25], it involves the calculation
of the probability current, or flux, through some surface. While
the notion of a detector would, to some extent, seem adequate
also in this context, virtual detectors differ more from the
present framework than the name would suggest. One reason
for this is that, contrary to the CAP, the virtual detector does
not have any spatial extension nor does it bring about any loss
in coherence. The CAP is simply used to attenuate outgoing
waves; contrary to the method discussed above and the one
presented here, it is not used to probe the outgoing wave.
Moreover, it does not seem to generalize naturally to the
multiparticle case.

Yet another approach for modeling detection by means of
an absorbing boundary was proposed in Ref. [20], which,
in turn, was partially based on the work of the author of
Ref. [18]. As in the case of the virtual detector, it intro-
duces a detector model without extension. In contrast to most
other works involving CAPs, however, the absorber itself is
also without extension. Correspondingly, the system is sub-
ject to pronounced reflection at the boundary. In addition,
the proposed detection is not necessarily accompanied with
absorption, in stark contrast with the notion of detection in
the present work.

On the other hand, the Monte Carlo wave packet ap-
proach and the closely related quantum jump method, see,
e.g., Refs. [46,47], bear a strong resemblance to the present
approach. Such approaches, along with the derivation of
Halliwell [13], could hopefully assist in making a closer cor-
respondence between physical detectors and the shape of the
CAP functions, be it of the form of Eqs. (8), (10), or any other.

IV. CONCLUSION

We explained how CAPs, in addition to attenuating out-
going waves, may be used to probe quantum particles
undergoing absorption. By theoretical derivations and numer-
ical examples we demonstrated how differential spectra of
unbound particles, such as energy distributions or angular dis-
tributions, could be determined. We made a clear distinction
between situations in which the absorbed particle is analyzed
by projection onto states in which the absorbing potential is
diagonal and situations when it is nondiagonal.

In the case of a non-diagonal absorber supported beyond
the CAP region, we showed that energy spectra are quite
insensitive to the shape of local CAP as they allow for waves
absorbed at different times to interfere. This is not the case
in the diagonal case. In such situations the CAP acts as a
detector. This applies both to the fact that the CAP effectively
provides distribution functions for absorbed particles and to
the fact that it proves detrimental to interference effects in
these distribution functions. This, in turn, may open an avenue
for studying how quantum systems may be manipulated by
tailored detection.
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