
PHYSICAL REVIEW A 106, 042212 (2022)
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We analyze and compare different measures for the degree of non-Markovianity in the dynamics of open
quantum systems. These measures are based on the distinguishability of quantum states, which is quantified,
on the one hand, by the trace distance or, more generally, by the trace norm of the Helstrom matrix and,
on the other hand, by entropic quantifiers: the Jensen-Shannon divergence and the Holevo or quantum skew
divergence. We explicitly construct a qubit dynamics for which the trace-norm-based non-Markovianity measure
is nonzero, while all the entropic measures turn out to be zero. This leads to the surprising conclusion that the
non-Markovianity measure which employs the trace norm of the Helstrom matrix is strictly stronger than all
entropic non-Markovianity measures.
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I. INTRODUCTION

The study of quantum non-Markovian dynamics involves
the investigation of the very notion of stochastic processes in
the quantum realm, as well as the characterization of memory
effects in open quantum system dynamics [1–4]. Memory
effects in the dynamics of a quantum system interacting with
an external environment can be uniquely traced back to local
retrieval of exchanged information in the approach to non-
Markovianity based on the nonmonotonic behavior in time
of the distinguishability of quantum states. This strategy was
introduced in [5] and validated for different distinguishability
quantifiers of quantum states. In particular, while the original
approach was focused on the trace distance, it was later put
into evidence that invariance under translations of this quan-
tifier led to failure in assessing memory features in certain
dynamics [6]. To avoid this difficulty, the trace norm of the
Helstrom matrix was used as a generalized trace distance also
sensitive to translations [7,8]. A crucial feature associated
with the trace norm of the Helstrom matrix is the fact that
its nonmonotonicity in time is equivalent to the lack of P
divisibility of the considered dynamics, provided the evolu-
tion is invertible as a linear transformation. In such a way a
direct relation could be established between a divisibility and
a distinguishability criterion.

More recently, entropic distinguishability quantifiers have
also been introduced and directly connected to the notion of
non-Markovianity due to information backflow [9]. To this
aim, suitable regularizations of the quantum relative entropy
have been considered, which, at variance with the quantum
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relative entropy, remain finite for any pair of states and allow
us to introduce trianglelike inequalities which connect revivals
of the quantifier to information backflow, even in the absence
of a true triangle inequality like for distances. Furthermore,
these entropic quantifiers are also sensitive to translations. In
this framework, a special role is played by the Jensen-Shannon
divergence, whose square root is a true distance [10–12]. We
remark that the measure of non-Markovianity defined by the
Jensen-Shannon divergence is not the only possible quanti-
fier of non-Markovianity linked to the concept of entropy.
Indeed, measures based on the nonmonotonic behavior of
entanglement or of quantum mutual information have been
proposed [13,14] and linked to a backflow of information
[15,16], although within a different perspective with respect
to the one proposed in this paper. These two measures have
been compared in the literature and have been shown to be
inequivalent in detecting memory effects [17].

Given that entropic distinguishability quantifiers are con-
tractions under positive trace-preserving maps which are not
necessarily completely positive, which happens for the trace
distance and the trace norm of the Helstrom matrix, a nat-
ural question is the role of P divisibility in this context.
Importantly, we show by means of an example that the Jensen-
Shannon divergence, as well as the other entropic quantifiers,
might fail in detecting breaking of P divisibility.

Our results imply that the non-Markovianity measure em-
ploying the trace norm of the Helstrom matrix is strictly
stronger than all of the entropic non-Markovianity measures,
leading to a nonzero value even for dynamics for which the
entropic measures are zero, while the opposite cannot happen.

This paper is organized as follows. In Sec. II we introduce
and exemplify the general framework for the treatment of
non-Markovianity based on distinguishability quantifiers, to-
gether with the associated measures. In Sec. III we outline the
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connection between non-Markovianity and the divisibility of
the dynamics and explore this relationship via its dependence
on the considered distinguishability quantifier. In particular,
we construct an example of non-P-divisible evolution whose
non-Markovianity measure is zero according to entropic quan-
tifiers. We summarize and discuss the conclusions of our work
in Sec. IV.

II. ENTROPIC AND TRACE-DISTANCE-BASED
DISTINGUISHABILITY QUANTIFIERS

Let us begin by introducing the general framework of non-
Markovianity for the dynamics of open quantum systems. The
main aim is to compare the well-known measure of memory
effects based on the trace distance with other measures us-
ing alternative different distinguishability quantifiers between
quantum states, in particular those related to the quantum
relative entropy.

A. Trace distance and Helstrom matrix

In the framework of quantum information and statistics
there are many different quantifiers of distinguishability be-
tween two quantum states ρ and σ . A very important one is
given by the trace distance (TD) [18]

D(ρ, σ ) = 1
2‖ρ − σ‖, (1)

where the trace norm of any trace-class operator A is defined
as ‖A‖ = tr

√
A†A. The TD is bounded, 0 � D(ρ, σ ) � 1, with

D(ρ, σ ) = 0 if and only if ρ = σ and D(ρ, σ ) = 1 if and only
if ρ ⊥ σ . Additionally, the TD obeys the triangle inequality

D(ρ, σ ) � D(ρ, τ ) + D(τ, σ ) (2)

and is contractive under the action of any completely positive
trace-preserving (CPTP) map �, as well as of any positive
trace-preserving map [19]

D(�ρ,�σ ) � D(ρ, σ ), (3)

and it is invariant under unitary and antiunitary transforma-
tions [20]. It is also invariant under translations in the sense
that

D(ρ + A, σ + A) = D(ρ, σ ) (4)

for any operator A. This follows directly from the fact that the
TD depends on the difference between its two arguments.

It is possible to interpret the TD as the bias in favor of
a correct identification between two quantum states upon
performing a single measurement. Let us suppose that Alice
prepares the state ρ or σ , each with probability 1

2 , and sends
it to Bob; the TD is linked to Bob’s maximal probability of
correctly distinguishing between the two as [21]

Pdist(ρ, σ ) = 1
2 [1 + D(ρ, σ )]. (5)

This feature, combined with the contractivity of the TD under
CPTP maps (3), tells us that CPTP maps cannot increase the
probability of distinguishing between quantum states.

The idea of using the trace norm ‖ · ‖ to quantify the bias in
favor of a correct identification can be generalized also to the
case in which the two states ρ and σ are not prepared with the
same a priori probability. In fact, if one supposes that Alice

prepares ρ with probability p and σ with probability 1 − p,
then Bob’s maximal probability of distinguishing between the
two is given by [22]

Pdist(ρ, σ ) = 1
2 (1 + ‖�‖), (6)

where

� = pρ − (1 − p)σ (7)

is known as the Helstrom matrix [23]. The trace norm of �

represents the bias in favor of a correct identification, and
Eq. (6) reduces to (5) in the unbiased case p = 1

2 . The Hel-
strom matrix can be seen as a generalization of the TD to
generic ensembles { (p, ρ), (1 − p, σ ) }, and it inherits prop-
erties such as boundedness and contractivity from the TD.

B. Jensen-Shannon and skew divergences

The TD is not the only possible quantifier of distinguisha-
bility between quantum states. A particularly interesting
distinguishability quantifier is the relative entropy

S(ρ, σ ) =
{

tr[ρ log2 ρ − ρ log2 σ ] if supp ρ ⊆ supp σ,

∞ otherwise.
(8)

The relative entropy, just like the TD, is contractive under
both CPTP maps and positive trace-preserving maps [24].
However, as is evident from the definition, it is not bounded.

The relative entropy can also be naturally associated with a
distinguishability task. In particular, let us suppose we are able
to prepare and measure the states an arbitrarily large number
N of times. The relative entropy S(ρ, σ ) represents the max-
imal asymptotic rate at which the probability of erroneously
concluding that the state is ρ when it is actually σ decays
with the size N of the sample over which a measurement
is performed, so that for large enough N the probability of
correctly identifying the state is [25–27]

PN,dist(ρ, σ ) = 1 − e−NS(ρ,σ ). (9)

Unboundedness here arises naturally: whenever supp ρ �⊆
supp σ , one might distinguish with certainty ρ from σ with
only a finite number of measurements, and hence, the rate is
infinite (see [28] for a more detailed discussion).

It is possible to define a smoothed version of the relative
entropy, namely, the Jensen-Shannon divergence (JSD), ac-
cording to [29]

J (ρ, σ ) = 1

2
S
(
ρ,

ρ + σ

2

)
+ 1

2
S
(
σ,

ρ + σ

2

)

= H
(ρ + σ

2

)
− 1

2
H (ρ) − 1

2
H (σ ), (10)

where H denotes the von Neumann entropy H (ρ) =
− tr ρ log2 ρ. This definition ensures that the JSD inherits the
contractivity under CPTP maps from the relative entropy and,
additionally, it is bounded according to 0 � J (ρ, σ ) � 1, with
J (ρ, σ ) = 0 if and only if ρ = σ , while J (ρ, σ ) = 1 if and
only if ρ ⊥ σ . In particular, it can be bounded by monotonic
functions of the TD as [30,31]

1
2 D(ρ, σ )2 � J (ρ, σ ) � D(ρ, σ ). (11)
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FIG. 1. Plot of the JSD and the TD for 105 randomly generated
pairs of qubits. The red lines are the upper and lower bounds of
Eq. (11), which are also valid for arbitrarily dimensional Hilbert
spaces.

The lower bound directly follows from the Pinsker inequality
[26]. Figure 1 shows these bounds together with the value of
the TD and the JSD for randomly chosen pairs of states. The
JSD is not invariant under translations in the sense of (4) since,
unlike the TD, it does not depend solely on the difference ρ −
σ . This fact is visualized in Fig. 2.

The JSD, unlike the TD, is not a distance since it does
not obey the triangle inequality. However, it has been proven
that its square root (JSD

1
2 ) does obey this inequality and is

indeed a distance [10–12]. Even if it does not obey the triangle
inequality, the JSD obeys a trianglelike inequality,

J (ρ, σ ) − J (ρ, τ ) � 4
√

2J (σ, τ ), (12)

which follows from the inequalities presented in [30].
It is possible to generalize the JSD to generic ensembles

{ (μ, ρ), (1 − μ, σ ) }; however, unlike for the TD, such gen-
eralization is not unique. As suggested in [32], we point to
two distinct generalizations based on a skewed version of the
relative entropy, also called telescopic relative entropy in the
quantum setting [33,34]. We therefore introduce the Holevo
skew divergence

Kμ(ρ, σ ) = χμ(ρ, σ )

h(μ)
, (13)

FIG. 2. Plots of the TD (left) and of the JSD (right) for qubit
states represented by Bloch vectors of the form rρ = (x1, 0, 0)�,
rσ = (x2, 0, 0)�. The translational invariance of the TD is reflected
by the fact that the plot on the left depends on only the difference
x1 − x2. Note further the different sensitivities in the central and
corner regions.

where

h(p) = −p log2 p − (1 − p) log2(1 − p) (14)

is the binary entropy for the distribution { p, 1 − p } and

χμ(ρ, σ ) = H[μρ + (1 − μ)σ ] − μH (ρ) − (1 − μ)H (σ )
(15)

is the Holevo χ quantity [35] for the considered ensemble, as
well as the quantum skew divergence

Sμ(ρ, σ ) = μ

log2(1/μ)
S(ρ,μρ + (1 − μ)σ )

+ 1 − μ

log2[1/(1 − μ)]
S(σ, (1 − μ)σ + μρ).

(16)

Both quantities are bounded, and they reduce to the JSD in the
unbiased case μ = 1

2 . Furthermore, they both obey triangle-
like inequalities similar to the ones that hold for the unbiased
case (12), namely [9,32],

Sμ(ρ, σ ) − Sμ(ρ, τ ) � ηS
μ

4
√

Sμ(σ, τ ), (17)

Kμ(ρ, σ ) − Kμ(ρ, τ ) � ηK
μ

4
√

Kμ(σ, τ ), (18)

with

ηS
μ = log2

(
1

μ(1 − μ)

)
4

√
μ(1 − μ)

2 h(μ) log3
2(μ) log3

2(1 − μ)
,

ηK
μ = 4

√
8μ(1 − μ)

h(μ)3
. (19)

C. Non-Markovianity measures from distinguishability
quantifiers

The unavoidable interaction between a quantum system
and its surroundings leads to system-environment correlations
and nonunitary time evolution of the state. Assuming that at
the initial time t = 0 the global system-environment state is
factorized, the dynamics is described by a one-parameter fam-
ily of CPTP dynamical maps 	 = {	t | 0 � t � T,	0 = 1}
such that ρ(t ) = 	tρ(0). We always assume that the dynam-
ics is invertible, in the sense that 	−1

t exists at all times t � 0.
Under this assumption, it is possible to define a two-parameter
family of maps as

	t,s = 	t	
−1
s , t � s � 0, (20)

such that 	t,0 = 	t , describing the evolution of the state from
time s to time t . The dynamics is said to be (C)P divisible if
	t,s is (completely) positive for all times t � s � 0.

The interaction between the system and the environment
can lead to memory effects during the dynamics of the state.
If this happens, the dynamics is said to be non-Markovian.
Following [1,5], we define a family of non-Markovianity mea-
sures based on some distinguishability quantifier d as

N d (	) = sup
∫

σd (t )>0
dt σd (t ), (21)

where

σd (t ) = d

dt
d (ρ1(t ), ρ2(t )) (22)
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and the maximization is performed over all possible pairs of
initial states ρ1,2(0) and any eventual parameter defining the
distinguishability quantifier d , such as the skewing parameter
μ defining Sμ or Kμ. A certain pair of initial states ρ1,2(0) is
said to be optimal if the maximum of Eq. (21) is attained on
this pair. Thus, a dynamical map 	 is Markovian according to
the quantifier d if and only if N d (	) = 0 or, equivalently, if
d (ρ1(t ), ρ2(t )) is a monotonic function of time for any initial
pair of states ρ1,2(0). Alternative approaches are, indeed, pos-
sible, such as violations of divisibility of the dynamical map
[1–3,36–38].

Following [32], in order to have a well-defined measure of
non-Markovianity we require the quantifier d to obey three
properties.

(1) The first is the boundedness and indistinguishability of
identical states:

0 � d (ρ, σ ) � 1, (23)

with d (ρ, σ ) = 1 if and only if ρ ⊥ σ and d (ρ, σ ) = 0 if
and only if ρ = σ . Considering bounded distinguishability
quantifiers allows us to perform the maximization in Eq. (21),
thus warranting that the measure of non-Markovianity is well
defined.

(2) The second one is contractivity under CPTP maps:

d (�ρ,�σ ) � d (ρ, σ ) (24)

for any CPTP map �. This property is crucial because any
revival in d must necessarily correspond to violations of di-
visibility of the dynamical map. In fact, if 	 is CP divisible, d
must be monotonically decreasing since the map 	t,s describ-
ing the evolution from s to t > s is always CPTP. Therefore, a
revival in d is possible only if 	 violates the divisibility.

(3) The last property is the trianglelike inequalities:

d (ρ, σ ) − d (ρ, τ ) � φ(d (σ, τ )), (25)

d (ρ, σ ) − d (τ, σ ) � φ(d (ρ, τ )), (26)

where φ(x) is a strictly positive concave function for x > 0,
with φ(0) = 0. This property allows for a microscopic in-
terpretation of the revivals of d as a twofold exchange of
information, which is at first stored in external degrees of
freedom and later retrieved in the open system.

TD, JSD, JSD
1
2 , and their generalizations all obey prop-

erties 1–3 and hence lead to a well-defined measure of
non-Markovianity. For the TD and JSD

1
2 , which are actually

distances, the function φ is given by the identity, while, for
the JSD and the other entropic quantities, the function φ is
proportional to the fourth root following Eq. (12), as well as
(17) and (18).

Given two distinguishability quantifiers d1 and d2 satisfy-
ing properties 1–3, we say that N d1 is stronger than N d2 if,
for any dynamical map 	 such that N d2 (	) > 0, N d1 (	) >

0. Furthermore, N d1 is strictly stronger than N d2 if it is
stronger and 	 exists such that N d2 (	) = 0 and N d1 (	) >

0. Conversely, N d1 is (strictly) weaker than N d2 if N d2 is
(strictly) stronger than N d1 . Two measures are said to be
equivalent if N d1 is both stronger and weaker than N d2 .

An important distinguishability quantifier obeying the
three above-mentioned properties is the TD. Optimal pairs

for this measure must always be orthogonal and therefore on
the border of the set of states [39]. Additionally, the triangle
inequality (2) allows an upper bound on the revival of the TD
from s to a later time t > s > 0 as [40–42]

�D(t, s) = D
(
ρ1

S (t ), ρ2
S (t )

) − D
(
ρ1

S (s), ρ2
S (s)

)

� D
(
ρ1

SE (s), ρ1
S (s) ⊗ ρ1

E (s)
)

+ D
(
ρ2

SE (s), ρ2
S (s) ⊗ ρ2

E (s)
)

+ D
(
ρ1

E (s), ρ2
E (s)

)
, (27)

where ρ i
SE (s) for i = 1, 2 is the global system-environment

state and ρ i
S (s) = trE ρ i

SE (s) and ρ i
E (s) = trS ρ i

SE (s) are, re-
spectively, the reduced system and environmental states at
time s. This allows for a microscopic interpretation of the
measure of non-Markovianity [40,41]: a revival in the TD is
possible only if at time s the two environments are different or
if correlations have built up during the dynamics. Therefore,
information is stored as correlations or as difference between
the environmental states and can later flow back into the open
system. A similar interpretation also holds for the measure
of non-Markovianity arising from the Helstrom matrix [8],
as well as for entropic distinguishability quantifiers [9,32]. In
particular, the non-Markovianity measure obtained according
to Eq. (21) when the quantifier d is the trace norm of the
Helstrom matrix Eq. (7), which we denote as N �(	), is
positive if and only if 	 is not P divisible, which was shown in
[7,8] building on results in [43,44]. The measure based on the
TD, instead, is strictly weaker than N � since it can equal zero
even for non-P-divisible dynamics due to its translational in-
variance [6]. Given that both the TD and the quantum relative
entropy are contractive under positive trace-preserving maps
and the equivalence between a non-Markovianity measure and
a divisibility property was obtained by considering positivity,
from now on we will concentrate our attention simply on
positivity.

Let us now focus our attention on the entropic distin-
guishability quantifiers in Sec. II A. Except for the relative
entropy, which is unbounded, all the other quantifiers obey
properties 1–3 and hence can be used to define a measure
of non-Markovianity. In particular, we want to investigate
whether these measures of non-Markovianity are equivalent
to N �. Namely, we want to know whether the equivalence
between the positivity of N d (	) and lack of P divisibility
of 	 also holds when choosing d as one of the previously
introduced entropic quantifiers. We will show in Sec. III C that
this is not the case: we will use a counterexample to point out
that N � is strictly stronger. Let us focus in particular on the
JSD since JSD

1
2 is just a monotonic function of it and hence

N J and N
√

J are equivalent.

D. Behavior on unital models

Let us now focus our discussion on qubits since it suffices
to consider the simplest nontrivial case to prove that N � is
strictly stronger than N J . For qubits, a generic state ρ can be
represented by means of a real three-dimensional Bloch vector
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rρ with |rρ | � 1 in the form

ρ = 1
2 (1 + rρ · σ ), (28)

where σ = (σx, σy, σz )� is the vector of the Pauli matrices.
Under the action of a generic trace- and Hermiticity-
preserving linear map, the Bloch vector associated with the
state transforms according to

r 
→ r(t ) = D(t )r + κ(t ), (29)

where D(t ) = diag{λ1(t ), λ2(t ), λ3(t )} is a real diagonal 3 ×
3 matrix and κ(t ) is a real three-dimensional vector [45]. The
representation (29) is valid up to orthogonal transformations,
which in the present context play no role, given that both
TD and JSD are invariant under unitary transformations, and
the measure of non-Markovianity in Eq. (21) is obtained by
maximizing over the possible initial states. Let us focus in
particular on unital maps, which are the maps that preserve
the maximally mixed state at any time t � 0: 	t [12 ] = 1

2 .
Alternatively, employing the representation (29), they are the
maps for which κ(t ) = 0 at all times t � 0. Assuming that the
dynamics is invertible, i.e., 	−1

t exists at all times, a dynamics
of this kind is not P divisible if and only if at least one of the
functions λi(t ) does not decrease monotonically. Invertibility
is a necessary assumption since there exist noninvertible dy-
namics with monotonic λi(t ) that violate divisibility [46].

An important feature of unital dynamics is that N D(	) >

0 if and only if 	 violates P divisibility: any backflow of
information, corresponding to a violation of P divisibility, is
witnessed by the TD, without the need to generalize it to the
Helstrom matrix. Interestingly, this feature also holds for the
JSD. Let ρ1,2(0) be the optimal pair for the TD. Since they
must be pure and orthogonal, we have ρ1(0) + ρ2(0) = 1, and
the Bloch vectors representing the states obey r1(0) = −r2(0).
Thanks to unitality, the transformed average state [ρ1(t ) +
ρ2(t )]/2 remains the maximally mixed state, so that r1(t ) =
−r2(t ) holds at all times. Thus, the TD between the two states
reads D(ρ1(t ), ρ2(t )) = r(t ), and both evolved states have the
same von Neumann entropy,

H (ρ1(t )) = H (ρ2(t )) = h

(
1 − r(t )

2

)
, (30)

where h is the binary entropy, introduced in Eq. (14). It is
therefore possible to rewrite the JSD using Eq. (10) as

J (ρ1(t ), ρ2(t )) = 1 − H (ρ1(t )) = 1 − H (ρ2(t ))

= 1 − h

(
1 − D(ρ1(t ), ρ2(t ))

2

)
. (31)

This expression is a monotonic function of the TD, and thus,
a revival in the JSD is witnessed if and only if it is witnessed
by the TD. Therefore, like what occurs for the TD, N J (	) >

0 if and only if 	 violates P divisibility. Unlike the TD, the
characterization of optimal pairs for the JSD is still an open
problem. For unital maps acting on qubits, numerical evidence
suggests that they must be pure and orthogonal, just like for
the TD. This feature allows for an interesting interpretation
of N J in terms of the von Neumann entropy. By employing
the first line of Eq. (31), which holds for any pair of pure and
orthogonal initial states, it is therefore possible to rewrite the

measure of non-Markovianity as

N J (	) = max
ρ(0)

∫
�ρ(0)

dt
d

dt
[−H (ρ(t ))], (32)

where �ρ(0) = { t ∈ R | d
dt H (ρ(t )) < 0 }. The measure of

non-Markovianity for the JSD in the case of unital dynamics is
given by the total decrease of entropy for a single state, max-
imized over all possible initial states. This is clearly linked to
violations of P divisibility of 	 since any unital positive map
acting on qubits increases the entropy of the state [26], so that
any revival in the entropy must necessarily correspond to a vi-
olation of P divisibility. Unfortunately, this feature is true only
for qubits since in higher dimensions orthogonal states do not
need to have the same eigenvalues. Additionally, no similar
interpretation holds for JSD

1
2 or for the two generalizations to

ensembles Kμ and Sμ.

E. Robustness of optimal pairs

Let us now study the robustness of optimal pairs, i.e.,
how the measure of non-Markovianity changes when moving
away from the optimal pair, for the different distinguishability
quantifiers. We will illustrate this by considering a simple,
but paradigmatic, model: the dephasing model. This model
consists of a modification of the coherences without a corre-
sponding change in the populations:

ρ(t ) =
(

ρ00 ρ01γ (t )e−iωSt

ρ10γ
∗(t )eiωSt ρ11

)
, (33)

where γ is called the decoherence function. For this model,
non-Markovianity corresponds to a nonmonotonic behavior
of |γ |. It is worth stressing that considerations similar to the
ones for this model are also valid for other models such as the
phase-covariant model which will be introduced in Sec. III B.

Optimal pairs are all the pairs of pure and orthogonal
states corresponding to antipodal vectors on the equator of the
Bloch sphere since the x and y directions are the only ones
in which the dynamics is not trivial. In order to evaluate the
robustness of the optimal pairs, Fig. 3 shows the behavior of
the measure of non-Markovianity when moving away from
the equatorial plane but still considering pure and orthogonal
states. It is possible to notice that the TD and JSD

1
2 , which

are both distances, behave very similarly, with the maximum
of the measure of non-Markovianity on the equatorial plane
that quickly decreases when moving towards the poles of the
Bloch sphere. For the JSD, on the other hand, the situation
is qualitatively different, with a broader region around the
equator with a measured value of non-Markovianity similar
to the maximal one, which is about one order of magnitude
smaller than the value obtained for the other quantifiers.

III. NON-MARKOVIANITY AND DIVISIBILITY

In the definition of a measure of non-Markovianity for a
generic distinguishability quantifier d , the condition of con-
tractivity (24) implies that every P divisible dynamics leads
to a zero measure of non-Markovianity. On the other hand,
using the Helstrom matrix, as soon as the dynamics violates P
divisibility, one has a nonzero measure of non-Markovianity,
N �(	) > 0. In other words, N � is stronger than N d for
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FIG. 3. Measure of non-Markovianity for pure and orthogonal
states for TD (left), JSD (middle), and JSD

1
2 (right). The color shows

the value of the measure of non-Markovianity, rescaled according
to the maximum value reached by the measure for the considered
distinguishability quantifier d , obtained considering as initial states
the corresponding point on the surface of the Bloch sphere and its
antipodal point. Brighter colors correspond to higher values of the
revivals. The reference values are taken to be 1 × 10−2 for N D(	)
as well as N

√
J (	) and 1 × 10−3 for N J (	), reflecting the different

scales of the revivals. The two distances (TD and JSD
1
2 ) behave very

similarly. For the JSD, on the other hand, the value of the measure of
non-Markovianity decreases more slowly when moving away from
the optimal pair, i.e., all the pairs of pure and orthogonal vectors
on the equator of the Bloch sphere. The dynamics 	 is given by
the dephasing model of Eq. (33) with the decoherence function γ (t )
corresponding to a bosonic bath described by a spectral density with
an exponential cutoff of the form J (ω) = λ(ωs/�s−1) exp(−ω/�) as
considered in [47,48], with s = 3, λ = 3, and � = 1 in inverse units
of time.

any other quantifier d . We now want to study whether other
quantifiers d exist that lead to measures that are equivalent to
the one arising from the Helstrom matrix, with a particular
focus on the entropic quantifiers.

We already know that properties 1–3 are not sufficient to
have a measure of non-Markovianity equivalent to N � since
it is strictly stronger than N D. In Sec. III C we will show with
a counterexample that the same also holds for the JSD and its
generalizations.

A. Positivity and noncontractivity domain

Let us first tackle the question of the behavior of the JSD
under nonpositive maps. We already know that the JSD is con-
tractive under any positive map. We now want to investigate if
the reverse is also true; namely, we want to clarify whether, for
any nonpositive map �, a pair of states for which the JSD is
strictly noncontractive exists. Nonpositivity of � implies that
some state ρ exists which is mapped to a nonpositive operator
�ρ. However, the JSD, unlike the TD, cannot be extended
to nonpositive operators since it involves the logarithm of the
eigenvalues. Therefore, the search for a noncontractive pair
for � must be restricted to the set of states that are mapped to
states after the action of the map, i.e., to the positivity domain

PD� = { ρ ∈ S(H ) | �ρ ∈ S(H ) } , (34)

where S(H ) is the set of quantum states on a Hilbert space
H . In the following, we will consider only qubits H = C2

since this will turn out to be sufficient to show that N J is
strictly weaker than N �. We denote the set of all qubit states,
i.e., the Bloch sphere, as S(C2) = S.

FIG. 4. Section at y = 0 of the Bloch sphere [light blue (light
gray)] for an example of a nonpositive map � for which the noncon-
tractivity domain NCD�,J [blue (dark gray)] is strictly included in
the positive domain PD� [green (medium gray)]. This map acts on a
Bloch vector r = (x, y, z)� as r 
→ (λxx, λyy, λzz)�, with λx = λy =
1.1 and λz = 0.1.

Considering unital nonpositive maps �, it is easy to show
that a noncontractive pair always exists inside PD�. Such
maps act on Bloch vectors according to Eq. (29) with κ = 0,
and nonpositivity implies that some λi > 1, which we take to
be λ1, without loss of generality. The noncontractive pair is
the one represented by the Bloch vectors rρ = (λ−1

1 , 0, 0)� =
−rσ . In fact, by direct calculation it is easy to show that
J (ρ, σ ) < J (�ρ,�σ ) = 1. In the general case, an analytic
proof for the existence of a noncontractive pair is missing.
However, by parameterizing the nonpositive map � as in
Eq. (29) and performing a sample on all the parameters,
we observed numerically that for any such map it is al-
ways possible to find a pair of states ρ, σ ∈ PD� such that
J (�ρ,�σ ) > J (ρ, σ ).

Turning back to the dynamical point of view, however, the
search for the noncontractive pair might not be extended to all
PD�. In fact, not all the domain of positivity of � = 	t,s is
available; only the image at time s of the Bloch sphere 	s(S)
is. We stress that 	s(S) is, in general, only a subset of PD�.
Thus, in order to have N J (	) > 0 for all non-P-divisible
processes, we would need to be able to find a noncontractive
pair for the JSD inside 	s(S). Let us now define the set of
states in which it is possible to find a noncontractive pair as
the noncontractivity domain

NCD�,J = {ρ ∈ PD� | ∃σ ∈ PD�,

J (�ρ,�σ ) > J (ρ, σ )}. (35)

Therefore, in order to have non-Markovianity for all non-P-
divisible dynamical maps, we would need to haveNCD�,J =
PD�: for any state in 	s(S) ∩ PD� it is always possible to
find another state such that noncontractivity holds. However,
this is not the case, which is clear from the example in Fig. 4.
There, in fact,NCD�,J is a proper subset of PD�. Therefore,
if we were able to construct a dynamics 	 such that for
times t > s > 0 it acts as this nonpositive map (	t,s = �),
with a dynamics prior to time s that is P divisible and with a
Bloch sphere that is mapped at time s inside PD� but outside
NCD�,J , i.e., 	s(S) ⊂ PD� \NCD�,J , we would construct
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a non-P-divisible dynamics but with N J (	) = 0. This is,
indeed, feasible, as we will show in Sec. III C by providing
explicitly a model which is similar in spirit to the one just
described.

B. Phase-covariant dynamics

In order to construct the counterexample in Sec. III C,
let us first set the theoretical background of the considered
dynamics, namely, phase-covariant dynamics. They contain a
broad class of dynamics, and they involve maps 	 that sat-
isfy covariance with respect to phase transformations, namely
[49],

e−iσzθ	t [ρ]eiσzθ = 	t [e
−iσzθρeiσzθ ] (36)

for all real θ and for all states ρ ∈ S(C2). Phase-covariant
dynamics have the form [50,51]

	tρ = 1
2 [1 + η⊥(t )(νxσx + νyσy) + η‖(t )νzσz + κz(t )σz],

(37)
where νi = tr[ρσi] for i = x, y, z. The complete-positivity
conditions reads

η‖ ± κz � 1, 1 + η‖ �
√

4η2
⊥ + κ2

z . (38)

The dynamics can be reformulated in terms of a master equa-
tion of the form

dρ

dt
= γ+(t )

(
σ+ρσ− − 1

2
{ρ, σ−σ+}

)

+ γ−(t )

(
σ−ρσ+ − 1

2
{ρ, σ+σ−}

)
+ γz(t )(σzρσz − ρ),

(39)

where

γ±(t ) = η‖(t )

2

d

dt

(
1 ± κz(t )

η‖(t )

)
, γz(t ) = 1

4

d

dt
ln

η‖(t )

η2
⊥(t )

.

(40)
The dynamics is CP divisible if and only if γ±(t ) � 0 and
γz(t ) � 0. P divisibility, instead, is satisfied whenever [49]

γ±(t ) � 0,
√

γ+(t )γ−(t ) + 2γz(t ) > 0. (41)

The composition of two phase-covariant dynamics is again
phase covariant. If we suppose that the system undergoes a
first phase-covariant dynamics 	1 from t = 0 to t = t1 and
later it evolves following 	2, then the total dynamics 	 =
	2 ◦ 	1, defined as

	t =
{

	1
t if t � t1,

	2
t−t1	

1
t1 if t > t1,

(42)

is again phase covariant, described by the functions

η‖,⊥(t ) =
{

η1
‖,⊥(t ) if t � t1,

η2
‖,⊥(t − t1)η1

‖,⊥(t1) if t > t1,
(43)

κz(t ) =
{

κ1
z (t ) if t � t1,

κ2
z (t − t1) + η2

‖ (t − t1)κ1
z (t1) if t > t1,

(44)

where the superscripts 1 and 2 label the functions defining,
respectively, 	1 and 	2. The composition of two phase-
covariant dynamics is not commutative since, in general,

FIG. 5. Schematic representation of the dynamics of the coun-
terexample, obtained by visualizing the Bloch sphere (light blue) and
the evolved ellipsoid (dark red) at different time steps. After time
t = 0 until time TnM the image of the Bloch sphere is a uniformly
contracted sphere translated in the z direction, without violating P
divisibility. After TnM , the image of the sphere is further contracted
and translated in the z direction but also expanded in the x and y
directions, thus violating P divisibility. In the third panel, the dashed
line represents the border of the noncontractivity domain for the
dynamical map from TnM onwards, corresponding to the green area in
Fig. 4. It thus clearly appears that the Bloch sphere at TnM is mapped
outside the noncontractivity domain. In this way, even if the second
part of the dynamics is not P divisible, there is no pair of states
available for the JSD to witness a revival.

	1 ◦ 	2 �= 	2 ◦ 	1, which is evident from (43) and (44).
Furthermore, the family of all phase-covariant dynamics does
not form a group since, in general, the inverse of the dynamics
	−1 is not positive.

C. Example showing that N J is strictly weaker than N �

Let us now employ the previously introduced phase-
covariant model to build a counterexample of a dynamics
which is not P divisible but leads to a zero measure of non-
Markovianity for the JSD. It follows from this counterexample
that N J is a strictly weaker measure of non-Markovianity
than N � since N � > 0 for all non-P-divisible dynamics.
We will actually consider a dynamics for which the memory
effects are already detected by the TD, without the need to
generalize to the Helstrom matrix.

The dynamical map 	 of such a counterexample is de-
scribed by the functions

η‖,⊥(τ ) = e−μ1τ σ (1 − τ )

+ e−μ1 e−μ2(τ−1)σ (τ − 1)σ (2 − τ )

+ e−μ1−μ2 [(3 − τ ) + A‖,⊥(τ − 2)]σ (τ − 2),

(45)

κz(τ ) = Aκτσ (2 − τ )

+ 2Aκ [(3 − τ ) + A‖(τ − 2)]σ (τ − 2), (46)

where σ is the sigmoid function

σ (τ ) = 1

1 + e−ατ
,

which is a smooth version of the Heaviside θ function and τ =
t/T is a dimensionless time parameter, where T is a reference
time determining the duration of the different stages depicted
in Fig. 5. These functions, together with the corresponding
rates γ± and γz obtained from Eq. (40), are shown in Fig. 6.
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FIG. 6. Left: The functions of Eqs. (45) and (46). Non-Markovianity is present after TnM ≈ 2.2T and corresponds to a nonmonotonic
behavior of η⊥. Right: Rates γ± and γz for the corresponding dynamics. The red thick line corresponds to

√
γ+γ− + 2γz, whose positivity is

necessary for the dynamics to be P divisible, together with the conditions γ± > 0. Non-Markovianity for t > TnM corresponds to a violation of
divisibility. We considered the choice of the parameters μ1 = 5, μ2 = 4, A‖ = 0.01, A⊥ = 1.01, Aκ = 0.45, and α = 5.

The idea of the counterexample follows from the consid-
erations in Sec. III A: the dynamics in the time interval in
which the memory effects arise will consist of a nonpositive
map 	t,s similar to the one described in Fig. 4, for which
the noncontractivity domain (35) is strictly smaller than the
positivity domain (34). Prior to this time interval, the dynam-
ics is P divisible such that it maps the whole Bloch sphere
inside PD	t,s but outside NCD	t,s,J , so that there is no pair
of states available for the JSD to witness the violations of P
divisibility. A schematic representation of such dynamics is
shown in Fig. 5.

The violation of P divisibility takes place for t > TnM, with
TnM ≈ 2.2T as (41) is violated, and is due to the positivity
of the time derivative of η⊥, in turn leading to the negativity
of the second condition appearing in (41). This behavior is
shown in Fig. 6. Such a violation corresponds to a revival in
the coherences, without a corresponding revival in the popula-
tion, thus building on a genuine quantum effect. The fact that
memory effects are due to a unital feature of the map, and not
to the translation κz, implies that N D(	) > 0, which, in turn,
leads to N �(	) > 0.

On the other hand, we evaluated numerically that
N J (	) = 0, as can be seen in Fig. 7. The numerical anal-

FIG. 7. Non-Markovianity measure for the JSD (solid line) and
for the TD (dashed line) for the considered counterexample as a
function of time. Clearly, N D(	) > 0 since a revival in the TD
is witnessed. The JSD, on the other hand, is always a monotonic
function, and hence, N J (	) = 0.

ysis was performed considering all the possible initial pairs
of states on the Bloch sphere, studying their time evolution
and evaluating any eventual revival of the JSD, but none
was found. Therefore, we can conclude that the measure of
non-Markovianity arising from the JSD is strictly weaker than
the one arising from the Helstrom matrix. In other words,
non-P-divisible dynamics leading to a zero measure of non-
Markovianity exists.

Nevertheless, this fact is also true for the TD. In order
to be able to capture any violation of P divisibility as a
revival of some quantifier, one has to generalize the TD to
ensembles, introducing a bias parameter. One might wonder
whether something similar also happens for the JSD: if we
generalize it to ensembles as the Holevo skew divergence (13)
or as the quantum skew divergence (16), would we be able
to witness all the violations of P divisibility? Unfortunately,
the answer to this question is no. In fact, considering the
same counterexample, one has again N Kμ (	) = N Sμ (	) =
0. This fact actually is unsurprising: for the TD, the general-
ization to ensembles breaks the translational symmetry and
makes us able to detect violations of P divisibility due to
the translational components of the dynamics; for the JSD,
on the other hand, there is no symmetry to break, and thus
generalizing it to ensembles does not lead to any qualitative
difference. In particular, one can consider a time evolution 	̃

such that N J (	̃) > 0, while N D(	̃) = 0, as shown in [9]
considering a different phase-covariant model.

A natural question is what additional constraints d has
to obey in order to have a measure of non-Markovianity
equivalent to N �. Building on our counterexample, a nec-
essary condition that d must obey is naturally the existence
of a strictly noncontractive pair of states for any nonpositive
map �. A second condition, which is crucial for entropic
distinguishability quantifiers, is the relation between the non-
contractivity domain NCD�,d , depending on both the map
and the quantifier, and the positivity domain PD� of the
map. As we have shown, if NCD�,d is a proper subset of
PD�, detection of the violation of divisibility after a time s
can fail for maps whose image at time s, by necessity within
the positivity domain, is strictly outside the noncontractivity
domain. This is exactly the feature we exploited to provide
the counterexample.
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IV. CONCLUSIONS AND OUTLOOK

In this work, we have compared different measures for
the degree of non-Markovianity in the dynamics of open
systems based on distinguishability quantifiers between quan-
tum states. In particular, we have provided evidence that the
measure based on the trace norm of the Helstrom matrix is
strictly stronger than all of the measures of non-Markovianity
based on entropic distinguishability quantifiers, as well as
stronger than the measure based on the trace distance, which is
neither stronger nor weaker than the entropic ones. This is our
central result. It means that the value of the measure based
on the trace norm of the Helstrom matrix associated with
a dynamical map 	, namely, N �(	), is greater than zero
whenever this happens for the measures associated with en-
tropic distinguishability quantifiers or with the trace distance,
while the reverse is not true, as we have demonstrated here.
Thus, we can conclude that the different distinguishability
measures exhibit a quite different performance in the detection
of nonpositive maps, which is surprising in view of similar
physical interpretations outlined in Secs. II A and II B.

This result was obtained while considering the explicit
expression of a qubit dynamics which is not P divisible, so
that it is non-Markovian according to N �, although strong
numerical evidence shows that the associated entropic non-
Markovianity measure N J , based on the Jensen-Shannon
divergence as the distinguishability quantifier, is equal to zero.
A purely analytic proof of this property, in the present or a
different counterexample, would provide further insights into
the relationship between the positivity of a map and its con-
tractivity property with respect to entropic distinguishability
quantifiers obtained from the quantum relative entropy, such
as the Jensen-Shannon divergence.

Moreover, it might be very interesting to clarify whether
the Helstrom-based quantifier is unique or whether other dis-
tinguishability quantifiers are equivalent to it as measures for
quantum non-Markovianity.
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