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Creating and controlling exceptional points of non-Hermitian Hamiltonians via
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The exceptional points (EPs) of non-Hermitian Hamiltonians (NHHs) are spectral degeneracies associated
with coalescing eigenvalues and eigenvectors, which are associated with remarkable dynamical properties.
These EPs can be generated experimentally in open quantum systems, evolving under a Lindblad equation,
by postselecting on trajectories that present no quantum jumps, such that the dynamics is ruled by a NHH.
Interestingly, changing the way the information used for postselection is collected leads to different unravelings,
i.e., different set of trajectories, which average to the same Lindblad equation, but are associated with a different
NHH. Here, we exploit this mechanism to create and control EPs solely by changing the measurement we
postselect on. Our scheme is based on a realistic homodyne reading of the emitted leaking photons with a
weak-intensity laser (a process that we call β-dyne), which we show generates a tunable NHH, that can exhibit
EPs even though the system does have any in the absence of the laser. We consider a few illustrative examples
pointing out the dramatic effects that different postselections can have on the spectral features of the NHH,
paving the road towards engineering of EPs in simple quantum systems.
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I. INTRODUCTION

The study of exceptional points (EPs) is at the focus of
intense experimental and theoretical research [1–3]. EPs are
spectral singularities of non-Hermitian operators where both
eigenvalues and eigenvectors coalesce [4], thus characterizing
the dynamics of open quantum systems [5]. Such a singularity
is mathematically associated with the nontrivial topological
structure of the eigenvalue manifold, and the EP corresponds
to a branching point of the solution of the characteristic poly-
nomial of the corresponding non-Hermitian operator.

Beyond their theoretical and mathematical interest, EP’s
interest among physicists sparked from the discovery of
parity-time (PT ) symmetry breaking, leading to the charac-
terization of PT non-Hermitian Hamiltonians (NHHs) [6]
and to the study of phase transitions in finite-dimensional
systems [6,7]. Many experiments confirmed and demonstrated
the unique properties of EPs and their influence on system
dynamics, e.g., unidirectional invisibility [8,9], lasers with
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and enhanced-mode selectivity [10,11], low-power nonrecip-
rocal light transmission [12,13], thresholdless phonon lasers
[14,15], enhanced light-matter interactions [16–18], loss-
induced lasing [19,20]. The nontrivial properties of the EPs
have also been studied and analyzed in electronics [21], op-
tomechanics [14,22,23], acoustics [24,25], plasmonics [26],
and metamaterials [27]. At an EP, systems are also known for
exhibiting nontrivial topological and localization properties,
particularly in one-dimensional (1D) and higher-dimensional
lattice architectures [1,28–43]. For extensive reviews see, e.g.,
Refs. [1,3,42,44] and references therein.

Many of the previously cited works dealt with semiclassi-
cal configurations, where the equation of motion of a strong
coherent field can be mapped onto effective Schrödinger equa-
tions, leading to the appearance of Hamiltonian EPs (HEPs)
[1,3,44,45]. When fully taking into account quantum dissipa-
tive processes, it is necessary to include the action of quantum
jumps (Langevin noise), often significantly changing the dy-
namics of a quantum system [5,46–49]. To circumvent such
a problem, and witness the EPs of a quantum NHH, two
experimental strategies have been recently realized: dilation
of a non-Hermitian Hamiltonian in a larger Hermitian space
[50,51] and postselection [52,53]. In the latter case, EPs can
be seen as one of the manifestations of the nontrivial dynamics
of quantum systems under postselection [54,55].
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Indeed, under quite general hypotheses, the dynamics of
open quantum systems can be described by a Lindblad master
equation that, in turn, can be separated into the action of
an effective NHH, periodically interrupted by abrupt events
called quantum jumps [56,57]. According to this quantum
trajectory picture, the Lindblad master equation is simply the
description of the average dynamics of a system continuously
probed by a set of detectors (modeling the environment), each
one associated with a jump operator [58–60]. By postselecting
those trajectories where no quantum jump occurs (no detector
clicks), the spectral properties of the NHH can be investigated
[52]. Within this postselected approach, the presence of EPs
admits thus a simple and fascinating explanation: the very
information gained by the fact that a quantum jump did not oc-
cur induces a nonunitary state update that, in turn, introduces
the non-Hermiticity necessary to witness the wanted EP.

The formulation of quantum jumps, however, is not unique,
and several quantum trajectory equations can be associated
with the same Lindblad master equation [56,57,60]. Even if,
usually, the quantum jumps and the NHH are represented
in a standard form—the jump operators are chosen to be
orthonormal and traceless—there exists a whole class of
transformations, changing the effective Hamiltonian and the
jump operators, which recover the same Lindblad master
equation. However, the dynamics at a single trajectory level
can drastically change according to the form of the effective
Hamiltonian and of the jump operators stemming from these
transformations [61–63]. The different forms of quantum tra-
jectories, associated with a given Lindblad master equation,
admit a clear physical interpretation and are called unraveling:
they correspond to different ways to collect the information
leaking from the system into the environment. Although the
unconditional evolution (averaged over the detectors’ output)
is unchanged, these different monitorings modify the way the
system behaves along single runs of an experiment, which
are conditioned on a given sequence of detector outputs.
This striking effect was experimentally demonstrated in, e.g.,
Ref. [64].

Since monitoring the occurrence of quantum jumps is the
key ingredient for postselection, and the way the jump oper-
ators act modifies the non-Hermitian Hamiltonian, a natural
question is what effects can be witnessed with these different
unravelings of the same dissipative dynamics. In this paper,
we demonstrate that different NHHs associated with the same
Lindblad master equation display completely different spec-
tral properties. In particular, by modifying the form of the
quantum jumps (i.e., the way quantum information is col-
lected) and postselecting those trajectories where no quantum
jump occurred, we can induce an EP or modify its properties.

The paper is structured as follows. In Sec. II we introduce
the Lindblad master equation and its invariances, leading to
the different quantum trajectories associated with the same
dynamics, as well as their postselection. We then introduce
our first example in Sec. III, where we consider a two-level
system (qubit) with gain and losses that does not display any
EPs using the standard representation of the quantum jumps.
However, tuning the previously introduced canonical transfor-
mations of the Lindblad master equation one can induce an
EP. We then show in Sec. IV that it is possible to induce an EP
in a driven Kerr resonator with a similar procedure, but just

in the presence of photon loss. Finally, in Sec. V, we show
that the canonical transformation can also be used to tune the
properties of an EP. We present our conclusions in Sec. VI.

II. LINDBLAD INVARIANCES AND
QUANTUM TRAJECTORIES

The state of an open quantum system is captured by its
density matrix ρ̂(t ). If the system interacts with a Markovian
(memoryless) environment, and within the Born approxima-
tion, ρ̂(t ) evolves under the Lindblad master equation, which
reads [56,57]

∂ρ̂(t )

∂t
= Lρ̂(t ) = −i[Ĥ, ρ̂(t )] +

∑
μ

γμD[Ĵμ]ρ̂(t ). (1)

In this description, Ĥ is a Hermitian operator describing the
coherent evolution of the system, while Ĵμ are the jump op-
erators describing the dissipation induced by the environment
via the action of the dissipators, which reads

D[Ĵμ]ρ̂(t ) = Ĵμρ̂(t )Ĵ†
μ − Ĵ†

μĴμρ̂(t ) + ρ̂(t )Ĵ†
μĴμ

2
. (2)

A. Quantum trajectories

From a theoretical point of view, the Lindblad master equa-
tion is a particular form of a quantum map [65]. On a general
ground, any quantum map can be rewritten in terms of its
Kraus operators, and

ρ̂(t + dt ) =
∑

ν

K̂ν ρ̂(t )K̂†
ν , (3)

where the condition ∑
ν

K̂†
ν K̂ν = 1̂ (4)

is required to ensure that the quantum map is completely pos-
itive and trace preserving (CPTP). Given the form of Eq. (1),
one can verify that a set of Kraus operators that recover the
Lindblad master equation is

K̂0 = 1̂ − iĤdt −
∑

μ

γμ

Ĵ†
μĴμ

2
dt = 1̂ − iĤeffdt,

K̂ν = √
γμdt Ĵν, (5)

where the non-Hermitian Hamiltonian (NHH) Ĥeff is

Ĥeff = Ĥ − i
∑

μ

γμ

Ĵ†
μĴμ

2
. (6)

Each Kraus operator can be associated with one of the pos-
sible outcomes of a measurement process, whose backaction
on the system is associated with the K̂ν operator. In this re-
gard, the Lindblad master equation can be interpreted as the
dynamics of a system upon the continuous action of several
measurement instruments. Whenever the outcome ν �= 0 is
obtained at time t , one of the detectors clicks and the sys-
tem evolves under the action of K̂ν . If none of the detectors
click, the system evolves according to K̂0, as the absence of
clicks still conveys some information about the system state
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[60], yielding Eq. (3) when the average over the measurement
outcomes is taken.

From this interpretation it is natural to introduce quantum
trajectories. By keeping track of the measurement outcomes
(the sequence of quantum jumps), we can exactly reconstruct
the state of a given system initialized in a pure state |�(t = 0)〉
[65]. If the K̂0 acts, the time (unnormalized) evolution of the
system is described by

∂t |�(t )〉 = −iĤeff |�(t )〉, (7)

while, if the νth Kraus operator acts, the system evolves as

|�(t + dt )〉 ∝ Ĵν |�(t )〉. (8)

If we consider the dynamics where no quantum jumps
occur, the system evolves solely under the action of the NHH
Ĥeff . Thus, a postselection on those trajectories with no quan-
tum jumps reveals the spectral properties of the NHH Ĥeff in
Eq. (6). In particular, we can define the eigenvectors |� j〉 and
the associated eigenenergies Ej such that

Ĥeff |� j〉 = Ej |� j〉. (9)

An EP of the NHH is then defined as a point where Ej = Ek

and |� j〉 = |�k〉. Higher-order degeneracies can take place,
and for this reason one calls the order of an EP the number of
coalescing eigenvectors (e.g., |� j〉 = |�k〉 = |�l〉 is an EP of
order 3).

As it has been experimentally shown in Ref. [52], this
postselection procedure allows studying the emergence of the
Hamiltonian EPs, i.e., the degeneracy of the NHH, by recon-
structing the evolution of the quantum system. In principle,
one needs perfect detectors that detect the jumps with uni-
tary efficiency and exhibit no dark counts. In the presence of
finite-efficiency detectors, however, one can still observe the
effects of the EP of NHH by analyzing the associated hybrid
Liouvillian [49].

Notice that, just as for any quantum dynamics, in order to
experimentally assess the properties of a system evolving at
an EP, it is not sufficient to just know that no jump occurred.
Indeed, the simple measurement of the jump operators does
not not yield all the information about the system state, allow-
ing us to completely characterize the properties of the system.
For instance, in a qubit system, determining the presence of
an EP amounts to (i) postselect the trajectory where no jump
happened; (ii) perform a measurement of the system at a
given time t ; (iii) repeat the measurement for different runs
(having initialized the system in the same state); (iv) repeat the
same procedure for several different times t . This procedure
highlights the presence of an anomalous dynamics associated
with an EP.

B. Lindbladian invariances, measurements, and
new trajectories

Jump operators are usually chosen to be traceless
(Tr[Ĵμ] = 0) and orthonormal (Tr[ĴμĴν] ∝ δμν). Such a
choice, although mathematically convenient, should not be
privileged from a physical point of view. Indeed, the set of
jump operators associated with a given Lindblad equation is
not uniquely determined.

Consider, for instance, the affine transformations

Ĵ ′
μ = Ĵμ + βμ1̂,

Ĥ ′ = Ĥ −
∑

μ

iγμ

2
(β∗

μĴμ − βμĴ†
μ). (10)

Although Eq. (10) modifies both the Hamiltonian and the
jump operators, it does not change the Lindblad master equa-
tion result. Indeed, one can easy show that, the Lindblad
master equation stemming from Ĥ ′ and Ĵ ′

μ is the same as
Eq. (1) [56]. However, for β �= 0, the effective Hamiltonian
changes as

Ĥeff (β ) = Ĥ −
∑

μ

iγμ

2
(β∗

μĴμ − βμĴ†
μ)

−
∑

μ

iγμ

2
(Ĵμ + βμ1̂)†(Ĵμ + βμ1̂). (11)

In quantum optics, the quantum trajectory stemming from
the orthonormal set Ĵν ≡ â(ω) [where â(ω) is the annihilation
operator of the mode at frequency ω] describes a situation in
which the photons emitted by the system are instantaneously
detected by a photon counter, while the set of jumps Ĵ ′

ν ,
defined by Eq. (10), is relevant in the case of a homodyne
detection setup. In the latter case, the emitted photons are
mixed with a coherent field on a beam splitter before being
detected. For usual homodyne detection, one chooses |β|2 �
1, while here we will consider finite values of β (associated
with a weaker coherent field). For this reason we call such a
trajectory resulting from Eq. (10) and from Eq. (11) a β-dyne
unraveling (see also Appendixes A and B for a theoretical
model of this detection setup, its physical interpretation, and
the derivation of the associated dynamics).

It is rather remarkable that the affine transformation in
Eq. (10) produces an ambiguity in the realization of the sys-
tem’s quantum trajectories. For instance, consider again a
bosonic system characterized, this time, by just one annihila-
tion operator Ĵν = â (i.e., the environment induces dissipation
in the form of particle losses described by D[â] in the average
dynamics). The effect of the β-dyne unraveling at a single
trajectory level is that (i) the action of the jump operators Ĵ ′

ν

do not eject one full photon from the system and (ii) when
the jump Ĵ ′

ν does not occur the bosonic field within the cavity
gets displaced by a coherent amplitude γμβ/2, according to
Eq. (10). What are then the effects of this invariance on the
spectral properties of the non-Hermitian Hamiltonian, and can
they be detected experimentally? That is, can one practically
implement a postselection procedure that, even if the average
dynamics is purely incoherent, exhibits a significantly differ-
ent dynamics at the NHH level? Below, we show that the
transformation Eq. (10) can profoundly change the structure
of the NHH, even inducing the presence of EPs in otherwise
nondegenerate Hamiltonians. Owing to the postselected mea-
surement, we prepared the system at an EP, and the standard
measurement protocol on the system, i.e., the points (i)–(iv)
described in Sec. II A, can demonstrate the properties of the
system.

Even if in the following, we will focus on the β-dyne trans-
formation induced by Eq. (10), for the sake of completeness
let us notice that not all transformations on the Lindblad mas-
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ter equation modify the structure of the NHH. For instance,
the unitary transformation√

γ ′
μĴ ′

μ =
∑

ν

Rμ,ν

√
γν Ĵν (12)

leaves both the Lindlbad master equation and the NHH un-
changed if Rμ,ν is a unitary matrix. Indeed,

Ĥ ′
eff = Ĥ −

∑
μ

iγ ′
μ

2
Ĵ ′†
μ Ĵ ′

μ

= Ĥ −
∑
μ,ν,χ

R∗
μ,νRμ,χ

i
√

γνγχ

2
Ĵ†
ν Ĵχ

= Ĥ − i

2

∑
μ

γμĴ†
μĴμ = Ĥeff , (13)

because Rμ,ν is unitary, i.e.,
∑
μ

R∗
μ,νRμ,χ = δν,χ . Thus, if we

mix the leaking fields, all postselected dynamics result in the
same NHH.

III. EXAMPLE I: INDUCING AN EP BY POSTSELECTION
OF A β-DYNE TRAJECTORY

As a starting point for our discussion, let us consider a two-
level system, whose most general NHH reads(

a b
c d

)
=

(
ã b
c 0

)
+ d

(
1 0
0 1

)
, (14)

where ã = a − d . The eigenvalues read

2d + ã ± √
ã2 + 4bc

2
, (15)

and the (unnormalized) eigenvectors are

{ã ±
√

ã2 + 4bc, 2c}. (16)

Consequently, the condition to observe an EP in a two-level
system can be recast as

ã = ±2i
√

bc. (17)

A. EP of a qubit with loss and gain

Consider a two-level system whose Hamiltonian is

Ĥ = ω

2
σ̂z, (18)

and with jump operators

Ĵ1 = √
γ −σ̂−, Ĵ2 = √

γ +σ̂+, (19)

where σ̂z is the z Pauli matrix and σ̂± are the raising and
lowering qubit operators, respectively. If we monitor the jump
operator Ĵ1, then the effective Hamiltonian of this system is

Ĥeff = 1

2

(
ω − iγ− 0

0 −ω − iγ+

)
. (20)

Consequently, this model can never display any exceptional
point, because the eigenvalues are always distinct and sepa-
rated.

Let us now consider the β-dyne detection of both the jump
operators with the same intensity β, via the transformation

Ĵ ′
1 = √

γ −(σ̂− + β1̂), Ĵ ′
2 = √

γ +(σ̂+ + β1̂). (21)

The corresponding effective Hamiltonian is

Ĥeff (β ) = − i
|β|2(γ− + γ+)

2
1̂

+ 1

2

(
ω − iγ− −2iβ∗γ+
−2iβ∗γ− −ω − iγ+

)
. (22)

The NHH Ĥeff has now the right structure to display an EP. In
particular, the eigenvalues and eigenvectors read

E1,2 = − i
γ− + γ+ + 2|β|2(γ− + γ+) ±

√
16γ−γ+(β∗)2 + (γ− − γ+ + 2iω)2

4
. (23)

|�1,2〉 = 1√
N1,2

{2iωγ− − γ+ ±
√

16γ−γ+(β∗)2 + (γ− − γ+ + 2iω)2, 4γ−β∗}, (24)

where N1,2 is a a normalization factor ensuring 〈�1,2|�1,2〉 =
1. The EP emerges when

β = ±i
γ− − γ+ − 2iω

4
√

γ−γ+
. (25)

We show the effect of β in Fig. 1, where we plot the
overlap between the two eigenvectors of Ĥeff (β ). In general,
the presence of an EP implies the coalescence of (at least)
the eigenvectors of a non-Hermitian Hamiltonian. Thus, the
overlap 〈�1|�2〉 between two normalized vectors indicates
how close a system is to an EP, reaching 1 exactly at the EP.
In particular, we notice that there is a whole region around the
βEP value where the eigenvectors almost coalesce, showing
the dramatic effect that the introduction of β can induce on
the spectral properties of the NHH. In Fig. 2, instead, we show
the emergence of the EP as a function of γ+/γ−, having fixed

the value of β. Compared to the β = 0 case in Fig. 2(a), we
remark that the eigenfrequencies now change both in real and
imaginary parts as a function of γ+.

B. Physical realization

Despite its relative algebraic simplicity, the previous ex-
amples require the simultaneous postselection of both the
jumps occurring from σ̂− and σ̂+. While the former implies
a spontaneous emission that can be, in principle, achieved via
a high-fidelity detector, the latter corresponds to spontaneous
excitation through gaining mechanisms, and its detection can
be remarkably more difficult. Such a proof-of-concept model
can be realized, however, by using a three-level system instead
of a qubit [66,67].

Consider a three-level system, whose undriven energy
eigenstates |g〉, |e〉, and | f 〉 are coupled by a weak coherent
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FIG. 1. The overlap between the two normalized eigenvectors
|�1,2〉 of the NHH in Eq. (24) as a function of β, having fixed γ+ =
0.5γ− and ω = γ−. (a) The contour plot in the real and imaginary
part of β shows that, by appropriately choosing the value of β, it is
possible to make |�1,2〉 coalesce. (b) Overlap along the gray dashed
line in panel (a), showing the abrupt change in the orthogonality
properties of the eigenvectors near the EP.

drive resonant with the transition between states |g〉 and | f 〉
(cf. Fig. 3), according to the Hamiltonian

Ĥ (t ) = |e〉〈e| + (2ω + δω)| f 〉〈 f |
+ �(|g〉〈 f |eiωe f t + | f 〉〈g|e−iωe f t ). (26)

The spontaneous emission of photons induces the decay of
level | f 〉 to |e〉, and from level |e〉 to the ground state |g〉, via

FIG. 2. Real (blue solid curve) and imaginary (red dashed curve)
parts of the two eigenvalues of the NHH in Eqs. (23) and (24) as
a function of the gain over loss ratio γ+/γ−. (a) When β = 0, the
system does not exhibit an EP. (b) For nonzero β �= 0, an EP emerges
the system [in this specific case β = (2 + i)/4

√
2]. We fix ω = γ−.

FIG. 3. Setup to perform the β-dyne detection of a qubit with ef-
fective gain and saturation, leading to Eq. (22). A three-level system,
characterized by the states |g〉, |e〉 (at energy ω), and | f 〉 (at energy
2ω + δω), is subject to decays |e〉 → |g〉 (green solid arrow) and
| f 〉 → |e〉 (red arrow) at rates γeg � γ f e. A weak drive coherently
couples the state |g〉 and | f 〉 (blue arrow). The decay γeg, character-
ized by a jump operator σ̂−, is associated with the emission of an
photon with energy ω, and can be detected via the standard homo-
dyne detection leading to Eq. (10). The overall effect of the process
|g〉 → | f 〉 → |e〉 is, instead, to induce an effective gain |g〉 → |e〉
(dashed green arrow) associated to the jump operator σ̂+, because of
the rapid decay of | f 〉. Such a gain, however, is accompanied by the
emission of a photon with energy ω + δ, on which one can perform
standard homodyne detection and postselection.

the Lindbladian:

L1 = γegD[|g〉〈e|] + γ f eD[|e〉〈 f |]. (27)

If we assume that γ f e � γeg,�, we can adiabatically elimi-
nate the state | f 〉. The combined action of the driving and the
dissipation results in a new Lindbladian

L2 = γegD[|g〉〈e|] + γeffD[|e〉〈g|], (28)

which therefore implements the wanted model with
γ+ ≡ γeff = 4�2/γ f e and γ− ≡ γeg. Notice that a jump
from state |g〉 to |e〉 is associated with the emission of a
photon at the frequency (ω + δω), which can thus be detected
with a photon counter. Such a jump can be distinguished from
the one associated with |g〉 → |e〉, because the latter leads to
the emission of a photon at frequency ω.

IV. EXAMPLE II: INDUCING AN EP IN THE
DRIVEN KERR RESONATOR

In this section, we present a protocol based on a driven-
dissipative Kerr resonator (see Fig. 4), which requires
detection of only emitted photons (i.e., the detection of one
jump operator) in order to reveal the emergence of EPs in the
postselected effective Hamiltonians.

The Hamiltonian of a Kerr resonator, in the frame rotating
at the drive frequency, is

H = −
â†â + Uâ†2â2 − i(αâ† − α∗â), (29)

where â (â†) is an annihilation (creation) field operator, 
 is
the pump-to-cavity detuning, U is a Kerr nonlinearity, α is the
amplitude of the coherent field, which drives the resonator. We
assume that the system is subject to one-photon loss events
described by the dissipator D[â], occurring at a rate γ .
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FIG. 4. Setup to perform the β-dyne detection of a driven Kerr
resonator, described by Eq. (30). The Kerr resonator is driven by a
field of intensity α, and two photons interact within the cavity with
an intensity U . The emitted photons (â in green) are then mixed with
a field whose effective intensity is β, as detailed in Eq. (10).

Let us now assume that the system is at resonance, 
 = 0,
and it is postselected in a β-dyne picture; thus, the NHHs
Ĥeff (β ) is coherently displaced by the amplitude β, according
to Eq. (11). Assuming the weak-driving limit, i.e., α � γ ,U ,
and assuming also that β � γ , one can write down the effec-
tive Hamiltonian in the two-photon limit (i.e., truncating the
Fock space at two photons), resulting in a three-level system
that reads

Heff =
⎛
⎝ 0 iα∗ − iγ β∗ 0

−iα − i
2γ i

√
2(α∗ − γ β∗)

0 −i
√

2α −iγ + 2U

⎞
⎠ − iγ |β|2

2
I3.

(30)

If β = 0, no combination of parameters of the NHH results
in an EP. In other words, whenever one is monitoring the
system’s environment and leaked photons are not displaced
by a coherent field, then the corresponding postselected NHH

FIG. 5. Real (blue solid curve) and imaginary (red dashed curve)
parts of the two eigenvalues of the NHH in Eq. (30) as a function of
(purely) real-valued α. (a) When β = 0, the system does not exhibit
an EP. (b) At certain nonzero β �= 0, an EP may be induced in the
system (in this specific case β = −0.5275 − 0.078i). The rest of the
system parameters are γ = 1, U = 2.

FIG. 6. Values for the real and imaginary parts of the displaced
field β, for a given purely imaginary-valued α, at which the NHH
Ĥeff (β ) can exhibit an EP, according to Eq. (31). Other parameters
are as in Fig. 5.

Ĥeff (β = 0) does not have any spectral singularity [see, e.g.,
Fig. 5(a)].

For β �= 0, instead, the condition for the NHH to have an
EP of the second order reads:

a2 − 3b − 9ab + 27c + 2a3 − 3
√

3

× [27c2 + (4a3 − 18ab)c − a2b2 + 4b3]
2
3

= 0, (31)

where

a = 3iγ

2
− 2U, b = 3αβ∗γ − 3|α|2 − 1

2
γ 2 − iUγ ,

c = (iγ − 2U )(γ β∗α − |α|2).

Having fixed the system parameters, these equations can be
numerically solved to find the values of β resulting in an EP
(see Fig. 6). Note that only a second-order EP can be observed
in the Ĥeff (β ), since at most only two of the three eigenvalues
of the NHH coincide.

We conclude that, if one postselects those experiments
where the detector never clicks, and for an appropriate choice
of β, satisfying the condition in Eq. (31), then the effective
Hamiltonian in Eq. (30) exhibits a second-order EP in the
system [see Fig. 5(b)]. We stress that the full Lindbladian
of the system does not have a Liouvillian EP, in the sense
described in Ref. [5]. Indeed, the Linbladian describes the
dynamics of the operator averages and, as such, its averaging
over various quantum trajectories eventually smears out EPs,
which emerge in certain effective NHHs. The presence of an
EP in the NHH is thus an effect that can only really emerge at
the single-trajectory level.

V. EXAMPLE III: SHIFTING AN EP

The effect of β is not only to generate new EPs in a quan-
tum system; adjusting β also allows one to shift the position
and change the nature (i.e., the associated eigenvalues and
eigenvectors) of an existing EP.

Consider a resonantly driven two-level system as in Fig. 7,
whose Hamiltonian in the pump frame reads

Ĥ = ω

2
σ̂x. (32)
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FIG. 7. Setup to perform β-dyne detection of a driven qubit,
described by Eq. (35). The qubit is driven by a field at resonance. The
emitted photons are then mixed with a field whose effective intensity
is β, as detailed in Eq. (10).

Let us assume that the system is affected by a dissipation
channel γ−D[σ̂−]. The effective non-Hermitian Hamiltonian

of such a system in the standard representation is given by

Ĥeff = 1

2

(−iγ− ω

ω 0

)
, (33)

which exhibits an exceptional point for

ω = γ−
2

. (34)

We now assume that the emitted photons are detected via
the β-dyne scheme. The associated non-Hermitian Hamilto-
nian is:

Ĥeff (β ) = − i
|β|2γ−

2
1̂

+ 1

2

( −iγ− ω

ω − 2iβ∗γ− 0

)
, (35)

whose eigenvalues are

E1,2 =
−iγ− + 2i|β|2γ− ±

√
−γ 2− + 4ω2 + 8iγ−ωβ∗

4
, (36)

and the normalized eigenvectors (N1,2 ensures 〈�1,2|�1,2〉 = 1)

|�1,2〉 = 1√
N1,2

{−iγ− ±
√

−γ 2− + 4ω2 + 8iγ−ωβ∗, 2(ω + 2iβ∗γ−)}. (37)

The exceptional point is now determined at

β = i
4ω2 − γ 2

−
8γ−ω

. (38)

For β = 0 we retrieve Eq. (34); for different values of β, the
EP position, eigenvalues, and eigenvectors change. We show
this effect in Figs. 8 and 9. We find that an EP can be always

FIG. 8. (a) β = 0 with an exceptional point at ω = 1
2 γ− and

(b) β = 5
24 i with an exceptional point at ω = 3

4 γ−.

found having fixed ω/γ− [Figs. 9(a) and 9(b)], and that, for an
imaginary-valued β, the value ω/γ− for which an EP emerges
strongly depends on β. Notice that the shift of the EP comes
at the expense of a decreased no-jump trajectory probability.
A detailed computation of the postselection probability is
reported in Appendix B.

A final comment is necessary. As we already discussed, the
postselection procedure of the Lindblad master equation can
be, in principle, associated with different types of unraveling.
There are myriads of possible trajectories, including those
with various values of β, inducing different coherent displace-
ments [due to the Lindbladian invariance in Eq. (10)]. This
illustrates the fundamental difference between Liouvillian and
Hamiltonian EPs. Liouvillian EPs exist at the level of the
average dynamics of an open quantum system, and appear
independently of the specific characteristics of the system-
environment coupling. The EPs of a NHH, which are induced
by postselection, appear only for specific types of jump oper-
ators. Furthermore, the fact that EPs of an NHH can be shifted
by different unraveling via the action of β is also a signature of
the relative fragility of the EPs of postselected NHHs. Indeed,
both the system’s parameters and those of the detector, whose
action determines the effect of the postselection procedure,
must be finely tuned.

VI. CONCLUSION

By exploiting homodyne Lindbladian invariance, i.e., by
displacing the emitted leaking photons with a laser field and
keeping the whole Lindbladian unchanged, we show that one

042210-7



FABRIZIO MINGANTI et al. PHYSICAL REVIEW A 106, 042210 (2022)

FIG. 9. The overlap between the two normalized eigenvectors
|�1,2〉 of the NHH in Eq. (37) as a function of β, having fixed
ω = 3

4 γ−. (a) The contour plot in the real and imaginary part of β

shows that, by appropriately choosing the value of β, it is possible
to make |�1,2〉 coalesce. (b) Overlap along the gray dashed line in
(a), showing the abrupt change in the orthogonality properties of the
eigenvectors near the EP. (c) Position of the EP in rescaled frequency
ω/γ− as a function of the β parameter obtained from Eq. (38). To
ensure the presence of an EP, β is chosen purely imaginary.

can end up with different forms of quantum trajectories. Under
postselection of no-jump trajectories, this scheme generates
dynamics generated by a non-Hermitian Hamiltonian (NHH)
whose spectral properties can be tuned via the parameters of
the laser field used for the displacement. We illustrate the
potential of this scheme on three examples based on simple
quantum systems and realistic detection setups, where excep-
tional points (EPs) can be generated or controlled only by
changing the displacement of the leaking photons. This con-
trol on the EP, however, comes at the price of a more stringent
postselection, decreasing the probability of occurrence of the
no-jump trajectory. More generally, our approach exploits the
mathematical invariance of the Lindblad equation to provide
a whole toolbox to engineer EP properties, opening the per-
spectives of new implementations of EP and their predicted
applications, e.g., in metrology [17,18] or optimal energy
transfer [22,68,69].
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APPENDIX A: IMPLEMENTATION OF THE β-DYNE
MEASUREMENT SETUP AND PHYSICAL

INTERPRETATION OF EQ. (10)

The β-dyne measurement scheme is not only a mathemat-
ical object but can actually be implemented experimentally. It
corresponds to a variation of the commonly used homodyne
measurement protocol in quantum optics [65]. In such setup,
the signal (field emitted by the system) is mixed with an
intense coherent field on an unbalanced beam splitter with
very low reflectance η � 1. The transmitted signal is then
measured with a photon counter (see also the scheme in
Fig. 4).

The annihilation operators at the output ports 3,4 of the
beam splitter are related to the input 1,2 via:

â3 =
√

1 − η â1 + √
η â2 (A1)

â4 = −√
η â1 +

√
1 − η â2. (A2)

For η � 1 and mode â2 prepared in a coherent state of
amplitude |α2| � 1, we can see that the field at port 3 is
approximately described by

â3 
 â1 + √
ηα2. (A3)

Finally, as field â1 is populated by the system’s emission,
the detection of a click at port 3 therefore corresponds ef-
fectively to a jump of the system, captured by a coherently
displaced jump operator of the form â + β1̂. Consequently,
everything happens as if the β-dyne measurement effectively
generated a virtual field driving the system. This dynamics,
including the effect of the virtual field, can be experimentally
demonstrated; e.g., from multiple repetitions of the β-dyne
measurement starting in the same state, followed by a pro-
jective measurement on the system. Below, we derive more
rigorously the backaction of such measurement on the system
so as to deduce the postselection probability for the β-dyne
no-jump trajectory.
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APPENDIX B: β-DYNE MEASUREMENT SETUP: THEORETICAL MODEL FOR THE BACKACTION AND
POSTSELECTION PROBABILITY

To demonstrate the setup able to implement the β-dyne measurement we discuss throughout the paper, we now consider
an emitter with Hamiltonian ĤS , whose light emission is collected into the port 1 of a beam splitter. Port 2 corresponds to the
incoming laser, which is modeled by a coherent initial state of amplitude α2. The two fields in port 1 and 2 are mixed via
beam-splitter transformation, resulting in the fields in ports 3 and 4 (see Fig. 4 in the case where the emitter is a cavity).

We first derive the evolution of the emitter’s state associated with detecting a number n3 of photons (n4) photons at port 3 (4),
which is encoded in operator M(n3, n4):

M(n3, n4) = 4〈n4|3〈n3|Û (
t )|0〉1|α2〉2. (B1)

Here |n〉i corresponds to the Fock state containing n photons at port i ∈ �0, 4�. On the other hand the ports 1,2 are prepared in
the vacuum state and a coherent state of amplitude α2 (the local oscillator), respectively. Finally, we have denoted Û (
t ) the
joint unitary evolution of the emitter and the mode a1, which is given up to order O(
t ) by [70]:

Û (
t ) = 1̂ − i
t Ĥeff(0) −
√

γ−
t (â†
1ĉ − â1ĉ†), (B2)

with Ĥeff(0) = ĤS − i γ−
t
2 ĉ†ĉ the NHH in the case β = 0. We have introduced ĉ as the emitter’s lowering operator, e.g., σ̂− for

a qubit, or â for a cavity, as detailed in the examples in the main text.
We can now express â1 in terms of â3,4 using Eq. (A2). We also express the state |0〉1|α2〉2 in the basis of the output modes,

yielding the tensor product of coherent states |√ηα2〉3|
√

1 − ηα2〉4. We then obtain:

M̂(n3, n4) = 4〈n4|3〈n3|(1̂ − i
t Ĥeff −
√

γ−
t (
√

1 − ηâ†
3 − √

ηâ†
4)ĉ)|√ηα2〉3|

√
1 − ηα2〉4

= 〈n3|√ηα2〉〈n4|
√

1 − ηα2〉
[
1̂ − i
t Ĥeff(0) −

√
γ−
t

(√
1 − η

n3√
ηα2

− √
η

n4√
1 − ηα2

)
σ̂−

]
. (B3)

We now assume that only the photons coming from port 3 are detected. The state after a β-dyne measurement is therefore
obtained by averaging over the values of n4:

p(n3)ρ̂(t + 
t ) =
∑

n4

M̂(n3, n4)ρ̂(t )M̂†(n3, n4), (B4)

where p(n3) is the probability of reading n3 photons.
Finally we use∑

n4

|〈n4|
√

1 − ηα2〉|2√ηn4 =
√

1 − η|α2|2,
∑

n4

|〈n4|
√

1 − ηα2〉|2√ηn2
4 =

√
1 − η|α2|2(|α2|2 + 1), (B5)

to find:

p(n3)ρ̂(t + 
t ) = |〈n3|√ηα2〉|2
[
ρ̂(t ) − 
t (iĤeff(0)ρ̂(t ) + H.c.) −

√
γ−
t

( √
ηα∗

2√
1 − η

−
√

1 − ηn3√
ηα2

)
ĉρ̂(t ) + H.c.

+ γ−
t

(
η(|α2|2 + 1)

1 − η
+ (1 − η)n2

3

η|α2|2
)

ĉρ̂(t )ĉ†.

]
, (B6)

We now assume that η is very small (the beam-splitter transmission is almost unity) and the coherent field is intense |α2| �
1, while keeping

√
η|α2 finite. Actually, we take

√
ηα2 ≡ √

γ−
tβ � 1. We keep only terms up to order η and γ−
t and
distinguish two measurement outcomes: n3 = 0 and n3 > 0. The first one is associated with backaction:

p(n3 = 0)ρ̂ (0)(t + 
t ) 
 ρ̂(t ) +
(

− i
t

[
Ĥeff(0) − iγ−β∗ĉ − i

|β|2γ−
2

1̂

]
ρ̂(t ) + H.c.

)

= ρ̂(t ) − i
t
(
Ĥeff(β )ρ̂(t ) + ρ̂(t )Ĥ†

eff(β )
)
, (B7)

where

Ĥeff(β ) = Ĥeff(0) − i
γ−|β|2

2
1̂ − γ−β∗ĉ (B8)

is the β-dyne effective Hamiltonian as defined in the main text. Note that we have used that |〈0|√ηα2〉|2 
 1 − γ−
t |β|2.
On the other hand, the backaction associated with photon detection is obtained by summing up the terms with n3 > 0:

p(n3 > 0)ρ̂ (1)(t + 
t ) 
 γ−
t |β|2ρ̂(t ) −
(

i
t

[
Ĥeff(0) − iγ−β∗σ̂− − i

|β|2γ−
2

1̂

]
ρ̂(t ) + H.c.

)
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+ 1

β
〈〈n3〉〉ĉρ̂(t ) + H.c. + 1

|β|2 〈〈n2
3〉〉ĉρ̂(t )ĉ†


 γ−
t (ĉ + β )ρ̂(t )(ĉ + β∗). (B9)

We have introduced the average 〈〈·〉〉 in the distribution P(n3) = |〈n3|√ηα3〉|2, which verifies 〈〈n2
3〉〉 
 〈〈n3〉〉 = γ−
t |β|2 � 1.

This demonstrates that the quantum jumps associated with this detection setup are described by operator Ĵ1 = ĉ + β1̂.
Finally, the probability of obtaining outcome n3 = 0 is encoded in the trace of the right-hand side of equality Eq. (B7):

p(n3 = 0) =1 − γ−
t |β|2 − 
tTr[iĤeff(0)ρ̂(t ) + H.c.] (B10)

for a single time step 
t . More generally, one therefore expects that the probability of the trajectory with no photon detection is
decreased by a factor exp(−γ−|β|2t ) with respect to the case where β = 0 (direct detection of the emission).
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