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In this work we design a procedure to estimate the minimum size beyond which a system is amenable to
a classical-like description, i.e., a description based on representative points in classical phase spaces. This is
obtained by relating quantum states to representative points via generalized coherent states (GCSs) and designing
a positive-operator-valued measure (POVM) for GCS discrimination. Conditions upon this discrimination are
defined such that the POVM results convey enough information to meet our needs for reliability and precision,
as gauged by two parameters ε, of our arbitrary choice, and δ, set by the experimental apparatus, respectively.
The procedure implies a definition of what is meant by the “size” of the system, in terms of the number N of
elementary constituents that provide the global algebra leading to the phase space for the emergent classical-like
description. The above conditions on GCS discrimination can be thus turned into N > Nt (ε, δ), where Nt (ε, δ) is
the threshold size mentioned in the title. The specific case of a magnetic system is considered, with details of a
gedanken experiment presented and thoroughly discussed. Results for pseudospin and bosonic systems are also
given.
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I. INTRODUCTION

The profound difference between classical and quantum
physics fosters the idea that systems are either classical or
quantum, as if the adjectives refer to an intrinsic nature of
physical objects. The idea is wrong: It is just a matter of what
scientific theory best describes the behavior of the system
under analysis, in the regime of parameters in which one is
interested. Moreover, the recent advancements in quantum
technologies urge the adoption of a viewpoint from which
classical and quantum features can be seen together and
the origin of the former from the latter is clear. In fact,
a functioning quantum device acts as a mediator between
elementary quantum components (such as the qubits) and
complex classical-like apparatuses (including human beings),
in a way such that a quantum treatment of the latter is out
of reach and a classical-like description of the former might
be inadequate. The same quest for a hybrid quantum-classical
approach arises in the framework of cosmology, where macro-
scopic objects manifest themselves according to the laws of
classical physics, via general relativity, and yet have quantum
traits, as is the case of black holes and their Hawking radiation
[1]. In this respect, one should bear in mind that macroscop-
icity in itself does not guarantee the obliteration of quantum
features, unless further assumptions are made [2–5].

In this work we show that results from quantum mea-
surements can produce acceptable (in terms of reliability
and precision) classical-like descriptions of large enough sys-
tems, with the size represented by the number N that counts
their elementary constituents, degrees of freedom, dynamical

variables, or whatever such that N → ∞ is a necessary con-
dition for a classical-like behavior to emerge. Our result
consists in defining a fit as a positive-operator-valued mea-
sure (POVM) [6–8] and derive a threshold value of N above
which its outcomes allow one to identify the classical state of
the system, i.e., its representative point on a classical phase
space, precisely enough to provide the required accuracy,
given the resolution of the available measuring apparatus. A
paradigmatic spin system is explicitly considered to serve as
an example and give a figure for the threshold value.

The structure of the paper is as follows. In Sec. II we
introduce generalized coherent states (GCSs) and their rel-
evant properties with respect to the large-N limit, defined
in Sec. III. The POVM for GCS discrimination is defined
in Sec. IV, where we set the conditions ensuring that a
classical-like description can emerge from the POVM results
themselves. In Sec. V we consider the case of a magnetic sys-
tem, for which we describe a gedanken experiment realizing
the above-mentioned POVM and discuss the possible use one
can make of its results as N is varied. Results for pseudospin
and bosonic systems are provided in Sec. VI, where we dis-
cuss some general consequences of these results. Details of
some formal aspects are given in Appendixes A–C, while in
Appendix D a superposition of GCSs is considered.

II. COEXISTENCE OF QUANTUM AND CLASSICAL:
GENERALIZED COHERENT STATES

A powerful tool for studying problems where quantum and
classical features coexist is the formalism of GCSs, which
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provides a common semantic framework for quantum and
classical physics. Their group-theoretic construction goes as
follows [9–11].

Consider a quantum theory defined1 by a Lie algebra g

and a unitary irreducible representation of the corresponding
group G on some Hilbert space H. Notice that, by definition,
this group contains all the possible time-evolution operators
of the system, whence the epithet “dynamical group.” Choose
a state (normalized vector) |R〉 ∈ H and identify the elements
of G that leave |R〉 unchanged up to an irrelevant phase factor:
It is easily checked that they form a normal subgroup F ⊂ G
and hence define a quotient G/F . Generalized coherent states
are defined as

|�〉 := �̂ |R〉 , �̂ ∈ G/F. (1)

Each �̂ ∈ G/F is related, by definition, to a GCS |�〉; more-
over, the quotient-manifold theorem [12] ensures that each �̂

is biunivocally associated with a point � of a manifold M,
which is demonstrated to be symplectic [9], with the proper-
ties of a phase space. This establishes one of the main traits of
GCSs, namely, that each coherent state |�〉 ∈ H is univocally
related to the representative point of a physical state, � ∈ M,
as intended by the classical Hamiltonian formalism. Another
relevant feature of GCSs is that a system in a GCS will always
evolve into another GCS (a statement that is often summarized
in the motto “once a coherent state, always a coherent state”
[9]), due to the fact that GCSs form a closed set with respect
to the action of any element of G, according to their definition
(1), and G contains all the time-evolution operators of the
system, as noted above. Therefore, assuming that � is in a
GCS at a certain time guarantees it will be in a GCS at any
later time, which is why one can say that the quantum unitary
dynamics of GCSs defines trajectories on M.

Generalized coherent states are normalized but nonorthog-
onal and provide a resolution of the identity on H via∫
M dμ(�) |�〉 〈�| = Î, where dμ(�) is invariant with re-

spect to the action of the operators �̂. When g admits a Cartan
decomposition into diagonal operators {Ĥi}I and shifts {Êα}A,
one can write �̂ ∈ G/F as �̂ = exp

∑
α∈A(�αÊα − �∗

αÊ†
α )

and hence, from Eq. (1),

|�〉 = exp

(∑
α∈A

�αÊα − �∗
αÊ†

α

)
|R〉 , (2)

where �α are complex numbers that provide the coordinates
of the point � ∈ M. From Eq. (2) one obtains coherent
states for su(2) (spin CSs) and for su(1, 1) (pseudospin CSs).
Despite not admitting a Cartan decomposition, a lookalike
expression defines coherent states also for the two algebras
h4 and h6 (the well-known bosonic CSs and their squeezed
version, respectively).

We will hereafter write g CSs to indicate coherent states
relative to the specific algebra g. Expectation values of one-

1The Lie algebra that defines a quantum theory is the one whose
irreducible representation on the Hilbert space of the system that
the theory describes contains the Hamiltonian and all the relevant
observables of the system itself.

dimensional projectors upon GCSs

〈� |φ〉 〈φ| �〉 = |〈�|φ〉|2 := H|φ〉(�) (3)

are often called Husimi functions and are normalized prob-
ability distributions on M for whatever normalized element
|φ〉 ∈ H, there included another GCS [13,14]. Among the
consequences of this fact, most relevant to this work is that
it allows one to define a distance between quantum states
in terms of the distance between probability distributions
named after Monge [15,16]. In fact, it was demonstrated [17]
that the Monge distance between H|φ〉(�) and H|ψ〉(�) is
a legitimate distance between |φ〉 and |ψ〉, which we will
hereafter indicate as dM(|φ〉 , |ψ〉) and simply dub Monge
distance. Evaluating dM(|φ〉 , |ψ〉) requires dealing with a
transportation problem [18] which is most often too complex
to solve. However, the Monge distance bears properties that
make its use very convenient when GCSs are involved and
the quantum-to-classical crossover is considered, as further
commented upon in the next section and in Appendix A.

III. WHEN QUANTUM BEHAVES CLASSICALLY: THE
LARGE-N LIMIT

A formal description of how and under what conditions a
physical system displays a behavior that can be described by
the laws of classical physics is provided by the so-called large-
N limit approach, developed in the framework of quantum
field theory several decades ago [2,19,20]. A cornerstone of
this approach is the fact that a macroscopic system, whose
size is gauged by the number N mentioned in the Introduction,
may or may not display a classical-like behavior: The former
is true if some conditions hold, which are given in terms of
GCSs and provide the details of the effective classical theory
obtained in the N → ∞ limit [3,21]. A definition of N is not
generally available and its identification is not always evident.
In fact, the best way to recognize N in the specific prob-
lem under analysis is to look for a parameter that can grow
infinitely, in realizing the above-mentioned conditions. In par-
ticular, for N → ∞ the Lie brackets (or their representation
as commutators) must vanish so as to push the lower bound
of any uncertainty relation of the theory down to zero, and the
invariant measure entering the resolution of the identity on H
must be

dμ(�) = cN dm(�), (4)

with dm(�) a measure on M properly scaled, via the N-
dependent positive constant cN , so as to make

∫
M dm(�)

independent of N itself. Moreover, it must be

lim
N→∞

N |〈�|�′〉|2 = δ(� − �′) (5)

for any pair of GCSs |�〉 and |�′〉, meaning that a notion
of distinguishability between GCSs is recovered along the
quantum-to-classical crossover. In fact, it has been demon-
strated [17,22] that when Eq. (5) holds, the Monge distance
dM(|�〉 , |�′〉) between GCSs flows into the metric-induced
distance d (�,�′) between points on M. This reinforces the
affinity between the algebraic quantum description with GCSs
and the geometrical classical one with representative points,
establishing that if the distance between two representative
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points is large enough to be appreciated, then the GCSs as-
sociated with those two points must become distinguishable
in the large-N limit. It can also be demonstrated (see Ref. [22]
and Appendix A for more details) that

dM(|�〉 , |�′〉) � d (�,�′), (6)

implying that the Monge distance cannot provide a precision
in GCS discrimination higher than that granted by the metric-
induced distance for classical states recognition. Finally, as
Eq. (5) holds in the N → ∞ limit, there should exist a large-
N twilight zone where a classical-like analysis of the system
behavior is possible (large N) and yet some of its quantum
features are retained (finite N). This is the situation in which
we are interested the most, which we propose to characterize
as follows.

IV. CLASSICAL-LIKE DESCRIPTION VIA
QUANTUM MEASUREMENTS

Consider a system � with Hilbert space H and GCS
{|�〉}H, with M the related symplectic manifold. We ask
whether the behavior of � is amenable to an effective
classical-like description. In other words, can we experimen-
tally determine the coordinates of a point in some phase space
that embody enough information on � to be considered rep-
resentative of its state, in a classical sense? To get a positive
answer, we first require that � be in a GCS; this choice is
based on the fact that such states are demonstrated to survive
the above large-N limit as proper physical states [2,3,19,20].
However, they might not be the only ones; in fact, whether or
not a GCS is a necessary condition for a quantum state to flow
into a well-defined classical one is not known yet (see Sec. VII
of Ref. [2] for a thorough discussion of this point). Tackling
this issue goes beyond the purpose of this work; however, for
the sake of thoroughness, in Appendix D we consider the case
when � is in a superposition of two GCSs. Returning to our
procedure, once we assume that � is in a GCS, we will check
if an effective discrimination procedure [23] for GCSs can be
designed. Notice that since we assume the system to be in a
GCS and given that it can only evolve into another GCS, a
discrimination procedure that works for whatever GCS will
faithfully describe also the system evolution, as further com-
mented upon in Sec. VI.

In fact, if we can tell that � is in a specific GCS |	〉, a
classical-like description emerges from the one-to-one rela-
tion between the element |	〉 ∈ H and the point 	 in the
symplectic manifold M, now intended as a classical phase
space. Therefore, our program goes as follows: (i) Design a
POVM for GCS discrimination, (ii) analyze the conditions
under which the corresponding measurement meets our de-
mand for sharpness, and (iii) find a value Nt such that N > Nt

ensures the above conditions are fulfilled.
(i) POVM for GCS discrimination. We introduce a tessella-

tion of M by choosing a separable set of regions

Ii ∈ M, i = 1, . . . , L

s.t. ∪ j I j = M, Ii ∩ I j �=i = ∅;

we call these regions tiles. We establish that each tile Ii is
biunivocally associated with one possible result mi of our

gedanken experiment and define the effects

Êi = Ê (mi) :=
∫

Ii

dμ(�) |�〉 〈�| , (7)

with |�〉 the GCS of the system. As the index i = 1, . . . , L
counts the distinguishable results that the instrument provides,
a larger L implies a higher resolution of our instrument. It is
easily checked that the above effects are positive-semidefinite
operators that sum up to the identity on H such that

Ê (∪ jm j ) =
∫

∪ j I j

dμ(�) |�〉 〈�| =
∑

j

Ê j ; (8)

therefore, they define a POVM, with the probability to get the
result mi, when � is in a state |φ〉, given by the Born rule
p|φ〉(mi ) = Tr[Êi |φ〉 〈φ|]. When |φ〉 is a GCS, say, |	〉, the
invariance of dμ(�) and the definition of the GCS via Eq. (1)
imply

p|	〉(mi ) = Tr[Êi |	〉 〈	|] =
∫

Ii

dμ(�)|〈	|�〉|2. (9)

If the representation of g is infinite dimensional, the effec-
tively accessed states of the system are assumed to belong to a
finite-dimensional subspace H̄ ⊂ H and the apparatus will be
asked to explore just a compact portion M̄ of M. A properly
normalized measure dμ̄(�) will ensure that

∫
M̄ dμ̄ |�〉 〈�| =

IH̄. For the sake of simplicity, we will hereafter assume that
M is compact.

As GCSs are not orthogonal, from Eq. (9) it follows
that p|	〉(mi ) > 0 for all mi and whatever the GCS |	〉:
Therefore, the above POVM cannot provide a proper GCS
discrimination. However, we can settle for an approximate
discrimination of this type: We choose one point 
i in each
tile Ii, thus establishing the chain of biunivocal relations

mi ↔ 
i ↔ |
i〉 (10)

and require p|
 j 〉(mi ) = δi j to guarantee perfect discrimina-
tion at least between GCSs of the set {|
i〉}, hereafter called
sampled GCSs. As for other GCSs, we introduce the patch
Ĩi, made of Ii and its neighboring tiles (see Fig. 1), and de-
mand that a result mi informs us that � is in a GCS whose
representative point surely belongs to Ĩi. In order to obtain the
above type of GCS discrimination, we first consider null any
inner product whose modulus is less than a chosen (small)
positive value ε [we will hereafter use the symbol ∼ for
(in)equalities that only hold subject to this choice]; a notion
of ε orthogonality follows, defined by |〈	|�〉| � ε ⇔ |	〉,
where |�〉 are ε orthogonal, which carries the possibility to
consider two GCSs distinguishable if their respective Husimi
functions are never simultaneously larger than ε2. This can
be illustrated, for instance, by plotting the sum of two Husimi
functions H|	〉(�) + H|	′〉(�) and the plane marking the value
2ε2, as done in Fig. 2 for different values of N : If the sum
emerges from the plane in the form of two distinct peaks, the
respective GCSs |	〉 and |	′〉 are distinguishable in the sense
of the ε orthogonality introduced above. After this choice,
for each GCS |	〉 we define the region

Sε
|	〉 = {� ∈ M : |〈	|�〉| > ε} (11)
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FIG. 1. Example of tessellation of a portion of plane, with tiles
(squares) and sampled points (open circles). The patch Ĩi and its
reference tile Ii are shown, together with their respective sampled
points 
ı̃ and 
i, as indicated alongside the image.

that contains all the representative points of GCSs that are not
ε orthogonal with |	〉. Note that, due to condition (5), the
region Sε

|	〉 shrinks as N → ∞, which allows one to choose
an ever smaller value of ε in such limit.

(ii) Conditions for a sharp enough GCS discrimination. We
consider a GCS discrimination sharp enough to provide an
acceptable classical-like description of � via the results of the
POVM (7) if conditions

Sε
|
i〉 ⊆ Ii ∀ i, (12)

Sε
|	〉 ⊆ Ĩi ∀	 ∈ Ii (13)

hold. While the first condition makes sampled GCSs distin-
guishable, the second one means |〈	|�〉| � 0 for � /∈ Ĩi, i.e.,
p|	〉(mi ) ∼ 0 if 	 /∈ Ĩi, thus giving the output mi the informa-
tion content mentioned above.

Note that any tessellation implementing a POVM defined
by Eqs. (7)–(9) and such that the conditions (12) and (13)
are satisfied guarantees a GCS discrimination that can be
interpreted as a classical limit (as this possibility follows
from M being symplectic, with the properties of a classical
phase space, and GCSs staying in one-to-one relation with
its points). However, this does not necessarily imply that the
emerging description is faithful. In particular, if the tiles are
quite nonuniform in size and/or the shape of some tiles I j

is essentially different from that of the corresponding Sε
|
 j〉,

the above phase space will be irregularly sampled and the
classical description might become distorted, a situation that
corresponds, in our approach, to a badly designed experimen-
tal apparatus. On the most general level, when neither the
manifold M nor the GCS are specified, the distortion due
to the nonuniform size can be kept under control by using a
unique parameter to gauge the extension of all the tiles, which
is what we propose in the following point (iii). Additionally,
when a specific case is considered, meaning that M and the
shape of the regions Sε

|
 j〉 are known, the tessellation can
be designed explicitly to avoid the above-mentioned shape

mismatch, as done in the example of Sec. V and thoroughly
discussed in Appendix B.

(iii) Value of N ensuring that the conditions (12) and (13)
are fulfilled. Finding this value generally requires the analysis
of geometrical properties that depend on M and can be very
difficult to deal with. Therefore, we choose to replace the
conditions (12) and (13) with an algebraic inequality, faithful
to their meaning but easier to study. To this aim, we remove
the arbitrariness in the definition of the tiles Ii by introducing
a parameter δ defined, for instance, as

δ := min
j

{ min
�∈∂I j

d (�,
 j )}, (14)

where ∂I j is the border of the jth tile. In words, δ is the min-
imum value taken by the radius of the largest circle centered
in 
 j and fully contained in I j , given the tessellation. In fact,
δ is most generally defined by Eq. (B3); however, for the sake
of clarity, we use here the simpler definition (14). As δ gauges
the extension of the tiles, a smaller δ implies a larger L and
hence a better resolution of our instrument. This gives the tiles
a further dependence on δ, which is why we will hereafter
indicate them as Iδ

i . Then we replace (12) and (13) with

if	 ∈ Iδ
i then

|〈	|�〉| > ε ⇒ dM(|�〉 , |
i〉) � δ + dM(|	〉 , |
i〉). (15)

The distinguishability between sampled GCSs required by
(12) is granted by (15) with 	 = 
i. On the other hand,
whether or not an exact match between (13) and (15) exists de-
pends on the geometry of the problem, the tessellation chosen,
and the definition of the parameter δ. In particular, the latter
can be taken to be different from Eq. (14) to translate (12) and
(13) into (15) in a way that better corresponds to the specific
problem and experimental apparatus one is considering (see
Appendix B for more comments on this). We also underline
that using the distance between points induced by the metric
on M, instead of the Monge distance between quantum states
in H, would be incorrect, as the geometrical distance between
points on a manifold is generally unrelated to whatever the
distance is between quantum states, even if only GCSs are
considered. However, the Monge distance has the advantage
of carrying the ordering relation (6), so that enforcing (15)
with d rather than dM ensures that (15) itself is fulfilled. Con-
sistently, using one or the other distance becomes equivalent
as N → ∞. This is seen, for instance, in Fig. 9 of Appendix A,
where dM between two su(2) GCSs as a function of N [22]
is compared with the value of the (constant) metric-induced
distance between their respective representative points, as a
function of N .

Finally, as the region Sε
|	〉 shrinks when N increases, ac-

cording to Eq. (5) and as seen in Fig. 2, we expect that a finite
threshold value Nt (ε, δ) exists such that

N > Nt (ε, δ), (16)

which implies that the condition (15) is fulfilled. The depen-
dence of Nt on ε and δ reminds us that a critical size does not
exist beyond which a system behaves according to the laws
of classical physics. Rather, it all depends on the goggles we
wear, here designed by ε and δ. However, if N > Nt the result
of one single experiment, say, mi, conveys a meaningful piece
of information, namely, that � is surely described by a GCS
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FIG. 2. Plot of ε orthogonality in the bosonic case: The sum of two Husimi functions, for two different bosonic GCSs on the complex
plane. The translucent plane indicates the value of 2ε2. The number N grows from left to right. Correspondingly, the two GCSs are not ε

orthogonal in the left panel and increasingly ε orthogonal in the middle and right ones.

in Ĩi and, with a fair degree of certainty (gauged by ε and δ),
by the sampled GCS |
i〉 itself. In the language of classical
physics, the same holds, with GCSs replaced by representative
points in the system’s phase space. For the sake of clarity, in
the next section we consider a specific case and show how to
locate Nt (ε, δ) explicitly.

V. GEDANKEN EXPERIMENT

In this section we consider a composite magnetic system
� with total spin (or angular) momentum fixed to J , due
to some constraint upon the accessible quantum states of its
N subsystems. The system can be made, for instance, by a
number N of spin- 1

2 particles, each localized on a site of a ring
(see Fig. 3) and interacting with its two nearest neighbors via
an isotropic Heisenberg interaction or anything else leading to
a total Hamiltonian that commutes with the total spin operator.
The quantum theory that describes this system is defined
by the Lie algebra su(2), which is a vector space spanned
by the set {J0, J1, J2}, with Lie brackets [Ji, Jj] = iεi jkJk and
Casimir J2 = J2

0 + J2
1 + J2

2 . Each irreducible representation
of the algebra is labeled by an integer or half-integer number
J = 1

2 (N − n), for some positive integer n � N , associated
with the Casimir operator via Ĵ2 = J (J + 1)ÎHJ , where HJ is

FIG. 3. Spin ring made of a finite number of s = 1
2 distinguish-

able particles, each localized on one site of a circle. The operator
shown in the center is an example of a Hamiltonian that commutes
with the total spin of the ring.

the Hilbert space carrying the representation, with dimHJ =
2J + 1. The spectrum of Ĵ0 is m = −J,−J + 1, . . . , J − 1, J
and its eigenvectors Ĵ0 |J, m〉 = m |J, m〉 span HJ .

The manifold M introduced in Sec. II is the sphere S2, and
choosing |R〉 = |J, m = −J〉 in Eq. (2), an su(2) CS reads

|�〉 =
J∑

m=−J

gm(�) |J, m〉 , (17)

where � = θ
2 e−iφ identifies a point on S2 via the polar coordi-

nates (θ, φ) ∈ [0, π ] × [0, 2π ) and

gm(�) =
√(

2J

m + J

)

×
(

cos
θ

2

)J+m(
sin

θ

2

)J−m

ei(J−m)φ. (18)

The overlap between su(2) CSs is

〈�| �′〉 =
[

cos
θ

2
cos

θ ′

2
+ sin

θ

2
sin

θ ′

2
e−i(φ−φ′ )

]2J

(19)

and

dμ(�) = 2J + 1

4π
sin θdθdφ = 2J + 1

4π
dm(�), (20)

with dm(�) := sin θdθdφ the measure on S2. The metric-
induced distance between any two points on the sphere is

d (�′,�′′) = arccos[cos(φ′−φ′′) cos θ ′ cos θ ′′+ sin θ ′ sin θ ′′].

(21)

Before numerically simulating our gedanken experiment, we
must estimate Nt , i.e., the value of N ensuring that the POVM
described in Sec. IV satisfactorily discriminates the su(2) CS
of the system. This value depends neither on the state |	〉 nor
on the specific tile to which it belongs; therefore, due to the
rotational invariance of the metric and of the Husimi functions
on S2, we can determine it by choosing |	〉 = |
i〉 and 
i as
the north pole. With this choice, the first line of condition (15)
is certainly fulfilled and from the second one we obtain that
the following implication must hold:(

cos
θ

2

)2J

> ε ⇒ θ � δ. (22)

The value of N comes into play via the total momentum J =
1
2 (N − n), with 0 � n � N , so that condition (16) takes the
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FIG. 4. The S2 sphere with the tessellation used in this work. The
points 
1 (the red dot centered in the tile) and 	 (the other red dot)
are marked on the sphere in (b), where two circles of radius δ (dotted
line) are also shown: The upper one defines δ itself via Eq. (14) and
the lower one is that used in the example. The region in blue is the
patch Ĩ1.

form

N > Nt = ln ε

ln[cos(δ/2)]
+ n. (23)

This is consistent with the fact that systems with a large
magnetic moment (N � 1 and n � N) are well described by
classical magnetism, while big systems (N � 1) with small
magnetic moment (n � N) retain their quantum properties,
regardless of their macroscopicity. The dependence of Nt on
ε and δ underlines that even if the system has a very large J
and seems to behave classically when observed with a slightly
unfocused pair of goggles, small enough values of δ and
ε always exist such that quantum-state indistinguishability
cannot be circumvented and a classical-like description is
flimsy. It is worth mentioning that the functional dependence
of Nt in Eq. (23) and particularly the appearance of cos(δ/2)
follow from the expression of the overlap between su(2) CSs
[Eq. (19)], i.e., from the algebra su(2) we are considering.
Further comments on this point are made at the end of this sec-
tion, where results obtained for different algebras are briefly
reviewed.

We are now ready to describe the experiment. First we
choose ε = 0.22 (ε2 ∼ 0.05). Then we consider a tessellation
of S2 into L = 146 tiles, made of two polar caps of radius π

18
and 144 tiles defined by 9 parallels at latitude θ� = π

2 + �π
9 ,

� = −4, . . . , 4, and 18 meridians at longitude φm = m π
9 , m =

0, . . . , 17 [see Fig. 4(a)]. According to (14), the parameter
δ is the radius of the largest circle fully contained into the
smallest tiles, i.e., those adjacent to the polar caps in our case,
so δ = arcsin(sin π

18 sin π
9 ) � 0.06 [see Fig. 4(b)]. Therefore,

from Eq. (23) with n = 0, we get Nt = 3430. As for the
sampled GCS, we notice that each tile can be identified by a
single index i biunivocally related to the couple (�, m), and
the representative points 
i can be chosen as 
i = ((4 +
�)π

9 , (m + 1
2 )π

9 ). The tile I1 is adjacent to the equator (� = 0)
with m = 2, so 
1 = ( 4

9π, 5
18π ) (the central red point on the

sphere of Fig. 5). Refer to Appendixes B and C for more
details and comments on the above choices.

Suppose the quantum system under investigation is in the
unknown GCS |	〉 that we want to determine. In order to test
our POVM we set 	 = (0.88, 0.94) (the red point in the upper

FIG. 5. The case N = 30 � Nt with the system in the sampled
GCS |
1〉. (a) Probabilities (logarithmic scale) that the POVM out-
puts the result mj associated with the jth tile via the scheme shown
on the sphere in (b) on the left; indices labeling tiles that belong to
the patch Ĩ1, j = 1, 2, . . . , 9, are marked in blue, as the patch itself.
The region S|
1〉 is shown as a white area on the sphere. (b) On the
right are the same data shown as columns (linear scale) on the plane
tangent to the sphere in 
1. Columns whose height is null are marked
as yellow squares.

right corner of tile 1 on the spheres of Fig. 6) and see whether
the POVM results allow us to identify the patch Ĩ1 to which
it belongs. To this aim we first consider the sampled GCSs
and check the condition (12) taking 25 different results mj ,
j = 1, 2, . . . , 25, each associated with the jth tile as shown
in the spheres of Figs. 5–8, and evaluating the probability of
obtaining each result if � is in the state |
1〉, i.e.,

p|
1〉(mj ) =
∫

Iδ
j ∩Sε

|
1〉

dμ(�)|〈
1|�〉|2, (24)

according to Eq. (9) with |〈
1|�〉|2 < ε2 = 0.05 set equal
to 0, and 〈
1|�〉 from Eq. (19) (for more details see Ap-
pendix C). The obtained probability distributions, illustrated
in Figs. 5, 7, and 8 for N = 30, 300, and 3430 = Nt , show
that the result is certainly m1 if N = Nt , while it can be
different otherwise, meaning that N � Nt is indeed a sufficient
condition for the POVM to discriminate the sampled GCSs.
The same analysis is done for the system in the (unknown, in
principle) GCS |	〉, using the probability

p|	〉(mj ) =
∫

Iδ
j ∩Sε

|	〉

dμ(�)|〈	|�〉|2. (25)
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FIG. 6. The case N = 30 � Nt with the system in the GCS |	〉.
Details are the same as in Fig. 5 apart from the white area on the
sphere that rather shows Sε

|	〉.

The probability distributions are shown in Figs. 6–8 for the
same values of N as before. In this case the condition (13) is
fulfilled not only for N = Nt but also for N = 300 < Nt , as
belonging to the patch Ĩ1 is a much looser condition than that

FIG. 7. The case N = 300 < Nt with the system in (a) the sam-
pled GCS and (b) the GCS |	〉. Details are the same as in Figs. 5
and 6.

FIG. 8. The case N = 3430 = Nt with the system in (a) the sam-
pled GCS |
1〉 and (b) the GCS |	〉. Details are the same as in Figs. 5
and 6.

belonging to the specific tile I1. However, if we cannot asso-
ciate with absolute certainty the result m1 with the sampled
GCS 
1, there is no reason why that same result should not
correspond to a GCS with a representative point in the patch
Ĩ2 or in any other patch that contains I1. In this respect, we also
underline that even if the probability distributions can tell to
which specific tile the representative point 	 belongs, as seen
in some of the above figures, in order for the emerging de-
scription to be of genuinely classical nature, this information
must be available after the result of one single experiment,
leaving aside the repetitions needed to deal with whatever
experimental error. This is why the condition (12) must hold.

To summarize, the above example confirms that for N >

Nt the POVM results provide us with enough information to
relate the state |	〉 of the system to the sampled representative
point 
1, with a systematic error controlled by the parameter
δ that might bring such a point into 
 j with j = 2, 3, . . . , 9.
Evidently, a larger N can only improve the situation, while the
experiment deteriorates as N is lowered.

VI. OTHER ALGEBRAS AND GENERAL COMMENTS

The example presented in Sec. V can serve as a tem-
plate for systems described by different algebras, for which
Eqs. (19) and (21) must be replaced with the expressions
proper to the specific algebra and geometry of the respective
manifolds. In particular, for pseudospin systems [su(1, 1) al-
gebra and manifold pseudosphere PS2] we obtain

Nt = − ln ε

2k ln[cosh(δ/2)]
, (26)

with k the Bargmann index of the single pseudospin, and for
bosonic systems (h4 and manifold complex plane)

Nt = − 1

δ2
ln ε, (27)
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where different relations between the parameter N and the
relevant coefficients of the algebra hold, analogous to N =
2(J − n) in the magnetic case presented above [3]. Note that
the functional dependence of Nt on ε is always the same (di-
rect proportionality to ln ε), while different algebras introduce
different dependences on δ. This reflects the different nature
and meaning of the two parameters, as further discussed be-
low.

Equations (23), (26), and (27) can be used in a different
way, i.e., keeping N fixed to obtain the features of the best
attainable classical-like description, for that value of N . This
is understood by noting that the size of the regions Sε

|	〉
are gauged by N via the condition (5), as explicitly shown
in the above example and figures. In more detail, looking,
for instance, at Eq. (27), one understands that for a given
N the possible classical-like description will have a limited
resolution (δ2 cannot be smaller than −N−1 ln ε) and a cer-
tain degree of unavoidable indeterminacy [ε must be larger
than exp (−Nδ2)]. It is not by chance that the same type of
limitation on the accuracy of the picture provided by an ex-
perimental observation is expressed by uncertainty relations.
In fact, the lower bound of any Robertson-Schrödinger un-
certainty relation, whose finiteness embodies the uncertainty
and whose value quantifies its extent, is proportional to the
expectation value of some Lie bracket representation. These
brackets are monotonically decreasing functions of N , which
vanish for N → ∞, for all known quantum theories (they are
proportional to 1/N in the theories here considered). Via this
dependence, the uncertainty relations set natural bounds on δ

and ε, fundamentally limiting the resolution of the apparatus
and the deterministic nature of the classical-like description
that one can obtain, respectively.

The interplay between the three parameters N , ε, and δ can
also be seen from a different viewpoint, gained by considering
N fixed and not necessarily large. In fact, from Eqs. (23), (26),
and (27) it follows that in order for a small N to be larger
than Nt , as as needed to obtain a classical-like description of
some sort, we must either choose ε � 1 or design an exper-
imental apparatus with δ � 1. The first case corresponds to
accepting such a low sensitivity that only a paltry number
of outputs is made available, no matter how many times we
repeat the experiment, leading to an essentially inefficient
procedure [referring to Eq. (C3), this means p|	〉(null) ∼ 1].
In the second case δ � 1, the tiles are so big that only a few
GCSs are sampled, leading to an unsatisfactory resolution of
the apparatus and an unfaithful classical-like description. As
expected, then “small” quantum systems cannot be described
in terms of a classical formalism, regardless of their being in
some GCSs or not. This does not mean that procedures for
quantum state discrimination cannot be designed for small N .
In fact, procedures of such a type have been designed and
demonstrated to be highly efficient also for GCSs [24], but
they clearly do not make a classical-like description of the
observed system.

Before moving to some closing remarks, let us briefly
comment on the possibility of using the proposed strategy to
classically describe not only the state of a system, but also
its dynamical evolution, a possibility following from the fact
that GCSs evolve into other GCSs by definition, as mentioned
in Sec. II. In our setting, this feature implies the following.

Consider a system with N > Nt (ε, δ) for some given ε and δ

and assume that, at some time t0, it is in the GCS |	〉 with
	 ∈ Iδ

i . Let γ (t ) : γ (t0) = 	 be the trajectory drawn by its
representative point on M. Then if γ (t ) ∈ Iδ

i ∀ t there is no
observable dynamics at the classical level and if there exists
t1 > t0 such that γ (t ) /∈ Iδ

i for t > t1 a dynamics emerges at
the classical level in which the classical state is well described
by mi(0) until t1, becomes better described by some other mi(1)

until a later time t2, and so forth. The discreteness of the
tessellation is responsible for a discontinuous representation
of the GCS dynamics in terms of the time-ordered sequence
of results mi(0), mi(1), mi(2), . . .; however, the jump from one
result to the successive one is preceded by an increase and
followed by a decrease of the systematic error (due to the
fact that the representative point gets closer to the tiles bor-
ders) that smoothens the (otherwise stepped) experimentally
obtained trajectory. As for the typical time during which the
classical state corresponds to just one specific result mi, we
expect it is related to the size of the tiles, as gauged by δ, in
a way that depends on the Hamiltonian couplings. This type
of analysis goes beyond the scope of this work, but it can be
certainly developed, both in general and in the specific case of
the isotropic Heisenberg interaction considered in Sec. V.

VII. CONCLUSION

In this work we have seen that a physical system, quantum
by nature, can possibly be described in “classical words” if
the number N of elements that determines the global algebra
defining its GCS is larger than a threshold value that depends
on parameters of our choice. The classical words are the tools
of the Hamiltonian formalism, with the state of the system
described by a representative point on a specific phase space
and the possibility of getting information upon the state of
the system via one single measurement, a possibility that is
precluded in quantum mechanics. In this respect, referring to
the example of Sec. V, our choice of showing the probability
distributions in Figs. 5–8 is functional to a description that
is ultimately quantum. However, if one knows δ, chooses ε,
determines Nt (ε, δ), and checks that N > Nt , then the single
result mi identifies the classical representative point of the
system 
i with the usual systematic experimental error due
to the resolution of the measuring apparatus, here gauged by
δ. The entity of the probability that the actual representative
point be different from 
i can be set arbitrarily small by
reducing ε: This probability is the residual quantum signature
that one can decide to ignore, as done with the probability
that a human being passes through a wooden door. As for the
precise definition and value of δ, they depend on the exper-
imental apparatus and can be difficult to obtain. Obviously,
one can always choose a value for δ which is larger than the
one that ideally translates the conditions (12) and (13) into the
implication (15); however, this may lead to an unnecessary
overestimation of Nt . A thorough discussion of these aspects
can be found in Appendix B.

The two small numbers δ and ε have an essential role
in our picture: They are quantifiers of the available exper-
imental resolution and of our willingness to neglect rare
events, respectively, and should not be considered as ex-
pansion parameters ruling the validity of some semiclassical
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approximation. In fact, our proposal is alternative to semi-
classical approximations and can also be used in a somehow
opposite direction, namely, to study if and how a system
originally described by a classical theory can manifest more
and more marked quantum traits as its size reduces for one
reason or another. In this regard, work is in progress to use
this approach to study how a Schwarzschild black hole, i.e.,
an object which is classically described by definition, can
manifest increasingly evident quantum features as its size
shrinks due to the emission of Hawking radiation [25]. We
believe that a better understanding of this crossover can shed
light upon the information paradox and its relation with the
Page curve [26,27], as well as on the way spacetime can arise
in the fully algebraic setting of standard quantum mechanics
[28].

ACKNOWLEDGMENTS

N.P. gratefully acknowledges the Magnus Ehrnrooth Foun-
dation for financial support. The work of P.V. was in the
framework of the Convenzione Operativa between the In-
stitute for Complex Systems of CNR and the Department
of Physics and Astronomy of the Università degli Studi di
Firenze.

APPENDIX A: MONGE DISTANCE

In this Appendix we provide details on the Monge distance
between probability distributions and its generalization to
quantum states. The Monge distance was introduced to model
the most efficient strategy of transporting a pile of soil from
one place to another [15]. Specifically, one can describe the
position and shape of the initial and final soil configurations
via the probability distributions q1 and q2, respectively. Let us
assume these are defined in an open set O of a metric space
(M, d ) endowed with a normalized measure dμ. Given that
qi � 0 and

∫
O qidμ = 1, one can recover the intuition behind

the transport problem by defining

Vi = {(x, y) ∈ O × R+ : 0 � y � qi(x)} (A1)

as the volume of the mound associated with qi. Then any
transport strategy for moving q1 to q2 is related to a contin-
uous one-to-one function T , mapping O to itself and called
a plan. Moreover, it is required that these plans are volume
preserving, i.e.,∫

A
q1dμ =

∫
T −1(A)

q2dμ∀A ⊂ M. (A2)

The Monge distance between probability distributions is de-
fined as

dM(q1, q2) = inf
T

{∫
O

d (x, T (x))q1(x)dμ(x)

}
, (A3)

where the minimization is performed over the set of all plans.
When it exists, the optimal plan that realizes the minimum
in Eq. (A3) is called a Monge plan. For the pathological
situations in which a Monge plan does not exist, Kantorovich
introduced a weakened version of the Monge distance [16],
called the Monge-Kantorovich distance; however, the Monge
distance discussed here is sufficient for our purposes.

When considering probability distributions defined on the
real line equipped with the Euclidean distance, Eq. (A3) be-
comes

dM(q1, q2) =
∫ ∞

−∞
|Q1(x) − Q2(x)|dx, (A4)

where Qi are the cumulative distributions of qi [29]. Despite
being specific to the one-dimensional case, when supple-
mented with symmetry arguments the above expression can
be used to find the Monge distance for some two-dimensional
problems. In general, though, finding an analytical expression
for dM(q1, q2) without relying on numerical algorithms is
most often an impossible task; a vast amount of literature on
computational approaches to the transport problem is avail-
able (see, for instance, Ref. [30]). The Monge distance can be
used to define a distance between quantum states [17,22,31].
Referring to the group-theoretic construction of GCSs pre-
sented in Sec. II and recalling that the Husimi functions (3) are
probability distributions on the GCS manifold M, a distance
between quantum states can be defined via

dM(|φ〉 , |ψ〉) ≡ dM(Hφ, Hψ ), (A5)

where |φ〉 , |ψ〉 ∈ H and the distance on the right-hand side is
obtained via Eq. (A3) by selecting M and the metric-induced
distance for the metric space (M, d ). Other definitions of
quantum distances via the transport problem have been pro-
posed recently [32,33], but dM has some particularly useful
properties. First, the inequality (6) holds (with the equality
certainly obtained as N → ∞), which provides a convenient
upper bound to the Monge distance, whenever it is hard to
be evaluated. Second, from the translation invariance of the
measure and metric-induced distance on M it follows that the
Monge distance between quantum states is invariant under the
action of the elements of the group G that defines the quantum
theory.

The closed form of the Monge distance between any two
su(2) CSs is obtained in Ref. [22]. Referring to the discussion
in Sec. V, due to the rotational invariance of the problem, the
Monge distance between any two su(2) CSs only depends on
the azimuthal coordinate, the angle θ , of the point correspond-
ing to one of them, in a polar reference system where the point
corresponding to the other is the north pole:

dM(J; θ ) = π sin

(
θ

2

)
WJ

[
sin2

(
θ

2

)]
. (A6)

Here

WJ (x) = 2J + 1

4J+1

∑
0�u,vu+v=J

SJ (u, v)A(u, v)xu(1 − x)v,

(A7)
with

SJ (u, v) = (2J )!

[2J − 2(u + v) − 1]!u!v!(u + v + 1)!4u+v

(A8)

and

A(u, v) =
∞∑

s=v+1

(2s
s

)
(u + s + 1)4s

. (A9)
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FIG. 9. Monge distance (blue dots) and metric-induced distance
(orange line) between the su(2) CS related to the points (0,0) and
(π/3, 0), as functions of J . As expected, for increasing J the Monge
distance approaches the metric-induced one from below.

The large-N limit of Eq. (A6) is

lim
J→∞

dM(J; θ ) = θ. (A10)

In Fig. 9 we show dM(J; π/3), as numerically obtained after
Eq. (A6) for J ∈ [1, 20], and compare it with the metric-
induced distance, which does not depend on J .

APPENDIX B: δ AND TESSELLATION OF S2

The S2 tessellation used for S2 in Sec. V is the case k = 4 of
a tessellation T (k) defined by 2k + 1 parallels and 2(2k + 1)
meridians, according to

θl = π

2
+ l

π

2k + 1
, l = −k, . . . , k (parallels),

φm = m
π

2k + 1
, m = 0, . . . , 2(2k + 1) (meridians),

(B1)

where the meridians are considered only for θ ∈ [θ−k, θk].
The number of tiles is L = 2(4k2 + 2k + 1), including the
two polar caps of radius π/(4k + 2). In each tile, the point

i = (θ
i , φ
i ) corresponding to the sampled GCS |
i〉 is
the center of the largest circle inscribed in the tile itself.
Overall, these are the two poles and the points with co-
ordinates ( π

2 + (2l − 1)�
2 , (2m + 1)�

2 ), with � = π/(2k +
1), l = −k + 1, . . . , k, and m = 0, . . . , 2(2k + 1) − 1. For
a generic point 	 = (θ	, φ	 ) on the tile identified by the
pair (l, m), one can write θ	 = π

2 + (l − y)�, φ	 = (m +
x)�, with (y, x) ∈ [0, 1] × [0, 1]. The parameter δ, defined
by Eq. (14) as the radius of the largest circle inscribed in the
smallest tiles (those identified by l = −k + 1 or l = k), is

δ = arcsin

[
sin

(
�

2

)
sin �

]
. (B2)

The connection between the geometric conditions (12) and
(13) and the algebraic inequality in (15), with δ defined in
(14), follows from the specific setting one is considering. In
fact, whether or not an exact match exists depends on the
geometry of the problem, the tessellation chosen, and the
definition of the parameter δ, which can be modified in order

FIG. 10. Tessellation T @(4) with (a) the regions Sε
|
〉 (in white)

with the points 
 (in red), corresponding to sampled GCSs, at vari-
ous latitudes and (b) the region Sε

|	〉 (in white) with the point 	 (in
red), representing a generic GCS, and the corresponding patch (in
blue).

to better fit the specific problem and the related experimen-
tal apparatus. Consider, for instance, a tessellation T @(4), a
sibling of T (4), defined by parallels and shifted chunks of
meridians such that the radius of the largest circle inscribed in
each tile is π/18 and the points corresponding to the sampled
GCS are the centers of such circles. Figure 10(a) shows T @(4)
and the region Sε

|
i〉 defined by Eq. (11) at various latitudes,
for ε = 0.22 and N = 400 > Nt = 398, from Eq. (23). As ex-
pected, since N is above threshold, the condition ensuring that
sampled GCSs are distinguishable, i.e., the condition (12), is
fulfilled, as seen in Fig. 10(a). On the other hand, there is no
patch Ĩi that fully contains Sε

|	〉 for |	〉 with a representative
point [the red dot in Fig. 10(b)]. For this specific GCS, in fact,
the parameter δ, as defined by Eq. (14) and represented by the
length of the purple line in Fig. 10(b), should be replaced by
the length δ′ of the green line. This done, Eq. (23) provides
N ′

t = 3285 � Nt = 398, confirming that we are indeed work-
ing below threshold. Notice that by changing the red point,
for instance, moving it closer to the upper right corner of the
corresponding tile, the value of N ′

t can become even greater.
In fact, to obtain a value of Nt that works for any point given
the specific tessellation, one should replace Eqs. (14) and (15)
with

δ := min
i

[
min
�∈∂Ii

d (�,
i ), min
�∈∂Ii, �̃∈∂ Ĩi

d (�, �̃)
]

(B3)

and

| 〈�|	〉 | > ε ⇒ dM(|�〉 , |	〉) � δ ∀�,	 ∈ S2. (B4)

APPENDIX C: ε AND PROBABILITY HISTOGRAMS

In our approach it is necessary to consider null any inner
product whose modulus is less than a chosen (small) positive
value ε,

| 〈	|�〉 | � ε ⇔ | 〈	|�〉 | � 0 ∀	,� ∈ M. (C1)

As a consequence, the probability (9) is replaced by

p|	〉(mi ) =
∫

Iδ
i ∩Sε

|	〉

dμ(�)| 〈	|�〉 |2, (C2)

meaning that there is a finite probability that the experimental
apparatus does not produce a meaningful output (due to the

042208-10



THRESHOLD SIZE FOR THE EMERGENCE OF … PHYSICAL REVIEW A 106, 042208 (2022)

FIG. 11. The case N = 300 < Nt with the system in the sampled
GCS |
1〉. Probabilities (logarithmic scale) that the POVM outputs
the result mj associated with the jth tile via the scheme shown on the
sphere and other details as in Figs. 5–8; bars with dashed black edges
are the exact probabilities from Eq. (9), orange bars are approximated
probabilities from Eq. (24) with ε = 0.22, and the difference is in
red. The contour plot of the Husimi function centered in 
1 (blue
shades) and the region Sε

|
1〉 (white circle) are also shown on the
sphere.

reliability of the proposed description) which is, when the
system is in the state |	〉,

p|	〉(null) =
∫
M\Sε

|	〉

dμ(�)| 〈	|�〉 |2. (C3)

In the specific case considered in Sec. V, the spherical symme-
try implies that p|	〉(null) does not depend on |	〉. Therefore,
one can choose 	 as the north pole in Eq. (C3) and get the
total probability that the experimental apparatus provides no
output, irrespective of the state of the system,

p(null) = 2J + 1

4π

∫ 2π

0
dφ

∫ π

2 arccos(ε1/2J )
dθ

(
cos

θ

2

)4J

sin θ

= ε2+1/J . (C4)

For the tessellation T (4) with ε = 0.22 and N = Nt = 3430,
it is p(null) ∼ 0.0483. Consequently, the probabilities shown
in Figs. 5–8 do not sum to one (we have opted for this so-
lution for the sake of a clearer discussion). For comparison,
in Figs. 11 and 12 we show the exact probabilities from

FIG. 12. The case N = 3430 = Nt . The details are the same as in
Fig. 11.

Eq. (9) (bars with black dashed borders), the approximated
probabilities from Eq. (24) (in orange), and their difference
(in red), for N = 300 < Nt and N = 3430 = Nt , respectively,
with the system in the sampled GCS 
1, as in Figs. 6(a)
and 7(a). Notice that, since N < Nt in Fig. 11, some of the
bars with dashed borders relative to the results mj �=1 are not
completely colored red. On the other hand, consistently with
the fact that N � Nt and that |
1〉 is a sampled GCS, all the
bars with dashed borders of Fig. 12 relative to the results mj �=1

are red.

APPENDIX D: GCS SUPERPOSITION

The restriction of our work to quantum systems in GCSs
follows from the question from which we started, namely,
when is a system amenable to a classical-like description?
In fact, if the system is in a GCS of the quantum theory
that describes it, this question can have a positive answer, as
originally demonstrated by Yaffe [2], Lieb [19], and Berezin
[20] and others. The necessity of this condition has not been
formally demonstrated yet (see Sec. VII of Ref. [2] for a
thorough discussion on this point), but no counterexample has
been found either. One of the simplest and most convincing
way to see why only GCSs can survive the quantum-to-
classical crossover is to consider that a symplectic manifold
must emerge in such a crossover (to become the classical
phase space), with each of its points corresponding both to
a quantum and to a classical state and the quantum unitary
dynamics defining trajectories on that same manifold. While
this is naturally provided by the GCS construction, no other
formalism seems to succeed in such a task. A discussion about
if and why quantum states must be coherent if they were
to flow into well-defined classical states is of great interest
to us, but is not the purpose of this work. However, in this
Appendix we investigate what happens if the system is not as-
sumed in a GCS, but rather in a superposition of two different
GCSs, which is not a GCS, as easily seen from the definition
(1). Consider the state

|ψ〉 = α |	〉 + β |	′〉 . (D1)

If N > Nt and 	 ∈ Iδ
i three cases can occur: (i) 	 and 	′ are

in the same tile Iδ
i , (ii) 	′ is in the patch Ĩδ

i such that 	 ∈
Iδ
i , and (iii) 	′ is outside the patch Ĩδ

i such that 	 ∈ Iδ
i . In

the first case, an observer performing the POVM described in
Sec. IV would obtain outcomes essentially identical to those
obtained when the system is in any other GCS in Iδ

i . On the
contrary, in the second and third cases the observer cannot
unequivocally associate the outcomes with one single sampled
GCS and the classical description is hence unattainable. In
other terms, a classical-like description is viable for systems
that are superpositions of GCSs if and only if the respective
representative points on M are all contained in the same tile,
say, Iδ

i ; an observer would see such system in the classical
state with representative point 
i,

p|	〉(mj ). (D2)
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