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Symmetric and antisymmetric constitutive tensors for bi-isotropic and bi-anisotropic media

Pedro D. S. Silva ,* Rodolfo Casana ,† and Manoel M. Ferreira, Jr. ‡

Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65080-805 São Luís, Maranhão, Brazil

(Received 25 April 2022; revised 29 August 2022; accepted 20 September 2022; published 10 October 2022)

The Maxwell equations and the constitutive relations describe the classical propagation of electromagnetic
waves in continuous matter. Here, we investigate the effects stemming from extended constitutive relations on
the propagation of waves in bi-isotropic and bi-anisotropic media using a classical general approach based on
the evaluation of dispersion relations and refractive indices. For the bi-anisotropic media, we specify two classes
of magnetoelectric parameters represented by symmetric and antisymmetric tensors. The three cases examined
have provided real and distinct refractive indices for two propagating modes, which implies birefringence. The
propagating modes were also carried out in all cases. The anisotropy or birefringence effect, given by the
rotatory power or phase difference, was evaluated in terms of the magnetoelectric parameters of the theory
in each case. The propagation orthogonal to the vectors used to parametrize the symmetric and antisymmetric
magnetoelectric tensors is described by distinct modes, representing a route to identify the kind of bi-anisotropic
medium examined. The group velocity and Poynting vector were also evaluated for all the cases examined to
discuss the energy propagation in these anisotropic media.
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I. INTRODUCTION

As is well known, the propagation of electromagnetic
waves in a continuous and infinite medium is described by
the standard Maxwell equations in the matter [1,2],

k · D = 0, k × H + ωD = 0, (1a)

k · B = 0, k × E − ωB = 0, (1b)

where we use a typical plane-wave ansatz, E = E0ei(k·r−ωt )

and B = B0ei(k·r−ωt ). The electric displacement and magnetic
field, D and H, respectively, contain the electromagnetic re-
sponse of the matter in the form of electric polarization and
magnetization, respectively. Besides, these phenomena are
related to the constitutive relations involving the fields (D, E)
and (H, B). For linear, isotropic, and homogeneous dielectric
matter, the constitutive relations take on the usual form,

D = εE, H = μ−1B, (2)

where ε is the electric permittivity and μ is the magnetic per-
meability of the medium (constant parameters, in this case),
given by ε = ε0(1 + χE ), μ = μ0(1 + χM ). Here, χE and χM

represent the electric and magnetic susceptibility, respectively,
contributing to the polarization, P = ε0χ

E E, and magneti-
zation vector, M = χMH [1–3]. The simplest configuration
appearing in Eqs. (2) describes a medium, like water and
glass, where the physical properties do not depend on the
direction of the wave propagation.

The complexity and diversity of electromagnetic phe-
nomena in matter are addressed by general permittivity and
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permeability tensors, εi j and μi j , written as 3 × 3 matrices.
These tensors are suitable to describe interesting scenarios
endowed with anisotropy, where the constitutive relations (2)
read

Di = εi jE
j, Hi = (μ−1)i jB

j, (3)

with

εi j = ε0
(
δi j + χE

i j

)
, (4a)

μi j = μ0
(
δi j + χM

i j

)
, (4b)

and χE
i j and χM

i j representing the susceptibility tensors. The
expressions in Eqs. (4) include the polarization and magne-
tization contributions, Pi = ε0χ

E
i j E

j and Mi = χM
i j H j , which

usually appear in the constitutive relations as

Di = ε0Ei + Pi, Bi = μ0Hi + μ0Mi. (5)

For anisotropic configurations, the tensor εi j describes uni-
axial and biaxial crystals [3–6], which display optical activity
(chirality) [7] and birefringence [8,9].

Effects of anisotropy may also appear in linear electrody-
namics with linear extended constitutive relations, envisaged
as

D = ε̂ E + α̂ B, (6a)

H = β̂ E + ζ̂ B, (6b)

where ε̂ = [εi j], α̂ = [αi j], β̂ = [βi j], and ζ̂ = [ζi j] represent,
in principle, 3 × 3 complex matrices. Such expressions above
contain additional magnetoelectric responses of the medium
to electromagnetic fields: α̂ measures the electric response to
the magnetic field and β̂ represents the magnetic response to
the electric field. In this generalized context, if the relations
(5) remain valid, the polarization and magnetization vectors
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receive contributions from the magnetic and electric sectors,
respectively, being given as

Pi = ε0χ
E
i j E

j + αi jB
j, (7a)

Mi = χM
i j H j + β̃i jE

j, (7b)

where it holds that ζ̂ = μ̂−1, β̂ = −μ0μ̂
−1β̃.

In order to ensure the energy conservation of the electro-
magnetic field in a medium where the constitutive relations
(6a) and (6b) prevail, the Poynting theorem leads to the fol-
lowing set of relations for the complex matrices:

ε̂ = ε̂†, (8a)

μ̂−1 = (μ̂−1)†, (8b)

α̂ = −β̂†. (8c)

For details, see Sec. II and Refs. [10–12]. Relation (8c) will be
crucially relevant in the analysis of the present work, as will
be clear in the next sections.

The simplest version of the relations in Eqs. (6),(
D
H

)
=

(
ε α

β ζ

)(
E
B

)
, (9)

includes ε, α, β, and ζ as single parameters and describes
the physics of bi-isotropic media (the most general linear,
homogenous, and isotropic materials [10,11]), corresponding
to the case in which the matrices α̂ = [αi j] and β̂ = [βi j] are
diagonal and isotropic. In this case, in order to be consistent
with energy conservation, relations (9) yield

α = −β∗. (10)

In the configuration the constitutive relations (9) have the form
D = εE + αH, B = βE + ζH, and condition (10) becomes
α = β∗ = ψ + iκ , where ψ is the Tellegen coefficient and
κ is the chirality coefficient [13]. See Eqs. (C5) for details.
The bi-isotropic relations (9) have been much studied in both
theoretical [14–18] and applied aspects [13,19,20], being also
important to address optical properties [21,22] and other prop-
erties of topological insulators [23–29]. Bi-isotropic relations
are relevant for axion electrodynamics [30–33], construction
of optical isolators from chiral materials [34], the Casimir
effect in chiral media [35], and other applications [36].
Furthermore, bi-anisotropic “chiral materials,” described by
relations (6) involving anisotropic tensors, were employed
to investigate relativistic electron gas [37], time-dependent
magnetoelectric parameters [38], Weyl semimetals [39,40],
magnetized materials [41,42], and anisotropic dispersion re-
lations [43–45]. It is also worthy to mention some effects
engendered by the anisotropic magnetoelectric parameters,
corresponding to the off-diagonal elements of the matrices
α̂ = [αi j] and β̂ = [βi j]. Nondiagonal terms, for instance,
were examined in the discovery of electromagnons in per-
ovskites, which revealed an absorption difference of light
propagating in opposite directions (directional dichroism)
[46]. Magnetoelectric diagonal (and anisotropic) coefficients
were investigated in the context of multiferroic materials,
where they induced a light polarization rotation angle [47].

In extended scenarios, the constitutive tensors of relations
(6) may also depend on the space coordinates, standing for

the description of nonhomogeneous bi-isotropic and/or bi-
anisotropic media [48]. These tensors can present dependence
on the magnitude of the electromagnetic fields as well, ε̂ =
ε̂(E , B) and μ̂ = μ̂(E , B), a kind of approach which accounts
for birefringence in nonlinear electrodynamics [49], allowing
to recover the Kerr and Cotton-Mouton effects in particular
configurations [50]. A more involved and general nonlinear
construction, where the magnetoelectric coefficients exhibit
dependence at second order on the electromagnetic field com-
ponents, was recently examined [51].

Generalized constitutive relations can also be envisaged for
the current density as an extension of the standard Ohm’s law.
Such relations can be written as Ji = σEi + σ B

i j B
j , where σ is

the usual Ohmic conductivity and σ B
i j is a general magnetic

conductivity tensor. An isotropic tensor, σ B
i j = �δi j , stands

for the chiral magnetic effect (CME) [52–54]. Isotropic and
anisotropic symmetric and antisymmetric conductivity tensors
were examined in Ref. [55]. The antisymmetric parametriza-
tion of σ B

i j also has found realization in some Weyl semimetals
[56].

Another possible extension occurs in the context of a
Lorentz-violating anisotropic electrodynamics [57,58], with
constitutive relations written as(

D
H

)
=

(
ε1 + κ̂DE κ̂DB

κ̂HE μ−11 + κ̂HB

)(
E
B

)
, (11)

where κ̂DE, κ̂DB, κ̂HE, and κ̂HB are dimensionless 3 × 3 ma-
trices composed of vacuum, κ̂vac

DE , κ̂vac
DB , κ̂vac

HE , and κ̂vac
HB , and

matter pieces, κ̂matter
DE , κ̂matter

DB , κ̂matter
HE , and κ̂matter

HB . These gen-
eralized scenarios lead to unusual electrodynamics where
magnetoelectric parameters stemming from Lorentz symme-
try violation appear in matter or vacuum, giving rise to
interesting effects potentially related to the phenomenology
of new materials. A classical field theory approach to the de-
scription of wave propagation in a continuous chiral medium
supporting higher-order-derivative Lorentz-violating electro-
dynamics was recently examined [59].

In this work, we investigate the possible effects stem-
ming from extended linear constitutive relations (6a) and
(6b), assuming isotropic electric permittivity and magnetic
permeability, ζi j = μ−1δi j , εi j = εδi j , and that the tensors
αi j and βi j may be described by symmetric and antisym-
metric parametrizations. For the three cases investigated, we
have obtained general dispersive equations which provide
the refractive indices for any propagation direction. For the
anisotropic magnetoelectric tensors, we have worked out spe-
cific solutions for the particular propagation axis in order to
discuss the optical repercussions. More specifically, the bi-
anisotropic symmetric constitutive relations are parametrized
in terms of a 3-vector d,

D = εE + α̃d(d · B), H = μ−1B + β̃d(d · E), (12)

for which we discuss the dispersion relations, refractive in-
dices, and birefringence for special configurations where the
propagation vector direction is along and perpendicular to
the vector d. The antisymmetric constitutive relations are
parametrized in terms of two 3-vectors a and b,

D = εE + a × B, H = μ−1B + b × E, (13)
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satisfying b = a∗ and used to describe the particular scenarios
where the propagation direction is longitudinal and orthogo-
nal to the vector a.

The paper is outlined as follows: In Sec. II, we present the
basic formalism for obtaining the dispersion relations and re-
fractive indices in a general scenario of extended constitutive
relations. In Sec. III, we discuss the electromagnetic wave
propagation in the bi-isotropic case. In the sequel, we focus
on the isotropic-anisotropic constitutive relations, examining
symmetric (see Sec. IV) and antisymmetric (see Sec. V) con-
figurations for the tensors αka and βka. Finally, in Sec. VI, we
summarize our results. Throughout the paper, we use natural
units.

II. DISPERSION RELATIONS FOR BI-ISOTROPIC AND
BI-ANISOTROPIC MEDIA DESCRIBED BY EXTENDED

LINEAR CONSTITUTIVE RELATIONS

In this section, we start from the Maxwell equations in
a homogeneous ponderable nonconducting medium endowed
with general linear constitutive relations in order to obtain the
dispersion relations, which provide the refractive index and
the propagating modes. From Eq. (1), Ampère’s law reads

εi jkk jHk + ωDi = 0, (14)

where εi jk is the tridimensional Levi-Cività symbol. Replac-
ing the constitutive relations (6a) and (6b) in Eq. (14), one has

εi jkk j (βkaEa + ζkaBa) + ωεi jE
j + ωαi jB

j = 0. (15)

Employing now Faraday’s law, ωB = k × E, one obtains an
equation totally in terms of the electric field,

0 = εi jkεamnζkak jkmEn + ω2εi jE
j

+ ωε jmnαi jk
mEn + ωεi jkβkak jEa. (16)

Let us consider that the medium has isotropic both the electric
permittivity and magnetic permeability,

ζka = μ−1δka, εi j = εδi j, (17)

in such a way that the anisotropy, typical of “chiral” media,
is allowed to exist in the magnetoelectric coefficients. Hence,
Eq. (16) becomes

[k × (k × E)]i + ω2με̄i jE
j = 0, (18)

where

ε̄in(ω) = εδin − 1

ω
(βknεimk + αi jε jmn)km (19)

defines the frequency-dependent extended permittivity tensor,
which carries the electric and magnetic response of the
medium. Equation (18) is also cast in the form

[k2δi j − kik j − ω2με̄i j]E
j = 0. (20)

For a general anisotropic continuous scenario, we write
k = ωn, where n is a vector pointing along the direction of
the wave vector and yields the refractive index: n = +

√
n2.

Here we consider that the index n is non-negative and
√

n2

instead of |n|, in order to permit complex refractive indices.

The refractive indices with negative real parts, related to meta-
materials, are not considered here. Hence, Eq. (20) becomes

Mi jE
j = 0, (21)

where the tensor Mi j reads

Mi j = n2δi j − nin j − με̄i j, (22)

and ε̄i j is given by Eq. (19). This set of equations has a
nontrivial solution for the electric field if the determinant
of the matrix Mi j vanishes. Such a condition provides the
dispersion relations that govern the wave propagation in
the medium. In the case of standard media described by
anisotropic tensors εi j and ζi j , and with no extensions on
the constitutive relations, αi j = 0 and βi j = 0, the dispersion
relation can be found in Refs. [44,45].

We next examine the propagation of electromagnetic waves
in a dielectric medium under the validity of anisotropic ex-
tended dispersion relations of the form

Di = εδi jE
j + αi jB

j, (23a)

Hi = βi jE
j + μ−1δi jB

j, (23b)

where Eqs. (17) were considered. These relations may be con-
sidered isotropic-anisotropic since they contain isotropic elec-
tric permittivity and magnetic permeability, but anisotropic
magnetoelectric tensors, αi j, βi j .

First, we present the general conditions on the constitutive
tensors in order to ensure energy conservation in the system.
The Poynting theorem is given by [1]

∇ · S = − iω

2
(E · D∗ − H∗ · B) − (J∗ · E)

2
, (23c)

where

S = 1
2 (E × H∗) (23d)

is the Poynting vector. The real part of Eq. (37) yields the
energy conservation law for the system. In the absence of
sources and considering there is no flux of energy density, the
energy conservation condition is

Re[iω
(
D†E − H†B

)
] = 0. (23e)

Depending on the form of the constitutive relations, con-
straints on the parameters describing the medium (compatible
with energy conservation) are obtained. Indeed, replacing the
constitutive relations in Eqs. (23) into Eq. (39) yields

0 = E†(ε̂† − ε̂)E − B†(ζ̂ † − ζ̂ )B

+ B†(β̂ + α̂†)E − E†(β̂† + α̂)B, (23f)

which establishes a general relation involving all constitutive
tensors with the electromagnetic fields. A simple route to
ensure energy conservation is to set

ε̂† = ε̂, ζ̂ † = ζ , β̂ = −α̂†. (23g)

The last condition will be relevant in the discussions of the
next sections, as we will see. In the following, we write
the dispersion relations from which we obtain the refractive
indices and the propagating modes for some special configu-
rations of αi j, βi j .
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In the next sections, we study the dispersion relations,
refractive indices, propagating modes, group velocity, phase
velocity, and Poynting vector of the electromagnetic waves
for the bi-isotropic and bi-anisotropic linear media.

III. BI-ISOTROPIC CASE

In the context of the constitutive relations (23), we begin
considering the total symmetric isotropic configuration, where
the quantities α̂ and β̂ are given by

αi j = αδi j, βi j = βδi j, (24)

with α, β ∈ C. The condition αi j = −β
†
i j , when applied on

parametrization (42), yields

β∗ = −α. (25)

In this case, the constitutive relations take on the typical bi-
isotropic form,

D = εE + αB, (26a)

H = 1

μ
B + βE, (26b)

which represent the simplest linear connection between
(D, H) and (E, B). As already mentioned, such relations play
a relevant role in topological insulators [21,23–28] and axion
systems [30,32,33].

Inserting Eq. (42) in Eq. (19), one obtains

ε̄i j = εδi j + (α + β )εi jmnm, (27)

where the last term on the right-hand side represents the
“magnetic-electric” response of the medium. As we have
started with isotropic tensors, εδi j , μ−1δi j , αδi j , and βδi j , any
effective arising anisotropy comes from the extended structure
of the constitutive relations (26). In this case, the tensor Mi j

[Eq. (22)] has the form

M ≡ [Mi j] = N − μ(α + β )

⎛
⎝ 0 n3 −n2

−n3 0 n1

n2 −n1 0

⎞
⎠, (28)

where

N =
⎛
⎝n2

2 + n2
3 − με −n1n2 −n1n3

−n1n2 n2
1 + n2

3 − με −n2n3

−n1n3 −n2n3 n2
1 + n2

2 − με

⎞
⎠.

(29)
Requiring det[Mi j] = 0, one gets

n4 − n2[2με − μ2(α + β )2] + μ2ε2 = 0. (30)

Solving for n2, we obtain the following refractive indices:

n2
± =με − 2Z ± iμ(α + β )

√
με − Z, (31)

where

Z = μ2(α + β )2

4
. (32)

Thereby the corresponding n± read

n± =
√

με − Z ± i
√

Z, (33)

where we have considered only the indices with a positive real
piece in order to avoid metamaterial behavior. The refractive
indices (33) are valid (and are equal) for any propagation
direction since the bi-isotropic case does not have a preferred
direction that could be represented by a constant vector. In
spite of that, the system may manifest an anisotropic effect
(circular birefringence) due to the way the fields are coupled.
Such an effect will be examined ahead.

The refractive indices can also be obtained by diago-
nalizing the electric permittivity and setting each eigenvalue
equal to n2/μ. The eigenvalues εa (a = 1, 2, 3) fulfill ε̄i je

j
a =

εaei
a, where ea represent the eigenvectors. Diagonalizing the

matrix of the operator ε̄ [Eq. (27)], one finds the following
eigenvalues:

ε1 = ε, (34)

ε2,3 ≡ ε± = ε ± i(α + β )n, (35)

associated with the eigenvectors

e1 = n
n
, (36)

e2(3) = 1

n
√

2
(
n2

1 + n2
3

)
⎛
⎝ n3n ± in1n2

∓i
(
n2

1 + n2
3

)
±in2n3 − n1n

⎞
⎠. (37)

Eigenvalues (34) and (35) are associated with the refractive
indices

n2 = με, (38)

n2
± = με ± iμ(α + β )n. (39)

We note that Eq. (38) represents the refractive index of an
isotropic dielectric medium. On the other hand, Eq. (39)
recovers the result of Eq. (33), meaning that only the eigen-
values ε2 and ε3 correspond to the refractive indices of the
medium, n+ and n−, respectively. This approach of finding
the refractive indices n via the relation n2 = μεa(n), where εa

stands for the eigenvalues of the electric permittivity ε̄i j , only
works when the electric field is orthogonal to the propagation
direction. Here, such a condition is guaranteed by the Gauss
law k · D = 0, where the electric displacement vector, given
by

D = εE + α

ω
k × E, (40)

provides k · E = 0. Then for a general vector n = k/ω, the
related propagating electric field, Ea, satisfies n · Ea = 0. This
way, Eqs. (21) and (22) simplify to

[n2δi j − με̄i j]E
j = 0, (41)

or n2δi j = με̄i j , creating the straightforward correspondence
between n2 and ε̄i j eigenvalues, that is, n2 = μεa(n). This is
the means by which the eigenvectors (ea) represent the electric
field modes, Ea ∼ ea. Note that it also holds that n · ea = 0.
This situation is clearly illustrated in the present case. In fact,
the three normalized eigenvectors given in Eqs. (36) and (37)
are linearly independent and obey

e1 · e∗
2 = e1 · e∗

3 = e2 · e∗
3 = 0. (42)
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In particular, e2 and e3 are orthogonal to e1 ∼ n, thus in-
dicating the transversality of the propagating modes, E2 ∼
e2, E3 ∼ e3, whose eigenvalues yield the correct refractive
indices n± [see Eq. (33)]. On the other hand, n · e1 is nonzero,
meaning that the eigenvalue ε1 does not yield a physical re-
fractive index.

A. Propagation modes

As already explained, the electric field of the propagating
modes is given by solution (37). So, let us choose a a conve-
nient coordinate system where

n = (0, 0, n3), (43)

with which the eigenvectors (37) are

e2(3) = 1√
2

⎛
⎝ 1

∓i
0

⎞
⎠, (44)

where −i represents a right-handed circular polarization
(RCP) and +i a left-handed circular polarization (LCP), re-
spectively. We can easily show that the same result stems
directly from Eq. (21). By replacing the simple choice of
Eq. (43) in the matrix (28),

M =
⎛
⎝ n2

3 − με −μ(α + β )n3 0
μ(α + β )n3 n2

3 − με 0
0 0 −με

⎞
⎠, (45)

and implementing the refractive indices (31), the condition
Mi jE j = 0 provides the following normalized solutions of the
electric field of the propagating modes:

Ê± = 1√
2

⎛
⎝ 1

±i
0

⎞
⎠, (46)

where Ê+ and Ê− represent the LCP and RCP vectors, re-
spectively. Solution (46) does not depend on the nature (real
or complex) of the parameters α and β; in such a way it will
be valid for all the cases examined in this section. The equality
between solution (46) and Eq. (44), e3(2) ≡ Ê±, confirms the
approach here developed.

We point out that the circular polarization solution (46) is
not exclusive of the z-propagation direction. Indeed, taking on
the propagation in the x axis, n = (n1, 0, 0), matrix (28) takes
the form

M =
⎛
⎝−με 0 0

0 n2
1 − με −μ(α + β )n1

0 μ(α + β )n1 n2
1 − με

⎞
⎠, (47)

whose associated modes,

Ê± = 1√
2

⎛
⎝ 0

±i
1

⎞
⎠, (48)

also correspond to transversal circularly polarized waves.

B. Optical effects of complex magnetoelectric
parameters in dielectrics

Since we have already found the refractive indices and
the polarization of the propagating modes, it is necessary to
examine the physical behavior brought about by the consti-
tutive relations (26a) and (26b) on a conventional dielectric
substrate. In the limit (α + β ) → 0, one recovers the refrac-
tive index of an isotropic dielectric medium, given by Eq. (38):

n2
± = με. (49)

Equation (33) provides

n± =
√

με − μ2(α + β )2

4
± i

μ(α + β )

2
. (50)

Now we examine the refractive indices (50) in two cases:
(a) α, β ∈ C and (b) α, β ∈ R. For α and β complex, one can
write

α = α′ + iα′′, β = β ′ + iβ ′′, (51)

where α′ = Re[α], α′′ = Im[α], β ′ = Re[β], and β ′′ =
Im[β]. Condition (25) implies

α′ = −β ′, α′′ = β ′′, (52)

so that α + β = 2iα′′. Therefore, Eq. (50) is rewritten as

n± =
√

με + μ2α′′2 ∓ μα′′, (53)

which are real, positive, and cause birefringence. Since
the polarization modes are circularly polarized vectors [see
Eq. (46)], the birefringence effect can be evaluated in terms of
the rotatory power (see Appendix A), defined as

δ = − [Re(n+) − Re(n−)]ω

2
. (54)

Hence, using indices (53), the rotatory power is

δ = μωα′′. (55)

Such a birefringence effect [Eq. (55)] is a consequence of
(α + β ) = 2iα′′. Therefore, it only occurs when the consti-
tutive parameters possess an imaginary piece. On the other
hand, for α, β ∈ R, one has simply β = −α, α′′ = 0, and no
birefringence takes place. This is the case of the topological
insulators bi-isotropic scenario [21,23–28], whose constitu-
tive relations are

D = εE − α0B, (56a)

H = B
μ

+ α0E, (56b)

with α0 = e2/4π h̄ and e being the elementary electric charge.
For Eqs. (56), one has (α + β ) = 0, so that no birefringence
is provided.

Concerning topological insulators, quantum effects of bulk
interband excitations may generate strong Faraday rotation
associated with a type of optical activity described by the
Verdet constant [60,61]. The quantum origin of this effect
does not represent a contradiction with the classical absence
of birefringence for topological insulators here remarked.
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C. Group velocity, phase velocity, and Poynting vector

Using n = k/ω in Eq. (33), one finds

ω± = k√
με − Z ± i

√
Z

. (57)

To assess the group and phase velocities, we need to consider
the nature (real or complex) of the magnetoelectric parame-
ters.

Case (i). For α, β ∈ C, it holds that (α + β ) = 2iα′′ and
Z = −μ2α′′2, so that

ω± = k√
με + μα′′2 ∓ μα′′ . (58)

In this case, ω± > 0, which guarantees propagation of physi-
cal modes for all values of k. The phase and group velocities
are equal:

vph(±) ≡ ω±
k

= 1√
με + μα′′2 ∓ μα′′ , (59)

vg(±) ≡
∣∣∣∣∂ω±

∂k

∣∣∣∣ = 1√
με + μα′′2 ∓ μα′′ . (60)

Case (ii). For α, β ∈ R, (α + β ) = Z = 0, one has

ω± = k√
με

, (61)

which yields

vph(±) = vg(±) = 1√
με

. (62)

Since vg(±) < 1 in both cases (i) and (ii), the classical causal-
ity is ensured for all k and any value of α′′.

To examine the energy flux propagation direction, we im-
plement Faraday’s law and the constitutive relation (26b) in
the Poynting vector (23d), yielding

S = 1

2μ
[n|E|2 − (n · E)E∗] + β∗

2
(E × E∗). (63)

In the absence of sources, the Gauss law (k · D = 0), taking
into account Eq. (40), provides k · E = 0. Thus Eq. (63) is
rewritten as

S = 1

2μ
n|E|2 + β∗

2
(E × E∗). (64)

The real part of Eq. (64) provides the time-averaged Poynting
vector, that is,

〈S〉 = 1

2μ
n|E|2 + Re

[
β∗

2
(E × E∗)

]
, (65)

where we have used Re[n] = n = nn̂, since the refractive
indices are real. Using the property Re[z] = (z + z∗)/2, with a
complex z, E = E′ + iE′′, and β = −α∗, the simplified Poynt-
ing vector takes the form

〈S〉 = 1

2μ
n|E|2 − α′′(E′ × E′′). (66)

The Gauss law, n · E = 0, implies n · E′ = 0 and n · E′′ = 0,
so both vectors E′ and E′′ are in the plane orthogonal to n.

This way, the product E′ × E′′ is parallel or antiparallel to n.
Therefore, in this bi-isotropic medium, the energy flux prop-
agates along the same direction of the electromagnetic wave,
independently of the value of the magnetoelectric parameter,
α′′, responsible for the birefringence.

IV. BI-ANISOTROPIC CASE WITH SYMMETRIC
PARAMETERS

Now we explore the scenario where αi j and βi j are non-
diagonal symmetric tensors, while the electric permittivity, ε,
and the magnetic permeability, μ, are simple numbers. They
can be easily parametrized by using a single 3-vector d, that
is,

αi j = α̃did j, βi j = β̃did j, (67)

in such a way that the constitutive relations take the form

D = εE + α̃d(d · B), (68a)

H = 1

μ
B + β̃d(d · E). (68b)

The parameters αi j and βi j in Eqs. (67) represent symmetric
matrices with trace given by α̃d2 and β̃d2, respectively. These
3 × 3 matrices contain off-diagonal elements that could yield
anisotropy. This is a bold difference in relation to the bi-
isotropic configuration (24), examined in Sec. III. For a matter
of generality, we suppose αi j, βi j ∈ C, which is compatible
with d ∈ R3 and α̃, β̃ ∈ C. This way, in accordance with con-
dition (8c), the parameters (67) should obey

β̃ = −α̃∗, (69)

which implies

α̃′ = −β̃ ′, α̃′′ = β̃ ′′, (70)

for α̃′ = Re[α̃], α̃′′ = Im[α̃], β̃ ′ = Re[β̃], and β̃ ′′ = Im[β̃].
The constitutive relation (68a) allows us to write the dis-

placement vector in the form

D = εE + α̃

ω
d[d · (k × E)]. (71)

The Gauss law, k · D = 0, requires electric field configura-
tions satisfying

[εn + α̃(n · d)(d × n)] · E = 0, (72)

for k = ωn.
In the case d and n are parallel vectors, Eq. (72) implies

transversal electric field modes, n · E = 0. For nonparallel
vectors d and n, the electric field may be written as in Eq. (A1)
of Appendix A, which does not supply, in general, transversal
modes; that is, n · E 
= 0 [see Eq. (A4)]. Furthermore, for
orthogonal vectors, n · d = 0, Eq. (72) yields again transver-
sal modes, n · E = 0, with the electric field expressed as in
Eq. (A6).

Replacing relations (67) in the permittivity tensor (19),
ones writes

ε̄i j = εδi j − 1

ω
(β̃εimnkmdnd j + α̃εam jdidakm), (73)
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in such a way the tensor Mi j , Eq. (22), provides

M = N − μ(D + E ), (74)

with N of Eq. (29), containing the usual constitutive elements,
while the magnetoelectric contributions are displayed in the
following:

D = −(α̃ − β̃ )diag(D1, D2, D3), (75a)

E =
⎛
⎝ 0 ε12 ε13

ε21 0 ε23

ε31 ε32 0

⎞
⎠, (75b)

where

D1 = d1(d2n3 − d3n2), (75c)

D2 = d2(d3n1 − d1n3), (75d)

D3 = d3(d1n2 − d2n1), (75e)

and

ε12 = −β̃d2(d3n2 − d2n3) + α̃d1(d1n3 − d3n1), (76a)

ε13 = −β̃d3(d3n2 − d2n3) + α̃d1(d2n1 − d1n2), (76b)

ε21 = −β̃d1(d1n3 − d3n1) + α̃d2(d3n2 − d2n3), (76c)

ε23 = −β̃d3(d1n3 − d3n1) + α̃d2(d2n1 − d1n2), (76d)

ε31 = −β̃d1(d2n1 − d1n2) + α̃d3(d3n2 − d2n3), (76e)

ε32 = −β̃d2(d2n1 − d1n2) + α̃d3(d1n3 − d3n1). (76f)

Evaluating det[Mi j] = 0, we obtain the dispersion relation,

ε(n2 − με)2 + α̃β̃μ[μεd2 − (n · d)2](d × n)2 = 0, (77)

where (d × n)2 ≡ d2n2 − (d · n)2.
Relation (69) provides α̃β̃ = −|α̃|2. Furthermore, imple-

menting n · d = nd cos ϕ, Eq. (77) yields

n2
± = 1

s

[
N ± μ|α̃|d2 sin2 ϕ

√
με + μ2|α̃|2d4

4

]
, (78)

or

n± =
√

N + με
√

s

2s
±

√
N − με

√
s

2s
, (79)

where

N = με + μ2|α̃|2d4

2
sin2 ϕ, (80a)

s = 1 + μ

ε
|α̃|2d4 sin2 ϕ cos2 ϕ. (80b)

We notice in Eq. (79) two distinct refractive indices, both
real and positive, n± > 0, in such a way that birefringent
electromagnetic propagation is expected in this medium. We
also highlight that Eq. (78) holds for any propagation direction
in relation to the vector d, generally expressed in terms of
the angle ϕ, the relative angle between the vector d and the
propagation direction.

The behavior of n± [Eq. (79)] in terms of ϕ ∈ [0, π ]
and the dimensionless parameter |α̃| ∈ [0, 1] is illustrated in

FIG. 1. Refractive index n+ of Eq. (79) with μ = 1, ε = 2, and
d = 1. The parameters ε, μ, and |α̃|d2 are dimensionless.

Figs. 1 and 2. The anisotropy effect manifests itself by means
of the angular dependence of n± on ϕ. Notice the nonlinearity
of n±, which behaves as a sinusoidal function, increasing with
|α̃|.

In the following, we address the propagating modes and
examine birefringence effects for some specific propagation
directions.

A. Propagation modes

To examine the propagating modes, we first pay attention
to the angle between n and d. For the configurations where n
and d are in the same direction, Eq. (78) yields n± = √

με,
which is the usual scenario. Modified scenarios arise when
n and d are not aligned. To obtain the modes, we choose a
simplified coordinate system where the vector n is along the
z axis; that is, n = (0, 0, n). For such a choice, we investigate
a configuration where the background vector is longitudinal
and orthogonal to n.

FIG. 2. Refractive index n− of Eq. (79) with μ = 1, ε = 2, and
d = 1. The parameters ε, μ, and |α̃|d2 are dimensionless.
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1. d-longitudinal configuration

We begin examining the d-longitudinal configuration,

d = (0, 0, d ), (81)

for which Eq. (78) yields

n2 = με. (82)

For this case, matrix (74) is rewritten as

M =
⎛
⎝n2 − με 0 0

0 n2 − με 0
0 0 −με

⎞
⎠, (83)

in such a way that Mi jE j = 0 provides generic orthogonal
modes

E =
⎛
⎝Ex

Ey

0

⎞
⎠, (84)

representing a transversal wave with undefined polarization
(linear, circular, or elliptical). It is interesting to note that
only one positive refractive index was determined and it does
not depend on the propagation direction, which is a signal of
isotropy. This means that the d direction defines the optical
axis of the medium.

2. d-transversal configuration

We follow writing the d-transversal configuration,

d = (d1, d2, 0), (85)

for which s = 1 and N = με + |α̃|2μ2d4/2, so that Eq. (78)
yields

n2
± = με + μ2|α̃|2d4

2
± μ|α̃|d2

√
με + μ2|α̃|2d4

4
(86)

and

n± =
√

με + μ2|α̃|2d4

4
± μ|α̃|d2

2
. (87)

By using Eq. (87) we rewrite Eq. (86) as

n2
± = με ± μ|α̃|d2n±. (88)

Matrix (74) now is

M =
⎛
⎝ n2

± − με + �n± −μn±
(
β̃d2

2 + α̃d2
1

)
0

μn±
(
β̃d2

1 + α̃d2
2

)
n2

± − με − �n± 0
0 0 −με

⎞
⎠,

(89)
or better,

M =
⎛
⎝(±μ|α̃|d2 + �)n± −μn±

(
β̃d2

2 + α̃d2
1

)
0

μn±
(
β̃d2

1 + α̃d2
2

)
(±μ|α̃|d2 − �)n± 0

0 0 −με

⎞
⎠,

(90)
where we have used Eqs. (70) and (88), writing

� = μ(α̃ − β̃ )d1d2 = 2μα̃′d1d2. (91)

The condition Mi jE j = 0 yields

E± = E0

⎛
⎝ 1

μ(β̃d2
1 +α̃d2

2 )
�∓μ|α̃|d2

0

⎞
⎠, (92)

with an appropriately chosen amplitude E0. For d1 = 0, we
achieve

E± = E0

⎛
⎝ 1

∓ α̃
|α̃|
0

⎞
⎠ = 1√

2

⎛
⎝ 1

∓ α̃′+iα̃′′
|α̃|
0

⎞
⎠, (93)

which represents linear polarizations for α̃′′ = 0 or circular
polarizations for α̃′ = 0.

As Eq. (87) exhibits two real refractive indices, a scenario
with birefringence is set. The modes (93), however, do not
represent RCP or LCP vectors, so the birefringent propagation
cannot be suitably described in terms of the rotatory power
(54). Rather, it can be characterized in terms of the phase shift
arising from the distinct phase velocities of the propagating
modes, given by

� = 2π

λ0
l (n+ − n−), (94)

where λ0 is the vacuum wavelength of incident light, l is the
thickness of the medium or the distance traveled by the wave,
and n+ and n− are the refractive indices of the medium. Note
that this is the same expression that controls the phase shift
caused by “retarders” (for details, see Chap. 8 of Ref. [9]).
Using Eq. (87), one finds the corresponding phase shift per
unit length as

�

l
= 2π

λ0
μ|α̃|d2. (95)

As the phase shift depends on the modulus of α̃, the bire-
fringence now takes place for both real and imaginary
magnetoelectric parameters. This is a difference in relation to
the bi-isotropic case (26), in which the birefringence occurs
only for imaginary parameters, as shown in Eq. (55).

3. d general configuration

Now, let us analyze the mixed case where the vector d
has orthogonal and longitudinal components relative to the
propagation direction, n. In this sense, one can set

d = (0, d2, d3). (96)

The refractive indices (78) are rewritten as

n2
± = 1

s
(με + �± sin2 ϕ), (97)

where s is given by Eq. (80b) and �± is defined as

�± = μ2|α̃|2d4

2
± μ|α̃|d2

√
με + μ2|α̃|2d4

4
. (98)

For the coordinate system where n = (0, 0, n3) and d is
given by Eq. (96), matrix (74) takes the form

M =
⎛
⎝ n2

3 − με −μβ̃d2
2 n3 −μβ̃d2d3n3

+μα̃d2
2 n3 n2

3 − με 0
+μα̃d2d3n3 0 −με

⎞
⎠, (99)
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FIG. 3. Phase shift factor per unit length of Eq. (103). Here, we
have used μ = 1, ε = 2, and d = 1.

which becomes

M =
⎛
⎝ 1/ϒ± −μβ̃d2

2 n3 −μβ̃d2d3n3

+μα̃d2
2 n3 1/ϒ± 0

+μα̃d2d3n3 0 −με

⎞
⎠ (100)

when Eq. (97) is taken into account and we have defined

ϒ± = s

με(1 − s) + �± sin2 ϕ
. (101)

The condition Mi jE j = 0 yields

E± = E0

⎛
⎝ 1

−μ(α̃′ + iα̃′′)d2
2 n±ϒ±

+(α̃′ + iα̃′′)d2d3n±/ε

⎞
⎠, (102)

where n± represents n3±. Differently from the previous d-
longitudinal or d-orthogonal cases, modes (102) are endowed
with a longitudinal component, a feature of general solutions
for ϕ 
= 0, π or ϕ 
= π/2.

The polarization of modes (102) can be read off their
transversal sectors. Since the transversal piece of Eq. (102)
is neither RCP nor LCP, being linearly (for α̃′′ = 0) or el-
liptically polarized (for α̃′ = 0), the birefringence effect is
expressed by means of the phase shift per unit length defined
in Eq. (94), here carried out as

�

l
= 4π

λ0

√
N − με

√
s

2s
, (103)

where we used Eq. (79). In Fig. 3 we have plotted the phase
shift (103) per unit length in terms of ϕ and |α̃|. We notice
that the birefringence effect is maximal for ϕ = π/2, which
corresponds to configurations where n+ and n− have maxima
and minima values, respectively.

As a final comment, note that for d2 = 0 or d = (0, 0, d3)
the field (102) simplifies as

E± =
⎛
⎝1

0
0

⎞
⎠, (104)

which corresponds to the d-longitudinal case, whose mode
is given by Eq. (84), being compatible with the result (104).
On the other hand, for the transversal configuration, d3 = 0 or

d = (0, d2, 0), the field (102) yields

E± = E0

⎛
⎝ 1

−μ(α̃′ + iα̃′′)d2
2 n±ϒ±

0

⎞
⎠. (105)

For this transversal configuration it holds that ϒ± = 1/�±
and �± = μ|α̃|d2n±. With that, solution (105) recovers the
one of Eq. (93).

B. Group velocity, phase velocity, and Poynting vector

The dispersion equation (77) can be rewritten in the form

ω4 − 2ω2

{
k2

με
+ |α̃|2d2

2ε2
(d × k)2

}

+ μ

ε

|α̃|2
μ2ε2

(k · d)2(d × k)2 + k4

μ2ε2
= 0, (106)

whose solutions for ω,

ω2
± = k2

με
+ |α̃|

ε
(d × k)2

[
|α̃|d2

2ε
∓

√
1

με
+ |α̃|2d4

4ε2

]
, (107)

provide the phase and group velocities,

vph(±) ≡ ω±
k

=
√

1

με
+ |α̃|

ε
(d × k̂)2

( |α̃|d2

2ε
∓ fα

)
, (108)

vi
g(±) = ki

μεω±
+ |α̃|

εω±
[d2ki − (d · k)di]

( |α̃|d2

2ε
∓ fα

)
,

(109)

with

fα =
√

1

με
+ |α̃|2d4

4ε2
. (110)

Both vph(±) and vg(±) are valid for general configurations, i.e.,
for any relative orientation between the vectors d and n, for
which the group velocity is no longer parallel to n, due to its
component along the d vector. Considering now the special
cases discussed in Sec. IV A, we state the following:

(i) For the d-longitudinal scenario where d · k̂ = d ,
Eqs. (108) and (109) provide

v
long.

ph(±) = 1√
με

, vlong.

g(±) = k̂√
με

. (111)

(ii) For the d-transversal case where d · k̂ = 0, one obtains

vtrans.
ph(±) =

√
1

με
+ |α̃|2d4

4ε2
∓|α̃|d2

2ε
, (112)

vtrans.
g(±) =

[√
1

με
+ |α̃|2d4

4ε2
∓|α̃|d2

2ε

]
k̂. (113)

The magnitude of the group velocity (113) is depicted in
terms of the magnetoelectric parameter in Fig. 4.

We note that vg(−) > 1 occurs for |α̃| > αc, where the crit-
ical value αc is given by

αc = με − 1

μd2
. (114)
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FIG. 4. Group velocity vg(±) [Eq. (113)] of d-transversal case.
The blue dot-dashed curve indicates vg(+), while the red solid line
represents vg(−). The vertical dashed line indicates |α̃| = 1, corre-
sponding to the value of the critical factor αc [Eq. (114)] for the
choices μ = 1, ε = 2, and d = 1, the ones adopted in this plot.

Such a mode with vg(−) > 1 is related to the refractive index
n− of Eq. (79), which can assume values n < 1 (see Fig. 2).

Let us now evaluate the Poynting vector. Using the consti-
tutive relation (68b), we obtain

S = 1

2μ
n|E|2 − 1

2μ
(n · E)E∗ + β∗

2
(E × d)(d · E∗). (115)

As the Gauss law yields εk · E = −α̃(k · d)(d · B), Eq. (115)
takes the form

S = 1

2μ
n|E|2 + α̃

2με
(n · d)[E · (d × n)]E∗

+ β̃∗

2
(E × d)(d · E∗). (116)

Considering β̃ = −α̃∗ and E = E′ + iE′′, the time-averaged
Poynting vector, obtained from the real part of Eq. (116), is
given by

〈S〉 = 1

2μ
n|E|2 + α̃′

2με
(n · d){E′[E′ · (d × n)]

+ E′′[E′′ · (d × n)]} − α̃′′

2με
(n · d){E′[E′′ · (d × n)]

− E′′[E′ · (d × n)]} − α̃′

2
[(d · E′)(E′ × d)

+ (d · E′′)(E′′ × d)] + α̃′′

2
[(d · E′)(E′′ × d)

− (d · E′′)(E′ × d)], (117)

or, equivalently,

〈S〉 = 1

2μ
n|E|2 + (n · d)

2με
(α̃′f ′ − α̃′′f ′′) − 1

2
(α̃′g′ − α̃′′g′′),

(118)

where

f ′,′′ = E′[E′,′′ · (d × n)] ± E′′[E′′,′ · (d × n)], (119)

g′,′′ = (d · E′)(E′,′′ × d) ± (d · E′′)(E′′,′ × d). (120)

In the case d and n are parallel vectors, Eq. (72) implies
transversal electric field modes, n · E = 0, then d · E = 0.
In this case, we have f ′,′′ = 0 and g′,′′ = 0 yielding simply
〈S〉 = n|E|2/2μ, and the energy flux propagates along the
same direction of n.

For the case that the vectors d and n are mutually orthogo-
nal, n · d = 0, Eq. (72) also provides n · E = 0, so that

〈S〉 = 1

2μ
n|E|2 − 1

2
(α̃′g′ − α̃′′g′′). (121)

This scenario is such that the vectors d, E′, and E′′ are in
the same plane orthogonal to n. This way, the vectors E′ × d
and E′′ × d are along the n direction or are both null (when
E and d are parallel vectors). Consequently, the vectors g′,′′
come out parallel (or antiparallel) to n. Thus, in this case,
the energy flux also propagates along the same propagation
direction of the electromagnetic wave, whatever the α̃′, α̃′′
parameters values.

For the general case in which n and d are not collinear
or perpendicular, the energy flux is no longer parallel to the
propagation direction of the electromagnetic wave.

V. BI-ANISOTROPIC CASE WITH ANTISYMMETRIC
PARAMETERS

Now we analyze the case where the magnetoelectric pa-
rameters are described by antisymmetric tensors, written as

αi j = εi jkak, (122a)

βkn = εknrbr, (122b)

where a = (ax, ay, az ) and b = (bx, by, bz ) are fixed and, in
principle, complex 3-vectors, which induce preferred direc-
tion in the system, while εi jk represents the usual Levi-Cività
symbol in three dimensions. In order to satisfy Eq. (8c), the
following condition should hold:

b∗ = a. (123)

In the case the vectors a and b are real, this condition reduces
merely to b = a.

Under the validity of relations (122a) and (122b), the elec-
tric displacement field and the magnetic field are given by

D = εE + a × B, (124)

H = 1

μ
B + b × E. (125)

Some analog antisymmetric constitutive relations have found
application in the description of electron gas systems [37]
and in the investigation of electromagnetic propagation in
time-dependent media with an antisymmetric magnetoelectric
coupling and an isotropic time-dependent permittivity [38].

In the momentum space, Eq. (124) provides

D = εE + 1

ω
a × (k × E), (126)

D =
(

ε − a · k
ω

)
E + a · E

ω
k, (127)
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where a × (k × E) = (a · E)k−(a · k)E. From the relation
k · D = 0, for k = ωn, we obtain

[εn + n×(a × n)] · E = 0. (128)

In general, the propagating modes are no longer transver-
sal. Yet, when a and n are parallel vectors, Eq. (128) becomes

εn · E = 0, (129)

recovering a transversal electric field.
Replacing Eqs. (122a) and (122b) in Eq. (19), one obtains

the following extended electric permittivity tensor:

ε̄i j =
(

ε − a · k
ω

− b · k
ω

)
δi j + bik j

ω
+ a jki

ω
, (130)

where there appear direction-dependent terms: (a · k), (b · k),
aik j , and a jki. Now the matrix Mi j is written as

M = N + μ[(a + b) · n]13×3 − μ(A + B), (131)

where N is given by Eq. (29), and

A = diag((b1 + a1)n1, (b2 + a2)n2, (b3 + a3)n3),

(132a)

B =
⎛
⎝ 0 b1n2 + a2n1 b1n3 + a3n1

b2n1 + a1n2 0 b2n3 + a3n2

b3n1 + a1n3 b3n2 + a2n3 0

⎞
⎠.

(132b)

For det[Mi j] = 0, the following dispersion equation is at-
tained:

0 = [n2 − με + μ(c · n)]

{
[n2 − με + μ(c · n)]

+ μ

ε
[(a · b)n2 − (a · n)(b · n)]

}
, (133)

which can be cast in the form

[n2 − με + μ(c · n)][nT Q̃n + μ(c · n) − με] = 0, (134)

where c = a + b is always a real vector [due to Eq. (123)] and
Q is a complex (3 × 3) self-adjoint matrix defined by

Q = 1 + μ(a · b)

ε
− μ(abT + baT )

2ε
. (135)

The first dispersion relation, expressed as(
n + μc

2

)2
= με + μ2c2

4
, (136)

describes a sphere centered in n0 = −μc/2 with radius√
με + μ2c2/4. The second dispersion relation is

nT Qn + μ(a + b) · n = με. (137)

The eigenvalues of Q determine the surface described by the
dispersion relation. If all eigenvalues are positive, the surface
becomes an ellipsoid whose center is not at the origin [if
(a + b) · n = 0, it is centered at the origin], with the principal
axes oriented along the respective eigenvectors. When there
are at least two distinct eigenvalues, the medium produces
birefringence.

A. Propagation properties of magnetoelectric
parameters in dielectrics

In order to investigate the electromagnetic propagation in a
dielectric medium governed by the constitutive relations (124)
and (125), we suppose that the magnetoelectric parameters are
constrained by relation (123). In the case the vectors a and b
have a complex piece, that is,

a = a′ + ia′′, b = b′ + ib′′, (138)

one writes a′ = b′ and a′′ = −b′′, as a consequence of
Eq. (123). In this case, we have

(a + b) · n = 2(a′ · n), (139)

(a · n)(b · n) = (a′ · n)2 + (a′′ · n)2, (140)

a · b = a′2 + a′′2 = |a|2, (141)

for a real n vector. We also suppose that the 3-vector a ful-
fills a′ · n = a′n cos ϕ, a′′ · n = a′′n cos ϕ, so that the involved
relation (133) provides,

[n2 − με + 2μa′n cos ϕ] = 0 (142a)

[n2(ε + μ|a|2 sin2 ϕ) + 2μεa′n cos ϕ − με2] = 0,

(142b)

from which the following (positive) indices are achieved:

n(1) = μ

√
a′2 cos2 ϕ + ε/μ − μa′ cos ϕ, (143)

n(2) = 1

r
(
√

με + μ2a′2 + μ2a′′2 sin2 ϕ − μa′ cos ϕ), (144)

where

r = 1 + μ

ε
|a|2 sin2 ϕ. (145)

Above, we have retained only the roots corresponding to
positive refractive indices, since we are not addressing meta-
materials. The general behavior of n(1,2) is illustrated in Figs. 5
and 6 in terms of ϕ ∈ [0, π ] and the dimensionless parameter
a′ ∈ [0, 1].

The anisotropy effect is described by the angular depen-
dence on ϕ, not exactly equal for n(1) and n(2). In fact,
note that by setting a′ �→ 0, one obtains n1 �→ √

με, a con-
stant value which corresponds to the straight border line
of Fig. 5 (for a′ = 0). Under such a limit, n2 �→ με(με +
μ2a′′2 sin2 ϕ)−1/2, which is represented by the sinusoidal bor-
der line at a′ = 0 in Fig. 6. Furthermore, the border behavior
at a′ = 1 is also distinct for the two plots. Both n(1) and n(2)

have maximal values at ϕ = π .
It is important to mention that both Eq. (133) as the refrac-

tive indices (143) and (144) hold for any propagation direction
in relation to the vector a, parametrized by the angle ϕ. Now,
we investigate propagation for some special angles between a
and n.

1. Particular case 1: a-orthogonal configuration

We begin by choosing a scenario where the vector a
is orthogonal to the propagation axis, that is, a · n = 0 (or
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FIG. 5. Refractive index n(1) of Eq. (143) in terms of ϕ and a′.
Here we have set μ = 1 and ε = 2. The parameters ε, μ, and a′ are
dimensionless.

ϕ = π/2). Thus, the dispersion relation (142) provides two
solutions for the refractive index:

n(1) = √
με, (146)

n(2) =
√

με√
1 + (μ/ε)|a|2

. (147)

The two refractive indices are real. Therefore, there occurs
birefringence but not absorption. To obtain the propagat-
ing modes, we take the vector n along the z axis, that is,
n = (0, 0, n3). Orthogonal to it, we set a′ = (a1, a2, 0), a′′ =
(a1, a2, 0). This choice leads to a very simple expression for
the matrix of Eq. (131), that is,

M =
⎛
⎝n2

3 − με 0 −μa∗
1n3

0 n2
3 − με −μa∗

2n3

−μa1n3 −μa2n3 −με

⎞
⎠. (148)

FIG. 6. Refractive index n(2) of (144) in terms of ϕ and a′. We
have used μ = 1, ε = 2 and a′′ = 1. The parameters ε, μ, and a′ are
dimensionless.

Replacing index (146) in matrix (148), the condition Mi jE j =
0 provides as a solution a transversal mode,

E(1) = 1

|a|

⎛
⎝ a2

−a1

0

⎞
⎠, (149)

with |a| =
√

|a1|2 + |a2|2. Now, replacing relation (147) in
matrix (148), one has⎛

⎝ −με fa 0 −μa∗
1n3

0 −με fa −μa∗
2n3

−μa1n3 −μa2n3 −με

⎞
⎠

⎛
⎝Ex

Ey

Ez

⎞
⎠ = 0, (150)

whose solution is

E(2) = 1

|a|√1 + fa

⎛
⎝ a∗

1
a∗

2
−|a|√ fa

⎞
⎠, (151)

with

fa = (μ/ε)|a|2
1 + (μ/ε)|a|2 . (152)

We note that Eq. (151) represents a mixed mode, endowed
with a longitudinal component. In this case, it is not possible
to find a pure transversal mode for the field E(2). The transver-
sal mode E(1) and the transversal sector of the mixed mode
E(2) could exhibit linear polarization, or circular or ellipti-
cal polarization. Indeed, in principle one writes the a-vector
components as a1 = (a′

1 + ia′′
1 ), a2 = (a′

2 + ia′′
2 ). One notices

that for either a′′
1 = a′′

2 = 0 or a′
1 = a′

2 = 0, Eq. (149) and the
transversal part of Eq. (151) yield linearly polarized modes.
On the other hand, for either a′

1 = a′′
2 = 0 or a′′

1 = a′
2 = 0, that

is, for a1 = a′
1, a2 = ia′′

2, or a1 = ia′′
1, a2 = a′

2, the polariza-
tion is elliptical. Circularly polarized modes only occur when
either a′

1 = a′′
2 = 0 and a′

2 = a′′
1 or a′′

1 = a′
2 = 0 and a′

1 = a′′
2.

After finding the refractive indices (146) and (147), and the
corresponding modes (149) and (151), we need to discuss the
physical effects on wave propagation. In the case the associ-
ated modes are linearly or elliptically polarized, the implied
birefringence is expressed in terms of the phase shift (94),
namely,

� = 2π

λ0
l[n(1) − n(2)], (153)

where n1 and n2 are the refractive indices (146) and (147),
respectively. The phase shift per unit length is

�

l
= 2π

λ0

√
με

[
1 − 1√

1 + (μ/ε)|a|2
]
, (154)

which, for (μ/ε)|a|2 � 1, simplifies as

�

l
= πμ|a|2

λ0
. (155)

2. Particular case 2: a-longitudinal configuration

Let us now consider the case where the vectors a and
n point along the same direction, a · n = an, for which
Eq. (133) is written as

(n2 + 2μa′n − με)2 = 0, (156)
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which involves the square of a quadratic polynomial in n.
Thus, there is a doubly degenerate refractive index, namely,

n =
√

με + μ2a′2 − μa′. (157)

The latter corresponds exactly to the solutions of Eqs. (143)
and (144) for ϕ = 0, as expected.

To obtain the propagating modes, we take the vector n
along the z axis, that is, n = (0, 0, n3), in such a way that
a = b∗ = (0, 0, a′

3 + ia′′
3 ). It leads to a simple form of the

matrix of Eq. (131), that is,

M =
⎛
⎝n2

3 − με + A 0 0
0 n2

3 − με + A 0
0 0 −με

⎞
⎠, (158)

where A = 2μna′
3. With index (157), matrix (158) reads sim-

ply as

M =
⎛
⎝0 0 0

0 0 0
0 0 −με

⎞
⎠, (159)

and provides generic transversal modes,

E =
⎛
⎝Ex

Ey

0

⎞
⎠, (160)

with arbitrary Ex and Ey. Note this transversality occurs in
accordance with Eq. (129). The solution (160) may represent
a linear, circular, or elliptic polarization mode, depending on
the nature and relation between Ex and Ey. As this relation is
not supplied by the features examined so far, we conclude that
the a-longitudinal configuration allows any polarization, in
principle. Furthermore, only one refractive index expression
was achieved, with no signal of anisotropy. Thus, we conclude
that the a direction defines the optical axis of the medium.

It is worthwhile to observe that the complex vectors a and
b, given in Eq. (138), yield real refractive indices as it happens
in the case of real vectors. For the a-orthogonal configuration,
the complex vectors of Eq. (138) may provide circular or
elliptical polarization (in its transversal sector), besides the
linear one.

B. Group velocity, phase velocity, and Poynting vector

From Eq. (133), we can write down two dispersion equa-
tions,

0 = ω2 − 2
ω

ε
(a′ · k) − k2

με
, (161)

0 = ω2 − 2
ω

ε
(a′ · k) −

(
1

με
+ |a|2

ε2

)
k2 + (a′ · k)2

ε2

+ (a′′ · k)2

ε2
, (162)

which provide, respectively, the following solutions for ω

(with ω > 0):

ω(1) =
√

k2

με
+ (a′ · k)2

ε2
+ (a′ · k)

ε
, (163)

ω(2) =
√(

1

με
+ |a|2

ε2

)
k2 − (a′′ · k)2

ε2
+ (a′ · k)

ε
. (164)

The phase and group velocities are given by

vph(1) =
√

1

με
+ (a′ · k̂)2

ε2
+ (a′ · k̂)

ε
, (165)

vph(2) =
√

1

με
+ |a|2

ε2
− (a′′ · k̂)2

ε2
+ (a′ · k̂)

ε
, (166)

vg(1) = fa′

[
k
με

+ (a′ · k)

ε2
a′

]
+ a′

ε
, (167)

vg(2) = fa′′

[(
1

με
+ |a|2

ε2

)
k − (a′′ · k)

ε2
a′′

]
+ a′

ε
, (168)

with

fa′ =
[

k2

με
+ (a′ · k)2

ε2

]−1/2

, (169)

fa′′ =
[(

1

με
+ |a|2

ε2

)
k2 − (a′′ · k)2

ε2

]−1/2

. (170)

Relations (167) and (168) reveal that the group velocity
is in general not parallel to n. Starting from Eqs. (163) and
(164), we now particularize the phase and group velocities for
propagation orthogonal and longitudinal to a′.

(a) For the a-orthogonal case where a′ · k = a′′ · k = 0,
one finds

vorth
ph(1) =

√
1

με
, vorth

g(1) = k̂

√
1

με
, (171)

vorth
ph(2) =

√
1

με
+ |a|2

ε2
, vorth

g(2) = k̂

√
1

με
+ |a|2

ε2
. (172)

(b) For the a-longitudinal scenario a′,′′ · k = a′,′′k, we ob-
tain

v
long
ph(1) = v

long
g(1) =

√
1

με
+ a′2

ε2
+ a′

ε
, (173)

v
long
ph(2) = v

long
g(2) =

√
1

με
+ a′2

ε2
+ a′

ε
, (174)

with

vorth
g(1) = vorth

g(1)k̂, vorth
g(2) = vorth

g(2)k̂. (175)

In Fig. 7 we plot the group velocities vg(1,2) of both a-
longitudinal and a-orthogonal cases in terms of the para-
meter a′.

We notice the group velocities can be greater than 1 de-
pending on the values of a′.

(i) For the a-longitudinal case, in order to ensure v
long
g <

1, the following must occur:

a′ <
με − 1

2μ
. (176)
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FIG. 7. Group velocities for a-longitudinal and a-orthogonal
cases. The blue solid line indicates v

long.

g(1,2) of Eqs. (173) and (174).
The red curve illustrates vorth.

g(1) of Eq. (171), and the green line rep-
resents vorth.

g(2) of Eq. (172). The gray dashed vertical lines indicate
the values of a′ ∈ {1/2, 1} above which the group velocities become
greater than 1, in agreement with Eqs. (176) and (177), respectively.
Here we have used μ = 1, ε = 2, and a′′ = 1.

(ii) For the a-orthogonal configuration, one finds that
vorth

g(2) < 1 only when

|a| <

√
ε

μ
(με − 1). (177)

These results are important to constrain the magnetoelec-
tric parameters in ranges suitable to ensure group velocity
smaller than 1.

With the constitutive relation (125), the Poynting vector is

S = 1

2μ
(n + μa)|E|2 − 1

2μ
(n · E)E∗ − 1

2
(a · E)E∗. (178)

By considering a = a′ + ia′′ and E = E′ + iE′′, we first
analyze the case a′, a′′ parallel to n. From Eq. (128) we ob-
tain n · E = 0, i.e., n · E′ = 0 = n · E′′ implying a′ · E = 0 =
a′′ · E or a · E = 0. This way Eq. (178) simplifies to

Slong. = 1

2μ
(n + μa)|E|2, (179)

whose time-averaged form becomes

〈S〉long. = 1

2μ
(n + μa′)|E|2. (180)

As a′ ‖ n, the energy flux propagates along the wave propaga-
tion direction in this situation.

For a general case, the time-averaged Poynting vector is

〈S〉 = 1

2μ
(n + μa′)|E|2

+ 1

2
(F1E′ − F2E′′)[(a′ · E′) + (a′′ · E′′)]

+ 1

2
(F1E′′ + F2E′)[(a′ · E′′) − (a′′ · E′)], (181)

where

F1 = n2

μ

[ε − (n · a′)]
�

− 1, F2 = n2

μ

(n · a′′)
�

, (182)

with

� = [ε − (n · a′)]2 + (n · a′′)2
. (183)

In particular, by considering a′, a′′ orthogonal to n, we
obtain

〈S〉orth. = 1

2μ
(n + μa′)|E|2 + (n2 − με)

2με
[(a′ · E′)E′

+ (a′′ · E′′)E′ + (a′ · E′′)E′′ − (a′′ · E′)E′′], (184)

which yields a propagation not aligned to n. This result is
consistent with the group velocities (167) and (168), which
contain a piece not belonging to the n axis.

Finally, we note that for a′, a′′ nonparallel to n, the energy
flow does not propagate along the propagation axis because
there is a contribution along the electric field direction.

VI. FINAL REMARKS

In this work, we have examined the propagation of elec-
tromagnetic waves in bi-isotropic and bi-anisotropic matter.
As for the bi-anisotropic scenarios, we have taken isotropic
electric permittivity and magnetic permeability tensors, while
the magnetoelectric parameters were supposed as symmetric
and antisymmetric anisotropic complex tensors. As an initial
action, a modified permittivity tensor was written as part of
the matrix equation, which allowed us to obtain the dispersion
equations and refractive indices.

The symmetric magnetoelectric tensors were parametrized
in terms of a single 3-vector, d, and two complex scalars,
α̃, β̃. For propagation along the z axis, n = (0, 0, n), ar-
bitrary transversal propagating modes were obtained for
the d-longitudinal configuration. The d axis coincides with
the optical axis of the medium. On the other hand, when
the d-vector is orthogonal to the propagation axis, the asso-
ciated modes are also transversal, with polarization linear or
elliptical.

The antisymmetric magnetoelectric tensors were
parametrized in terms of two 3-vectors, a and b, related
by b∗ = a. We have considered complex vectors and obtained
real and positive refractive indices [see Eqs. (143) and (144)].
For the a-longitudinal configuration, arbitrary transversal
propagating modes, associated with one unique refractive
index, were obtained for the propagation along the z axis,
n = (0, 0, n). Therefore, in this case, the vector a determines
the optical axis of the medium. For the a-orthogonal
configuration, there appears a transversal and a mixed
mode, composed of a longitudinal and a transversal piece,
associated with two refractive indices. The polarization may
be linear, elliptical, or circular. The birefringence effect was
evaluated in terms of the a-vector magnitude.

In both symmetric and antisymmetric cases, the propa-
gation along the d or a directions is isotropic, since they
define the optical axis of the medium. On the other hand, the
propagation orthogonal to the magnetoelectric vectors d or a
provides a route of phenomenological distinction between the
symmetric [Eq. (67)] or antisymmetric tensor [Eq. (122)], due
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to the observed difference between the associated propagating
modes. See Eqs. (93) and (151). We have also evaluated the
group velocities for the bi-isotropic and bi-anisotropic cases
examined. In the bi-isotropic case, the phase and group veloc-
ities turned out equal. For the bi-anisotropic configurations,
these velocities are different. The general group velocities
present a component along the 3-vectors d or a, being no
longer necessarily parallel to n in these cases. We have also
carried out the Poynting vector, observing that the electromag-
netic energy flux does not occur along the wave propagation
direction for general configurations. The energy flux direction
coincides with the n axis in the following situations: when d is
parallel or orthogonal to n (in the symmetric case) and when
a′ and a′′ are parallel to n (in the antisymmetric case).

As a final remark, we may try to state a parallel between
our results and the physics of anisotropic media described
by constitutive relations (3), with permittivity and perme-
ability described by general tensors εi j and μi j . This is
the case examined in Refs. [44,62]. The general anisotropic
dispersion relations of these references are different from
our relations, which are based on isotropic permittivity and
permeability, εi j = εδi j and μi j = μδi j , and non-null magne-
toelectric parameters, αi j and βi j . These basic distinctions,
consequently, do not favor straightforward comparisons be-
tween such anisotropic systems.
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APPENDIX A: VECTOR EVALUATION FOR THE
ELECTRIC FIELD OF THE MODES

In this Appendix, we present an alternative route for car-
rying out the electric field of the propagating modes in the
symmetric and antisymmetric constitutive parameters.

1. Symmetric parameters case

For nonparallel vectors d and n, the electric field may be
written as

E = E1

|d × n|d × n + E2

n|d × n|n×(d × n)

− E1

εn2
α̃(n · d)|d × n|n, (A1)

which does not supply, in general, transversal modes, that
is, n · E 
= 0. However, for orthogonal vectors, n · d = 0,
Eq. (72) yields transversal modes, n · E = 0, whose electric

field can be written as

E = E1(d̂ × n̂) + E2d̂, (A2)

where d̂ = d/|d| and n̂ = n/|n|. In general, E1 and E2 are
arbitrary constants, and for a normalized electric field, they
satisfy |E1|2 + |E2|2 = 1.

For n and d nonparallel, the equation ME = 0, with the
electric field given in Eq. (A1), sets

E2 = E1
μα̃(d2 sin2 ϕ)n±

n2± − με
= E1μα̃(d2 sin2 ϕ)ϒ±n±, (A3)

where we have used Eqs. (97) and (101), and n± is given by
Eq. (79). So the electric field [Eq. (A1)]reads

E± = E0
d × n±
|d × n±| + E0

μα̃(d2 sin2 ϕ)ϒ±
|d × n±| n±×(d × n±)

− E0
α̃d2 cos ϕ sin ϕ

ε
n±, (A4)

setting E1 = E0. It provides the same conclusions obtained in
Sec. IV A 3 for the general d configuration.

For n and d orthogonal vectors, Eq. (A3) simplifies as

E2 = E1
μα̃d2n±
n2± − με

= ± α̃

|α̃|E1, (A5)

where n± is now given by Eq. (88). So the electric field
[Eq. (A4)] becomes written as

E± = E0
d × n±
|d × n±| ± E0

α̃

|α̃|
d
d

, (A6)

providing the same conclusions obtained in the particular case
of Sec. IV A 2.

The vector formalism can also be used to alternatively
express the permittivity tensor and the dispersion relation. In
fact, replacing relations (67) in the permittivity tensor (19),
one writes

ˆ̄ε = ε1−α̃d(d × n)T + β̃(d × n)dT , (A7)

with ˆ̄ε = [ε̄i j]. In such a way the tensor M = [Mi j] [Eq. (22)]
takes the form

M = (n2 − με)1 − nnT +μα̃d(d × n)T − μβ̃(d × n)dT .

(A8)
Evaluating detM = 0, we read the dispersion relation (77) in
the form

ε(n2 − με)2 + α̃β̃μ[μεd2 − (n · d)2]|d × n|2 = 0. (A9)

2. Antisymmetric parameters case

For nonparallel a and n, the electric field is expressed as

E = E1

|a × n| (a × n)− εE3

n|a × n|2 n×(a × n) + E3

n
n. (A10)
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The equation ME = 0 with the matrix (131) and the electric
field given in Eq. (A10) provides the equations

E1[n2 − με + 2μa · n] = 0, (A11)

E3[ε(n2 − με + 2μa · n) + μ|a × n|2] = 0, (A12)

where the expressions in the brackets are the dispersion rela-
tions obtained in Eq. (133) when b = a.

If the dispersion relation in Eq. (A11), n2 − με + 2μa ·
n = 0, is valid, then E1 remains arbitrary and E3 = 0. Thus,
the electric field mode (A10) becomes transversal to the prop-
agation direction; that is,

E = E1

|a × n| (a × n), (A13)

being in accordance with the result [Eq. (149)] of the case
analyzed in Sec. V A 1. On the other hand, if the disper-
sion relation in Eq. (A12) holds, ε(n2 − με + 2μa · n) +
μ|a × n|2 = 0, then E1 = 0 and E3 remains arbitrary, so that
the electric field modes (A10) are no longer transverse:

E = − εE3

n|a × n|2 n×(a × n) + E3

n
n. (A14)

It is in accordance with the result [Eq. (151)] of the case
analyzed in Sec. V A 1.

Replacing Eqs. (122a) and (122b) in Eq. (19), one obtains
the following extended electric permittivity tensor:

ε̄ = (ε − c · n)1 + bnT + naT , (A15)

where c = a + b is a real vector [see Eq. (123)]. All the pieces
of the new electric permittivity coming from antisymmetric
parameters contain direction-dependent terms: (c · n), bin j ,
nia j . Now, the explicit form of the matrix M = [Mi j] is

M = [n2 − με + μ(c · n)]1 − nnT − μbnT − μnaT .

(A16)

APPENDIX B: ROTATORY POWER AND DICHROISM
COEFFICIENT

Relation (54) holds for the situation that the propagating
modes are given by circularly polarized waves (LCP and
RCP). To examine the effect of the optical activity on the
modes, we start from a linearly polarized wave propagating
through a medium along the z axis. As is well known, a wave
with linear polarization,

Ei = E0ie
i(kz−ωt ), (B1a)

can be split into two circularly polarized waves,

E0i =
⎛
⎝1

0
0

⎞
⎠ = 1

2

⎛
⎝ 1

−i
0

⎞
⎠ + 1

2

⎛
⎝1

i
0

⎞
⎠, (B1b)

corresponding to the sum of RCP and LCP waves, respec-
tively. After the initial wave passes through a distance z in
the medium, the final electric field can be obtained as the

combination of two components, E+ and E−, with the wave
vectors k+ and k−, respectively. One then has

E f = E+ei(k+z−ωt ) + E−ei(k−z−ωt )

= 1

2

⎛
⎝1

i
0

⎞
⎠eik+ze−iωt + 1

2

⎛
⎝ 1

−i
0

⎞
⎠eik−ze−iωt , (B2)

which can be cast into the form

E f = 1

2
eiψe−iωt

⎡
⎣e−iθ

⎛
⎝1

i
0

⎞
⎠ + eiθ

⎛
⎝ 1

−i
0

⎞
⎠

⎤
⎦

= eiψe−iωt

⎛
⎝cos θ

sin θ

0

⎞
⎠, (B3a)

with the quantities

θ = − (k+ − k−)z

2
, (B3b)

ψ = (k+ + k−)z

2
. (B3c)

Notice that Eq. (B3a) describes a linearly polarized wave
whose polarization vector is rotated by an angle θ . From
Eq. (B3b), one obtains

θ = − (n+ − n−)zω

2
, (B4)

where we have used k = ωn. In general, the refractive indices
can be complex quantities. Because of this, one can infer from
Eq. (B4)

θ

z
= −ω

2
[Re(n+) + iIm(n+) − Re(n−) − iIm(n−)], (B5)

from which we define the specific rotatory power,

δ = − [Re(n+) − Re(n−)]ω

2
, (B6)

as well as the dichroism coefficient,

δd = − [Im(n+) − Im(n−)]ω

2
. (B7)

Notice that when the medium is nonbirefringent, θ = 0 and
ψ = kz. Then, the form (B1a) is recovered from Eq. (B3a).

APPENDIX C: RELATIONS FOR CONSTITUTIVE
PARAMETERS

The energy conservation in electromagnetic systems is es-
tablished by the Poynting theorem, presented in Eq. (23e) as

Re[iω(E · D∗ − H∗ · B)] = 0, (C1)
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or

Re[iω(D†E − H†B)] = 0. (C2)

We can now consider a medium described by the following
constitutive relations:

D = ε̂E + λ̂H, (C3a)

B = μ̂H + γ̂ E, (C3b)

with ˆ̃ε, λ̂, μ̂, and γ̂ being nonsingular 3 × 3 complex matrices.
Following the same previous procedure, Eq. (C2) yields

E†(ε̂† − ε̂)E + H†(μ̂† − μ̂)H

+ H†(λ̂† − γ̂ )E − E†(λ̂ − γ̂ †)H = 0. (C4)

In this case, for arbitrary fields, in order to be consistent with
Eq. (C4), one finds

ε̂† = ε̂, μ̂† = μ̂, λ̂ = γ̂ †, (C5)

conditions compatible with energy conservation.
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