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Dynamics of quantum Fisher information from a time-local non-Markovian master equation with
decoherence rates and operators depending on the estimated parameter
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We analyze the dynamics of the quantum Fisher information (QFI) in the case of a two-dimensional open
quantum system obeying a time-local non-Markovian master equation in the canonical form, characterized by
canonical decoherence rates and operators that depend on the parameter to be estimated. This last condition
brings a framework in which the information about the parameter is structurally encoded not only in the open
system, but also in the system-environment interaction or/and correlations, and in some environment properties.
We derive analytical formulas for the decompositions of the QFI flow and of the purity dynamics in terms
associated to the canonical decoherence rates. In contrast to the results presented in X.-M. Lu et al. [Phys.
Rev. A 82, 042103 (2010)], we show that, in this extended framework, the QFI flow contains not only the
subflows corresponding to the decoherence rates, but also supplementary terms which originate in the state
dependence on the estimated parameter; moreover, the signs of the QFI subflows associated to the decoherence
rates are not correlated to the signs of the rates. We show that a pertinent connection between the QFI flow and
non-Markovianity can be realized using the canonical measures defined from the negative canonical decoherence
rates. We employ this theoretical framework to explore the QFI flow and its subflows in two cases of quantum
evolutions directed by master equations with decoherence rates or/and operators depending on the estimated
parameter: (i) the Markovian nonunital time evolution of a qubit under the generalized amplitude damping
channel; (ii) the non-Markovian time evolution of a two-dimensional electronic subsystem entangled with its
vibrational environment in a molecule.
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I. INTRODUCTION

Quantum Fisher information (QFI) is a central concept
in quantum estimation theory [1–6], geometry of quantum
states [3,7–9], and quantum metrology [10–13]. QFI connects
the achievable precision in the estimation of a parameter en-
coded in a quantum state to the statistical distinguishability of
neighboring quantum states [1,3]. In the quantum Cramér-Rao
theorem [14], the lower bound to the estimation precision
is provided by the inverse of the QFI. Therefore, quantum
evolutions able to increase the QFI are of major interest in
quantum metrology with open quantum systems [13].

The estimation of a parameter related to the open system
depends on the environmental noise captured by the open sys-
tem dynamics. The environment properties become essential
when the open system is used as a quantum probe (i.e., the es-
timated parameter is informative about the environment), and
when the open system dynamics is non-Markovian. The role
of quantum non-Markovianity [15–18] in quantum metrology
is an open question, being in general researched using specific
noise models [11]. It was argued that, for certain systems
and specific settings, non-Markovianity is not necessarily a
resource [13,19]. On the other hand, non-Markovian noise
was proved to be helpful in quantum-enhanced measurement
schemes which use entangled sensors that are fragile due to
decoherence [20–22]. Recently, the framework of metrology
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of quantum combs was proposed as a general information-
theoretic structure for non-Markovian metrology [23].

In order to understand the role of the environmental
memory effects on the estimation precision, the dynamics
of two-state systems in dissipative environments was in-
vestigated by analyzing the time behavior of the QFI in
Markovian and non-Markovian regimes [24–30]. The results
disclosed various schemes in which non-Markovianity can
boost the estimation performance. In contrast to the mono-
tonic behavior of the QFI in the presence of Markovian
evolution, the non-Markovian environments produce QFI re-
vivals and retardation of the QFI loss [26,29], or enhancement
and preservation of the QFI [28]. QFI oscillations in non-
Markovian environments are interpreted as related to the
reversed flow of information towards the open system, associ-
ated with memory effects.

The connection between the time behavior of the QFI
and the non-Markovian character of dynamics has an in-
trinsic information-theoretic interest, as reflecting the change
of information between the open system and the envi-
ronment. Among the various approaches to the quantum
non-Markovianity, one can find the proposals to characterize
non-Markovianity using the QFI flow [31], or with the help
of a quantum-Fisher-information matrix [32]. In various sys-
tems, a positive QFI flow (“incoming flow”) is observed as
witnessing non-Markovianity [33–35].

In Ref. [31], the authors showed that “for a class of the non-
Markovian master equations in time-local forms,” the QFI
flow can be decomposed into additive subflows corresponding
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to different dissipative channels. Consider θ as the parameter
to be estimated from a density operator ρ(θ ; t ) describing an
open quantum system, whose dynamics obeys a time-local
master equation with decay rates γi(t ). Taking Fθ (t ) as the
QFI associated to θ , Ref. [31] established an expression of
the QFI flow as a sum of subflows corresponding to the
various decay rates γi: ∂Fθ /∂t = ∑

i γiJi, with Ji � 0. Then,
the sign of the subflow γiJi is determined by the sign of
the decay rate γi, such that to a negative γi is associated a
positive subflow γiJi. As a negative decay rate is a defining
trait of non-Markovianity, this relation between the QFI sub-
flows and the decay rates installs the positive QFI subflows as
significant markers of the non-Markovian behavior. However,
this decomposition of the QFI flow into subflows with signs
correlated to the signs of the decay rates, it is obtained under
certain conditions on the time-local master equation. It can
be shown [36] that the decomposition into subflows obtained
in Ref. [31] is valid under two conditions not mentioned in
the paper: (i) d

dt ( ∂ρ

∂θ
) = ∂

∂θ
( dρ

dt ); (ii) ∂H
∂θ

= 0, ∂γi

∂θ
= 0, ∂Ai

∂θ
= 0.

The first condition may be easily fulfilled if the second partial
derivatives are continuous. The second condition refers to
the Hamiltonian H (t ), the decay rates γi(t ), and the Lind-
blad operators Ai(t ) which characterize the time-local master
equation, the result of Ref. [31] being obtained supposing that
these quantities do not depend on the parameter θ about which
the QFI is defined.

The aim of this work is to explore the extended framework
in which γi, H , and Ai do depend on θ . In this case, the
dynamical map which defines the time evolution of the open
system depends on the parameter θ , and therefore the QFI
Fθ (t ) can increase in Markovian dynamics. The dependence
of the dynamics on the parameter θ [through H (θ, t ), γi(θ, t ),
and Ai(θ, t )] signifies that the coupling between the open
system and its environment, and some environment properties,
depend on the parameter θ . Therefore, the information about θ

is structurally present not only “inside” the open system, but
also “outside,” in the environment and its interaction or/and
and correlations with the open system. As the QFI Fθ (t )
characterizes the information about θ in the open system, the
QFI dynamics will reflect a complex sharing of information
about θ , between a system and an environment having θ as a
“common parameter.”

We shall analyze the QFI flow dFθ /dt in the case of
a two-dimensional open quantum system whose density
operator ρ(θ ; t ) obeys a time-local non-Markovian master
equation in the canonical form [37], with the decoherence
rates γi(θ, t ), the Hamiltonian H (θ, t ), and the decoherence
operators Ai(θ, t ), all depending on the estimated parameter
θ . We consider a general case in which the operators Ai(θ, t )
may be non-Hermitian, and the generator of the master equa-
tion can be nonunital. The non-Markovianity of the open
system dynamics will be characterized using the canonical
non-Markovianity quantifiers based on the occurrence of neg-
ative decoherence rates in the canonical master equation [37].
We shall consider the QFI dynamics from the point of view
of its decomposition into subflows corresponding to the deco-
herence rates, and we shall analyze its connections to the time
evolution of the system’s purity P = Tr(ρ2) or its correlated
quantity, the linear entropy L = 1 − Tr(ρ2), which may be
employed as a measure of the entanglement between the open

system and its environment. The purity of an open system
can increase in nonunital dynamics [38,39], as well as in a
non-Markovian evolution. The time derivative of purity will
also be investigated as decomposition into terms associated
with the decoherence rates.

This theoretical treatment will be applied in the exploration
of the QFI dynamics in two cases of quantum evolutions
directed by master equations with decoherence rates or/and
operators depending on the estimated parameter: (i) the
Markovian nonunital evolution of a qubit under the gener-
alized amplitude damping (GAD) channel [40,41]; (ii) the
non-Markovian evolution of a two-dimensional electronic
subsystem in the vibrational environment of a molecule [42].
In this last case, we consider an electronic open system en-
tangled with its vibrational environment. We shall analyze the
dynamics of the QFI related to the population of an electronic
state, which is a parameter encoded in the electronic subsys-
tem, the vibrational environment, and their correlations. The
QFI dynamics is explored in relation to the time evolutions of
the electronic coherence, the electronic-vibrational entangle-
ment, and the canonical non-Markovianity measure.

The paper has the following structure. In Sec. II are de-
rived the general formulas describing the time derivative of
the purity dP/dt , and the QFI flow dFθ /dt , in terms of
the decoherence rates. In Sec. III we analyze the dynamics
of the QFI associated to the estimation of the bath tem-
perature, for a qubit evolution under the GAD channel. In
Sec. IV is developed the analysis of the QFI related to the
electronic population, in the non-Markovian evolution of a
two-dimensional electronic subsystem in the vibrational envi-
ronment of a molecule. Section V assembles our final remarks.

II. QUANTUM FISHER INFORMATION AND PURITY IN
THE EVOLUTION OF AN OPEN QUANTUM SYSTEM

OBEYING A TIME-LOCAL NON-MARKOVIAN MASTER
EQUATION IN THE CANONICAL FORM

Suppose an open quantum system with the density operator
ρ(θ ; t ), where θ is a parameter to be estimated, whose dynam-
ics obeys a time-local non-Markovian master equation in the
canonical form [37]

dρ

dt
= − i

h̄
[H (θ ; t ), ρ] +

N−1∑
i=1

γi(θ ; t )

[
Ai(θ ; t )ρA+

i (θ ; t )

− 1

2
{A+

i (θ ; t )Ai(θ, t ), ρ}
]
, (1)

where the Hamiltonian H (θ ; t ), the decoherence operators
Ai(θ ; t ), and the decoherence rates γi(θ ; t ) are in general time
dependent, and may depend on the estimated parameter θ . The
decoherence operators Ai (i = 1, . . . , N − 1, with N := d2, d
the dimension of the open system) form an orthonormal basis
set of traceless operators [37]:

Tr[Ai] = 0, Tr[A+
j Ak] = δ jk . (2)

The canonical decoherence rates γi(θ ; t ) are uniquely de-
termined, and they can be used to characterize the non-
Markovianity of the time evolution [37]. The definition of
non-Markovianity used here is the one given in Ref. [37],
namely, the time evolution is non-Markovian if at least one
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of the canonical decoherence rates is strictly negative. We
shall employ the measures of non-Markovianity defined in
Ref. [37] as functions of the negative canonical decoherence
rates γi(θ ; t ). The canonical measure of non-Markovianity at
time t is defined as the sum of the measures coming from
all individual channels characterized by negative decay rates:
f (θ ; t ) = ∑

i fi(θ ; t ), with fi(θ ; t ) := max[0,−γi(θ ; t )]. The
total amount of non-Markovianity over a time interval [t, t ′]
is defined as

∫ t ′

t f (s)ds. Let us observe that, from its defini-
tion, the canonical measure of non-Markovianity f (θ, t ) is a
function of the parameter θ .

A. Quantum Fisher information for a two-dimensional open
quantum system

Among various QFI versions, as different extensions from
the classical Fisher information, the symmetric logarithmic
derivative QFI distinguishes itself as being obtained by the
maximization of the classical Fisher information over all
quantum measurements independent of θ , and leading to
the quantum Cramér-Rao inequality [1–4,43]. The symmetric
logarithmic derivative QFI defines a distinguishability metric
in the space of quantum states, being proportional to the Bures
metric, which gives the statistical Bures distance between two
quantum states, obtained by an infinitesimal change in the
parameter θ [3,4].

The symmetric logarithmic derivative QFI corresponding
to a parameter θ to be estimated is [1,2]

Fθ = Tr[ρ(θ )L2
θ ] = Tr

[
∂ρ(θ )

∂θ
Lθ

]
, (3)

where Lθ is the symmetric logarithmic derivative (SLD) [1],
also known as quantum score, defined as the Hermitian oper-
ator satisfying the equation

∂ρ(θ )

∂θ
= ρ(θ )Lθ + Lθρ(θ )

2
. (4)

The definition (4) implies that the mean value of the operator
Lθ vanishes, Tr[ρ(θ )Lθ ] = 0.

The quantum Cramér-Rao inequality gives the lower bound
to the estimation precision of θ as [1–3]

Var(θ ) � 1

MFθ

, (5)

where Var denotes the variance, and M is the number of
measurements performed. Equation (5) defines the quantum
Cramér-Rao bound (QCRB) for the variance of an unbiased
estimator.

The QFI has important properties [9,10], one of them being
that it does not increase under completely positive and trace-
preserving (CPTP) maps that do not depend on the parameter
θ . Our working hypothesis of a dynamics directed by Eq. (1),
in which all the significant quantities depend on θ , implies
that the map depends on the parameter θ . We shall follow Fθ

as a dynamical quantity determined by the evolution (1) of the
open system.

In the Bloch representation, the density operator ρ(θ ; t ) of
a two-dimensional open system is given by

ρ(θ ; t ) = 1
2 (Î + �ω(θ ; t ) · �σ ), (6)

with Î the identity operator, �ω = (ω1, ω2, ω3) the real three-
dimensional Bloch vector, and �σ = (σ1, σ2, σ3) the vector
assembling the three Pauli operators σi. The Euclidean norm
of the Bloch vector | �ω| determines the purity of the open
system,

P = Tr(ρ2) = (1 + |�ω|2)/2, (7)

as well as the linear entropy L = 1 − Tr(ρ2),

L = (1 − |�ω|2)/2, (8)

which, when it is the case, may be employed as measure of the
entanglement between the open system and its environment.

For a two-dimensional quantum system with the quantum
state (6), the QFI for the parameter θ is [24,44]

Fθ = |∂θ �ω|2 + (�ω · ∂θ �ω)2

1 − |�ω|2 , | �ω| < 1, (9)

with ∂θ �ω = ∂ �ω
∂θ

. If | �ω| = 1 (pure state), Fθ = |∂θ �ω|2.
Reference [44] shows that Fθ given by Eq. (9) is a func-

tion which increases with | �ω|, therefore, the increase of the
purity P of a qubit state is favorable to the QFI increase.
In the following we shall explore the relation between the
time derivative of the QFI Fθ and the time derivative of the
purity P , on general formulas, as well as in specific cases of
dynamics.

The quantum score Lθ in Bloch representation has the form

Lθ = aÎ + �b · �σ , (10)

where a and the three-component vector �b = (b1, b2, b3) are
real-valued functions of the parameter θ and of time t , having
the expressions [44]

a = − �ω · ∂θ �ω
1 − |�ω|2 , �b = −a�ω + ∂θ �ω. (11)

Let us observe that Fθ = |�b|2 − a2, and a = −�ω · �b.

B. Decomposing the QFI flow and the purity dynamics in terms
corresponding to the decoherence rates

The QFI definition (3) and the expression of the quantum
score (10) give Fθ = �b · ∂ �ω

∂θ
and, therefore, the time derivative

of Fθ can be written as

dFθ

dt
= �b · d

dt

(
∂ �ω
∂θ

)
+ ∂ �ω

∂θ
· d �b

dt
. (12)

Using Eqs. (11) and (12) we get

dFθ

dt
= 2a2 dP

dt
− 2a

∂ �ω
∂θ

· d �ω
dt

+ 2�b · d

dt

(
∂ �ω
∂θ

)
, (13)

where the time derivative of the open system purity is

dP
dt

= 2 Tr

(
ρ

dρ

dt

)
= �ω · d �ω

dt
. (14)

Equations (13) and (14) can be developed by expressing dω j

dt
as a function of the decoherence rates γi. Equation (6) implies

dω j

dt
= Tr

(
dρ

dt
σ j

)
, (15)
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and using Eq. (1), one obtains

dω j

dt
= 1

h̄

3∑
i=1

εi jkωiTr(Hσk ) − 1

2
ω j

3∑
i=1

γi

+ 1

2

3∑
i=1

γiTr[([Ai, A+
i ] + Ai �ω · �σA+

i )σ j], (16)

where εi jk is the Levi-Civita symbol.

1. Purity dynamics in terms of the decoherence rates

We begin by examining the time derivative of the purity.
Equations (14) and (16) give dP

dt = ∑
j ω j

dω j

dt as a function of
the decoherence rates γi:

dP
dt

= −|�ω|2
2

(∑
i

γi

)

+ 1

2

∑
i

γiTr[([Ai, A+
i ] + Ai �ω · �σA+

i )�ω · �σ ]. (17)

The decoherence operators Ai can be written using the Pauli
operators as Ai = ciÎ + �d (i) · �σ , with ci complex numbers, and
�d (i) three-component complex vectors. Taking into account
the conditions (2), one obtains ci = 0 and

Ai =
∑

j

d (i)
j σ j, (18)

with the complex components d (i)
j ( j = 1, 2, 3) obeying

∑
j

∣∣d (i)
j

∣∣2 = 1

2
. (19)

Equation (17) can be transformed using Eqs. (18) and
(19) to write Tr(Ai �ω · �σA+

i �ω · �σ ) = 4( �d (i) · �ω)( �d (i)∗ · �ω) −
|�ω|2. Using the Cauchy-Schwarz inequality |∑ j d (i)

j ω j |2 �∑
j |d (i)

j |2 ∑
j |ω j |2 and Eq. (19), one obtains

qi = |�ω|2 − 2( �d (i) · �ω)( �d (i)∗ · �ω) � 0. (20)

Finally, dP/dt can be written as a sum of subflows corre-
sponding to the decoherence rates γi:

dP
dt

=
∑

i

γi[−qi + Tr([Ai, A+
i ]ρ)], (21)

with qi � 0 given by Eq. (20). Equation (21) describes a
general case, with decoherence rates γi(t ) that can be neg-
ative (non-Markovian dynamics), and non-Hermitian time-
dependent decoherence operators Ai.1

Reference [38] shows that in quantum Markovian dy-
namics, for finite-dimensional Hilbert spaces, the purity is
monotonically decreasing if and only if the Lindblad gener-
ator is unital. The condition of unitality on the generator of
the master equation (1) is∑

i

γi[Ai, A+
i ] = 0. (22)

1The first term is given as expression for the rate of change of the
purity in Ref. [64], which considers Hermitian Lindblad operators Ai.

If the unitality condition (22) is fulfilled, we get dP/dt =
−∑

i γiqi, monotonically decreasing if all γi > 0. Obviously,
the purity can increase in non-Markovian dynamics (where at
least one decoherence rate γi is negative), and in nonunital
dynamics.

Equation (21) can also be written

dP
dt

=
∑

i

γi − 2
∑

i

γiq
′
i +

∑
i

γiTr([Ai, A+
i ]ρ), (23)

with q′
i = Trρ2 − |Tr(ρAi )|2 � 0. Equation (23) is ob-

tained using Eq. (2) and the Cauchy-Schwarz inequality
Tr(AA+)Tr(BB+) � |Tr(AB+)|2 for the operators A = ρ, B =
Ai. The last expression makes appear the sum of the de-
coherence rates

∑
i γi, which determines the behavior of

the Bloch volume of the states dynamically accessible to
the system [37]. A negative sum of the decoherence rates
constitutes a quantity with meaning in witnessing quantum
non-Markovianity through the increase of the Bloch volume
[37,45].

2. QFI dynamics in terms of the decoherence rates and
supplementary terms

If the time derivative of the QFI given in Eq. (13) is devel-
oped using Eq. (16) to express the term ∂ �ω

∂θ
· d �ω

dt = ∑
j

∂ω j

∂θ

dω j

dt ,
one obtains

dFθ

dt
= 2a2 dP

dt
− 2a2L

∑
i

γi

− a
∑

i

γiTr

[
([Ai, A+

i ] + Ai �ω · �σA+
i )

∂ �ω
∂θ

· �σ
]

+ 2�b · d

dt

(
∂ �ω
∂θ

)
− 2a

h̄

∑
i, j

εi jkωi
∂ω j

∂θ
Tr(Hσk ). (24)

Equation (24) indicates that the time increase of the purity
contributes to the time increase of Fθ . Replacing dP/dt with
Eq. (17), we get

dFθ

dt
= −a2

∑
i

γi

− a
∑

i

γiTr[([Ai, A+
i ] + Ai �ω · �σA+

i )�b · �σ ]

+ 2�b · d

dt

(
∂ �ω
∂θ

)
− 2a

h̄

∑
i, j

εi jkωi
∂ω j

∂θ
Tr(Hσk ). (25)

Equation (25) shows that dFθ /dt cannot be decomposed as a
sum of subflows corresponding to the decoherence rates γi.
Indeed, only the first two terms on the right side of Eq. (25),
originating in dρ/dt , compose subflows corresponding to
γi; but the signs of these subflows cannot be correlated to
the signs of their respective decoherence rates. The other
two terms are subflows originating in the partial derivative
∂ρ/∂θ and its time derivative. The examples following in
the next sections will show that all the subflows can be-
come positive or negative during the dynamics. Equation (25)
suggests that a non-Markovian dynamics characterized by a
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negative sum,
∑

i γi < 0, participates in the increase of the
QFI Fθ .

3. Conditions giving the QFI flow as a sum of subflows
corresponding to different decoherence channels

It can be shown that Eq. (25) takes the form

dFθ

dt
= −

∑
i

γiTr{ρ[Lθ , Ai]
+[Lθ , Ai]} (26)

established in Ref. [31], with −Tr{ρ[Lθ , Ai]+[Lθ , Ai]} � 0, if
the following two conditions are fulfilled [36]:

(i)

d

dt

(
∂ρ

∂θ

)
= ∂

∂θ

(
dρ

dt

)
. (27)

(ii) γi, H , Ai do not depend on θ :

∂H

∂θ
= 0,

∂γi

∂θ
= 0,

∂Ai

∂θ
= 0. (28)

As explained in the Introduction, these are the conditions pre-
supposed in the demonstration of Eq. (26), in which the QFI
flow dFθ /dt can be written as a sum of subflows correspond-
ing to the decoherence channels, with the sign of each subflow
correlated to the sign of the corresponding γi(t ). With the
conditions (i) and (ii), Eq. (25) is simplified giving Eq. (26),
with

Tr{ρ[Lθ , Ai]
+[Lθ , Ai]} = |�b|2

+ a Tr([Ai, A+
i ]�b · �σ ) − Tr(Ai �b · �σA+

i
�b · �σ ). (29)

In the following sections we analyze two examples of open
system dynamics directed by a time-local master equation of
type (1): (I) the Markovian nonunital evolution of a qubit
under the GAD channel; (II) the non-Markovian evolution of

the electronic subsystem in the vibrational environment of a
molecule.

III. QFI DYNAMICS IN A QUBIT EVOLUTION UNDER
THE GENERALIZED AMPLITUDE DAMPING CHANNEL

The generalized amplitude damping (GAD) channel de-
scribes the interaction of a qubit (a two-level system with
ground state |g〉 and excited state |e〉) with a thermal bath mod-
eled as a reservoir of noninteracting bosons [40,46,47], being
defined by the quantum operation EGAD(ρ) = ∑

i EiρE+
i ,

with the Kraus operators Ei (i = 0, . . . , 3) [41]:

E0 = √
p

(
1 0
0

√
1 − γ

)
, E1 = √

p

(
0

√
γ

0 0

)
,

E2 =
√

1 − p

(√
1 − γ 0

0 1

)
, E3 =

√
1 − p

(
0 0√
γ 0

)
.

(30)

The two couples of Kraus operators (E0, E1), (E2, E3) describe
the two opposite processes in which the qubit exchanges en-
ergy with the thermal bath, both taking place with the same
damping rate γ ∈ [0, 1]: in the first one, with the occurrence
probability p, the qubit decays from the excited to the ground
state; in the other, with the probability 1 − p, the qubit absorbs
an excitation from the reservoir, passing from the ground state
to the excited state. The probability p ∈ [0, 1] is a parameter
depending on the bath temperature [40,46,47]. The decay rate
γ (t ) depends on the interaction time t with the environment:

γ (t ) = 1 − e−
t , (31)

with 
 a constant characterizing the speed of dissipation [47].
For a qubit initially prepared in a state ρ(0) with the

Bloch vector �r0 = (rx, ry, rz ), GAD performs the transforma-
tion �r0 → �r(t ) = (r1, r2, r3) with [41]

�r(t ) = (rx

√
1 − γ , ry

√
1 − γ , γ (2p − 1) + rz(1 − γ )).

(32)

The qubit state ρ(t ) is described by the matrix

(ρ(t )){g,e} =
(

1 − γ (2p − 1) − rz(1 − γ ) rx
√

1 − γ + iry
√

1 − γ

rx
√

1 − γ − iry
√

1 − γ 1 + γ (2p − 1) + rz(1 − γ )

)
. (33)

Taking into account Eq. (31), it can be shown that ρ(t ) obeys
the following master equation:

dρ

dt
= 
(1 − p)

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)

+ 
p

(
σ+ρσ− − 1

2
{σ−σ+, ρ}

)
, (34)

with σ+ = |e〉〈g|, σ− = |g〉〈e|. The master equation (34) for
the GAD dissipative process describes a Markovian dynam-
ics implying two positive and time-independent decoherence
rates γ1, γ2 � 0:

γ1 = 
(1 − p), γ2 = 
p. (35)

The decoherence operators are A1 = σ− and A2 = σ+, and
therefore

∑
i γi[Ai, A+

i ] = 
(2p − 1)σ3. Consequently, the
GAD channel is nonunital, unless 
 = 0 or 2p − 1 = 0.2

The decoherence rates {γi}i=1,2 depend on the two parame-
ters which characterize the qubit interaction with the bath, the
damping constant 
, and the parameter p related to the bath

2Reference [39] discusses the nonunital non-Markovianity of a
quantum process, and illustrates it with a GAD process with a
time-dependent p(t ). A non-Markovian GAD channel with time
dependent p(t ) is also studied in Ref. [65].
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temperature:

∂γi

∂


= 0,

∂γi

∂ p

= 0 (i = 1, 2), (36)

such that the condition (28) is violated for both parameters 


and p.
To our knowledge, the interest in the estimation of each

of the parameters 
 and p (in the sense of single-parameter
estimation) appears in the specific literature in two different
contexts. Reference [48] explores the optimality of an estima-
tion scheme for the damping rate γ of a GAD channel in the
theoretical framework of the optimal estimation of quantum
channels [49,50]. On the other hand, the GAD channel was
employed as a phenomenological model in qubit thermome-
try, to investigate the use of a single qubit (prepared in various
initial states) as a thermometer able to distinguish between
two temperatures of a bosonic bath [46,47].

Here we shall discuss the dynamics of the QFI Fp(t ) for
the parameter p related to the bath temperature, as well as
the decompositions of dFp/dt and dP/dt into subflows corre-
sponding to {γi}i=1,2. It is an interesting specificity occurring
in the case of the GAD channel that the decoherence rates γ1,
γ2 [Eq. (35)] are proportional to the probabilities 1 − p and p
of the opposite processes in which the qubit exchanges energy
with the bath, p being also the parameter to be estimated.
Therefore, the QFI and the purity subflows are proportional
to p and 1 − p.

Using Eq. (9), Fp(t ) can be found as

Fp(t ) = 4γ 2 1 − (
r2

1 + r2
2

)
1 − |�r|2 , (37)

with �r(t ) = (r1, r2, r3) the Bloch vector given in Eq. (32).
Applying Eq. (25) in the GAD case (γ1 + γ2 = 
), one

obtains the decomposition of the QFI flow into subflows cor-
responding to the two decoherence rates γ1, γ2:

dFp

dt
= γ1 f1 + γ2 f2, (38)

where f1, f2 are the following functions of γ and p :

f1(γ , p) = −a2 + ab3(2 + r3) + 4b3(1 − γ ), (39)

f2(γ , p) = −a2 − ab3(2 − r3) + 4b3(1 − γ ). (40)

a and �b = (b1, b2, b3) are defined in Eq. (11), and take the
following forms for the GAD channel:

a = − 2γ r3

1 − |�r|2 , �b = (−ar1,−ar2,−ar3 + 2γ ). (41)

The qubit purity is P (t ) = [1 + |�r(t )|2]/2 [Eq. (7)]. With
Eq. (23), its time derivative can be decomposed as

dP
dt

= γ1 p1 + γ2 p2, (42)

with p1 = −( |�r|2+r2
3

2 + r3) and p2 = −( |�r|2+r2
3

2 − r3).
In the following we shall analyze the signs of the QFI and

purity subflows. We shall examine the behavior of these quan-
tities in the time evolution of the GAD process considering
three initial states ρ(0): the maximally mixed state ρ(0) = 1

2 Î ,

and the pure states |g〉〈g| and |e〉〈e|. The results are displayed
in Table I.

A. Initial state of the qubit ρ(0) = 1
2 Î

Let us consider as initial state of the qubit the maximally
mixed state

ρ(0) = 1

2
Î = 1

2
(|g〉〈g| + |e〉〈e|). (43)

The components of the Bloch vector at t = 0 are rx = ry =
rz = 0, and after a time t of interaction with the bath, the
Bloch vector (32) becomes �r(t ) = (0, 0, γ (2p − 1)), with

rI
3 = γ (2p − 1). (44)

The superscript I in Eq. (44) is indicative of the initial state.
The purity is P I (t ) = [1 + |rI

3(t )|2]/2, with its time deriva-
tive

dP I

dt
= 
e−
tγ (2p − 1)2 � 0. (45)

Unsurprisingly, as the initial state is the maximally mixed
state, the purity increases in time, dP I/dt � 0. The signs
of the purity subflows composing dP I/dt [Eq. (42)] are
determined by p1 = −rI

3(1 + rI
3) and p2 = rI

3(1 − rI
3), with

sgn[p2] = sgn[rI
3] = −sgn[p1]. Therefore, the purity sub-

flows γ1 p1 and γ2 p2 have always opposite signs, reflecting
their relation with the opposite processes |g〉 → |e〉 (probabil-
ity 1 − p) and |e〉 → |g〉 (probability p).

The QFI F I
p (t ) [Eq. (37)] and its time derivative dF I

p /dt
are

F I
p (t ) = 4γ 2

1 − (
rI

3

)2 , (46)

dF I
p

dt
= 8
γ (1 − γ )[

1 − (
rI

3

)2]2 � 0. (47)

The positive flow dF I
p /dt � 0 shows that the accuracy in the

estimation of the parameter p increases with time.
The functions f1, f2 which determine the signs of the

subflows in the QFI flow decomposition (38) are

f1(γ , p) = 8γ(
1 − r2

3

)2 (1 + r3)(1 − r3 − γ ), (48)

f2(γ , p) = 8γ(
1 − r2

3

)2 (1 − r3)(1 + r3 − γ ). (49)

As |r3| < 1, sgn[ f1] = sgn[1 − r3 − γ ], and sgn[ f2] =
sgn[1 + r3 − γ ].

The value of p indicates which one of the two opposite
processes is dominant (i.e., occurs with bigger probability): it
is |g〉 → |e〉 if 1 − p > p, or |e〉 → |g〉 if p > 1 − p. In order
to enlighten the dominant process, the analysis shown in the
Table I is organized by distinguishing the following cases for
the parameter 0 � p � 1.

(i) If p < 1
2 (i.e., 1 − p > p and γ1 > γ2), the process

|g〉 → |e〉 is dominant. The subflows associated with the big-
ger probability, 1 − p, are positive: γ1 p1 > 0, γ1 f1 > 0. The
subflow f2 > 0 if e−
t > 1 − 1

2(1−p) , and becomes negative,
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TABLE I. The signs of the subflows γ1 f1 and γ2 f2 composing the positive QFI flow dFp

dt = γ1 f1 + γ2 f2 > 0, and the sign of the time
derivative of the purity dP

dt in the GAD time evolution, for the initial states ρ(0) = 1
2 Î , |g〉〈g|, |e〉〈e|. The decoherence rates are γ1 = 
(1 − p)

and γ2 = 
p. We distinguish the cases 2p < 1 (i.e., 1 − p > p) and 2p > 1 (i.e., 1 − p < p).

Initial state p domain sgn[ f1] sgn[ f2] sgn[ dP
dt ]

1
2 Î 2p < 1 f1 > 0 f2 > 0, if e−
t >

1−2p
2(1−p)

f2 < 0, if e−
t <
1−2p

2(1−p)
dP
dt � 0

2p > 1 f1 > 0, if e−
t >
2p−1

2p f2 > 0
f1 < 0, if e−
t <

2p−1
2p

|g〉〈g| 2p < 1 f1 > 0 f2 < 0 dP
dt < 0

2p > 1 f1 > 0, if e−
t >
2p−1
2p+1 f2 > 0 dP

dt < 0, if e−
t >
2p−1

2p

f1 < 0, if e−
t <
2p−1
2p+1

dP
dt > 0

|e〉〈e| 2p < 1 f1 > 0 f2 > 0, if e−
t >
1−2p
3−2p

dP
dt < 0, if e−
t >

1−2p
2(1−p)

f2 < 0, if e−
t <
1−2p
3−2p

dP
dt > 0

2p > 1 f1 < 0 f2 > 0 dP
dt < 0

f2 < 0, if e−
t < 1 − 1
2(1−p) . This indicates that, after a cer-

tain time of the interaction with the bath (t > t∗), when e−
t

becomes sufficiently small, the subflow associated with the
smaller probability p becomes negative, γ2 f2 < 0, showing
that the occurrence of the process |e〉 → |g〉, with probability
p, diminishes Fp(t ) and the precision in the estimation of p.

(ii) If p > 1
2 (i.e., p > 1 − p and γ1 < γ2), the process

|e〉 → |g〉 is the dominant one. It is the inverse of the case
(i). The signs of the purity subflows are inversed, with p1 < 0
and p2 > 0. The QFI subflow γ2 f2 > 0, and γ1 f1 becomes
negative after a certain time.

(iii) If p = 1
2 , the GAD channel becomes unital, r3 =

0, p = 1 − p, γ1 = γ2, f1 = f2 > 0. Moreover, dP I/dt = 0,
with p1 = p2 = 0.

B. Initial state of the qubit ρ(0) = |g〉〈g| or ρ(0) = |e〉〈e|
If the qubit is initially prepared in the ground state ρ(0) =

|g〉〈g|, then rx = ry = 0 and rz = −1, and the Bloch vector
(32) becomes �r(t ) = (0, 0, 2pγ − 1), with

rg
3 = 2pγ − 1. (50)

The time derivative of the purity Pg(t ) is

dPg

dt
= 2
e−
t p(2pγ − 1). (51)

As the initial state is the pure state |g〉〈g|, the purity begins
by decreasing in the time evolution, but it can increase after a
certain time if the transition |e〉 → |g〉 becomes the dominant
process (p > 1 − p): dPg/dt > 0 if e−
t <

2p−1
2p . The purity

subflows γ1 p1 and γ2 p2 have always opposite signs, with p1 =
−rg

3(1 + rg
3 ) and p2 = rg

3(1 − rg
3 ).

F g
p (t ) and its time derivative dF g

p /dt are

F g
p (t ) = 4γ 2

1 − (
rg

3

)2 , (52)

dF g
p

dt
= 16p
γ 2(1 − γ )[

1 − (
rg

3

)2]2 � 0. (53)

f1 and f2 have the same expressions as those given in Eqs. (48)
and (49), with r3 taking the value given by Eq. (50). The signs
of f1 and f2 are shown in Table I. If p < 1

2 , the transition
|g〉 → |e〉 is the dominant process, leading to the decrease of
the purity. The purity subflows and the QFI subflows have the
same signs: γ1 p1 > 0, γ1 f1 > 0 and γ2 p2 < 0, γ2 f2 < 0. If
p > 1

2 , the dominant process is the transition |e〉 → |g〉, and
γ2 f2 > 0. As it is shown in Table I, f2 and Pg(t ) change their
signs during the time evolution. The purity subflow γ1 p1 > 0
when γ1 f1 > 0. If p = 1

2 , dPg/dt < 0, with p1 > 0 and p2 <

0; f2 = 0, therefore, there is only one QFI subflow, γ1 f1 > 0.
The phenomena are inversed if the qubit is initialized in

the excited state ρ(0) = |e〉〈e|. With rx = ry = 0 and rz = 1,
the Bloch vector (32) becomes �r(t ) = (0, 0, 2γ (p − 1) + 1),
and re

3 = 2γ (p − 1) + 1. All the significant quantities can
be obtained by replacing rg

3 with re
3, and p with 1 − p in

Eqs. (51)–(53):

dPe

dt
= 2
e−
t (1 − p)[2γ (1 − p) − 1], (54)

F e
p (t ) = 4γ 2

1 − (
re

3

)2 , (55)

dF e
p

dt
= 16(1 − p)
γ 2(1 − γ )[

1 − (
re

3

)2]2 � 0. (56)

C. Observations

To summarize, in the master equation (34), the deco-
herence rates γ1 and γ2 are proportional to 1 − p and p,
respectively. The parameter p to be estimated is the oc-
currence probability of one of the two opposite processes
directing the qubit dynamics, the other process occurring with
the probability 1 − p. Therefore, the “γi subflows” associated
to Fp dynamics, and those associated to the purity dynamics,
have informational contents directly related to the estimated
parameter p.

The GAD channel being nonunital (unless p = 1
2 ), the

qubit purity can increase or decrease during the time evolu-
tion, depending on the initial state. The purity subflows γ1 p1

and γ2 p2 have always opposite signs, reflecting their rela-
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tion with the occurrence of the opposite processes |g >→ |e〉
(probability 1 − p) and |e〉 → |g〉 (probability p).

For all initial states considered, the QFI flow associated
with the estimation of p is positive, dFp/dt > 0. The increase
of the QFI Fp in this Markovian dynamics is due to the fact
that the CPTP map depends on p. Since p is a parameter
which characterizes the interaction between the qubit and
the thermal bath, the qubit can be seen as a quantum probe
which efficiently extracts information about the environment
(principle of qubit thermometry). The positivity of the QFI
flow is reflected in the signs of its subflows. In the decom-
position dFp/dt = γ1 f1 + γ2 f2, at least one of the subflows is
positive. There is a close connection between dP/dt subflows
and dFp/dt subflows, the positive subflow of the purity being
accompanied by a positive subflow of the QFI related to the
same decoherence rate.

In short, GAD channel offers a revealing example of
Markovian dynamics with a positive dFp/dt flow, in which
the positive and negative QFI subflows reflect the influence of
the competing processes in increasing the estimation of p.

IV. QFI DYNAMICS IN THE NON-MARKOVIAN
EVOLUTION OF THE ELECTRONIC SUBSYSTEM IN A

MOLECULE

We shall now analyze the dynamics of the QFI for a param-
eter of the electronic subsystem in a molecule. The QFI flow
and its subflows will be observed in their connections to the
non-Markovian evolution of the electronic subsystem in the
vibrational environment of the molecule [42].

We consider a diatomic molecule described in the Born-
Oppenheimer (BO) approximation [51], neglecting the rota-
tional degree of freedom, such that the molecule can be de-
scribed in the bipartite Hilbert space H = Hel

⊗
Hvib, which

is a tensor product of the electronic and vibrational Hilbert
spaces. We suppose that the molecular system is prepared
in a pure entangled state ρel,vib(t ) = |�el,vib(t )〉〈�el,vib(t )| of
the bipartite system (el

⊗
vib), such that Nv vibrational lev-

els of two electronic states (g, e) are populated, therefore,
the bipartite Hilbert space has the dimension 2 × Nv . In a
previous paper [42], we have shown that the evolution of
the electronic subsystem in the vibrational environment has
a non-Markovian character, correlated to the evolution of the
electronic coherence and with the electronic-vibrational en-
tanglement dynamics [52,53].

The matrix of the reduced electronic density ρel =
Trvib(ρel,vib) in the electronic basis {|g〉, |e〉} is [42]

(ρel ){g,e} =
(

Pg 〈ψe|ψg〉
〈ψg|ψe〉 Pe

)
, (57)

where |ψg,e(R, t )〉 are the vibrational wave packets (depending
on the internuclear distance R and on the time t) corre-
sponding to the electronic states |g〉, |e〉. Pg and Pe are the
populations of the electronic states,

Pg,e(t ) = 〈ψg,e(R, t )|ψg,e(R, t )〉, (58)

obeying the normalization condition Pg(t ) + Pe(t ) = 1. The
implicit supposition is that both electronic states g, e are popu-
lated: Pg 
= 0, Pe 
= 0. The complex overlap of the vibrational

packets can be written as

〈ψg|ψe〉 = C(t )eiα(t ), (59)

with

C(t ) = |〈ψg(R, t )|ψe(R, t )〉|, (60)

related to the l1 norm measure of the electronic coherence
[53], Cl1 (ρel ) = 2C(t ), and α(t ) a real function.

The canonical form of the electronic master equation de-
rived in Ref. [42] shows that the evolution of the reduced
electronic density ρel(t ) has an inherent non-Markovian char-
acter, with one decoherence rate always negative. Here we
suppose a molecule with constant electronic populations Pg,e

in the electronic states g, e (a molecule after the action of a
laser pulse, for example, and with no other radial nonadiabatic
coupling between the electronic states). We shall consider the
QFI associated to the electronic population Pg.

For constant electronic populations Pg,e in the electronic
states, the master equation describing the non-Markovian
evolution of the electronic subsystem in the vibrational en-
vironment is [42]

dρel

dt
=

2∑
i=1

γi(t )

[
Ai(t )ρelA

+
i (t ) − 1

2
{A+

i (t )Ai(t ), ρel}
]
.

(61)
The decoherence rates {γi(t )}i=1,2, with γ1 > 0, γ2 < 0, and
γ2 = −γ1, have the expressions [42]

γ1,2(t ) = ± 1

|〈ψg|ψe〉|
∣∣∣∣d〈ψg|ψe〉

dt

∣∣∣∣ (62)

= ±
√(

1

C

dC

dt

)2

+
(

dα

dt

)2

. (63)

The time-dependent decoherence operators {Ai(t )}i=1,2 are
[42]

A1(t ) = n1√
2

(
σ1 + γ1 − D11

D12
σ2

)
, (64)

A2(t ) = n2√
2

(
σ1 + γ2 − D11

D12
σ2

)
, (65)

where σ1, σ2 are the Pauli operators σ1 = |e〉〈g| + |g〉〈e|, σ2 =
−i|e〉〈g| + i|g〉〈e|, and n1, n2 are real normalization factors
(with n2

1 + n2
2 = 1):

n2
1 = γ1 − D22

γ1 − γ2
; n2

2 = D22 − γ2

γ1 − γ2
. (66)

D11, D22, and D12 are the elements of the Hermitian decoher-
ence matrix D [42]:

D11(t ) = 1

2ih̄

[
B(t )

〈ψg|ψe〉 − B∗(t )

〈ψe|ψg〉
]
, (67)

D12(t ) = − 1

2h̄

[
B(t )

〈ψg|ψe〉 + B∗(t )

〈ψe|ψg〉
]
, (68)

D22(t ) = − 1

2ih̄

[
B(t )

〈ψg|ψe〉 − B∗(t )

〈ψe|ψg〉
]
, (69)

with B(t ) = ih̄(d〈ψe|ψg〉/dt ). As D11, D22, and D12 are real,
the decoherence operators Ai are Hermitian, and [Ai, A+

i ] = 0.
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Let us consider the QFI FPg associated to the parameter Pg,
the electronic population in one of the two electronic states.
The decoherence rates γi(t ) [Eq. (63)] and the decoherence
operators Ai(t ) [Eqs. (64) and (65)] depend on the coherence
C(t ) [Eq. (60)], which depends on Pg [Eq. (58)]: ∂C

∂Pg

= 0.

Therefore, γi(t ) and Ai(t ) depend on the parameter Pg:

∂γi

∂Pg

= 0,

∂Ai

∂Pg

= 0. (70)

The dynamical behavior of FPg (t ) will be analyzed using the
equations established in Sec. II. The electronic density opera-
tor ρel(t ) can be written in the Bloch representation (6), with
the Bloch vector

�ω(t ) = (2C(t ) cos α(t ),−2C(t ) sin α(t ), 1 − 2Pg). (71)

The QFI FPg depends on the partial derivative

∂ �ω
∂Pg

=
(

2
∂C

∂Pg
cos α,−2

∂C

∂Pg
sin α,−2

)
. (72)

Equation (11) gives the following formulas for the quantities
a and �b associated to the calculation of the QFI FPg:

a = − 1

L

[
∂C2

∂Pg
+ Pg − Pe

]
= 1

2L

∂L

∂Pg
, (73)

�b = −a�ω + ∂Pg �ω, (74)

where L is the linear entropy L(t ) = 1 − Tr[ρ2
el(t )] of the

electronic-vibrational entanglement, given by [52]

L(t ) = 2PgPe − 2C2(t ). (75)

The purity of the electronic subsystem is

P (t ) = 1 − L(t ) = P2
g + P2

e + 2C2(t ). (76)

Using Eq. (9) one obtains the QFI FPg as

FPg = 4 + 4

(
∂C

∂Pg

)2

+ 2

L

(
∂C2

∂Pg
+ Pg − Pe

)2

(77)

= 4 + 4

(
∂C

∂Pg

)2

+ 1

2L

(
∂L

∂Pg

)2

. (78)

Equation (77) shows that FPg = FPe and FPg > 4. The time
behavior of FPg is determined by the coherence C and its
partial derivative ∂C/∂Pg.

A. dP/dt decomposition into γi subflows

The time derivative of the purity [Eq. (76)]

dP
dt

= 4C
dC

dt
(79)

can be decomposed into subflows using Eq. (23) as

dP
dt

= −2
∑

i

γiq
′
i, (80)

with q′
i � 0. Therefore, dP/dt can be seen as the sum of two

subflows, one negative corresponding to the positive decoher-
ence rate γ1, and one positive corresponding to the negative
decoherence rate γ2.

B. dFPg/dt decomposition into subflows and the canonical
measure of non-Markovianity

We shall use Eq. (25) to analyze the QFI dynamics in
relation to the decoherence rates. Taking into account that∑

i γi = 0, Ai = A+
i , and H = 0, dFPg/dt has the structure

dFPg

dt
= −a

∑
i=1,2

γiTr[Ai �ω · �σAi �b · �σ ] + 2�b · d

dt

(
∂ �ω
∂Pg

)
,

(81)
with three terms dFPg/dt = T1 + T2 + T3. The first two terms
are the subflows Ti (i = 1, 2) corresponding to the decoher-
ence rates γi, and the third term T3 is a subflow introducing
the second derivative d

dt ( ∂C
∂Pg

). Using Eqs. (64), (65), (73), and
(74), we obtain

Ti = −aγiTr[Ai �ω · �σAi �b · �σ ]

(82)

= −{[a(Pe − Pg) + 1]2 − 1}γi + 4a

(
aC − ∂C

∂Pg

)
dC

dt
,

(83)

T3 = 2�b · d

dt

(
∂ �ω
∂Pg

)
= −8

(
aC − ∂C

∂Pg

)
d

dt

(
∂C

∂Pg

)
. (84)

Let us remark that, on the right side of Eq. (83), −γi is multi-
plied by the factor [a(Pe − Pg) + 1]2 − 1, which is positive if
a(Pe − Pg) > 0; it can be shown that this condition is fulfilled
if ∣∣∣∣∂C2

∂Pg

∣∣∣∣ < |Pe − Pg|. (85)

In its compact form, the QFI flow is an oscillating function
determined by the behavior of the coherence and its various
derivatives:

dFPg

dt
= 8

(
aC − ∂C

∂Pg

)[
a

dC

dt
− d

dt

(
∂C

∂Pg

)]
, (86)

with a given in Eq. (73). Equation (86) can be rewritten as

dFPg

dt
= 8F 2

L2

(
1

C

dC

dt

)
− 8CF

L

∂

∂Pg

(
1

C

dC

dt

)
, (87)

where we have used the notation F = C(Pe − Pg) − 2PgPe
∂C
∂Pg

.
On the other hand, the canonical measure of non-

Markovianity [37,42] is defined in relation to the negative
canonical decoherence rate γ2(t ), as the function f (t ) =
|γ2(t )|. Using Eq. (63), one obtains

f (t ) =
√(

1

C

dC

dt

)2

+
(

dα

dt

)2

∼
∣∣∣∣ 1

C

dC

dt

∣∣∣∣. (88)

Equations (87) and (88) show that the QFI flow dFPg/dt and
the non-Markovianity measure f (t ) are both determinated by
the temporal behavior of the electronic coherence, through
1
C

dC
dt .
In the following, we shall analyze on a numerical example

the QFI flow dFPg/dt and its decomposition into subflows, in
relation to the time evolutions of the coherence C(Pg, t ) and
of the non-Markovianity measure f (t ).
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C. Electronic populations, electronic coherence, and the partial
derivative ∂C

∂Pg

The QFI FPg [Eq. (77)] is determined by the partial
derivative of the electronic coherence C(Pg, t ) relative to the
parameter Pg, ∂C

∂Pg
. We shall precise the character of this

dependence. Previous works [52,53] contain more detailed
descriptions of the molecular model of a diatomic molecule
in the Born-Oppenheimer (BO) approximation [51]. The nu-
clear motion in an electronic state |α〉 is determined by the
corresponding electronic potential V

α
(R). If TR is the nuclear

kinetic energy operator, the Schrödinger equation giving the
vibrational eigenfunctions |χvα

(R)〉 and vibrational energies
Evα

is

[TR + V
α
(R)]|χvα

(R)〉 = Evα
|χvα

(R)〉. (89)

The eigenvectors {|χvα
(R)〉}vα=1,Nα

form an orthonormal vi-
brational basis with dimension Nα corresponding to the
electronic surface α. The vibrational wave packet correspond-
ing to the electronic potential α can be developed in this basis
as

|ψα (R, t )〉 =
Nα∑

vα=1

cvα
(t )|χvα

(R)〉, (90)

with the complex coefficient cvα
(t ) providing the probability

|cvα
(t )|2 for the population of the vibrational state |χvα

(R)〉.
In a molecule with two uncoupled electronic channels

α = g, e, each vibrational wave packet |ψα (R, t )〉 evolves
in the corresponding electronic potential Vα (R) accord-
ing to the time-dependent Schrödinger equation [TR +
Vα (R)]|ψα (R, t )〉 = ih̄∂/∂t |ψα (R, t )〉. Therefore, the proba-
bility amplitude cvα

(t ) is

cvα
(t ) = cvα

(ti )e
− i

h̄ Evα (t−ti ), (91)

where ti is a time moment after which the electronic channels
can be considered uncoupled (after being coupled by a laser
pulse which populates the electronic states, for example), and
Evα

is the vibrational energy corresponding to the vibrational
function |χvα

(R)〉. Therefore, the population of the electronic
state Pg = 〈ψg|ψg〉 is

Pg =
∑
vg

|cvg (ti)|2, (92)

and the square of the coherence C(t ) can be written

C2 = |〈ψg(R, t )|ψe(R, t )〉|2

=
∑
vg,v′

g

∑
ve,v′

e

c∗
vg

(ti )cve (ti )cv′
g
(ti )c

∗
v′

e
(ti )

×FvgveF∗
v′

gv
′
e
e

i
h̄ [(Evg−Ev′

g
)−(Eve −Ev′

e
)](t−ti ), (93)

with Fvgve = 〈χvg (R)|χve (R)〉 the overlap integral of two vi-
brational wave functions. The coherence dependence on the
electronic populations is intricate, as it can be seen from
Eq. (93), showing that C(t ) implies summations of the vi-
bronic coherences c∗

vg
(ti )cve (ti ) coming from all the populated

vibrational levels [53].

1. Connections with the vibrational environment

Let us observe that the probability amplitudes cvg (t ), cve (t ),
which determine the electronic populations, the vibronic co-
herences, and the electronic coherence, are also related to the
matrix elements of ρvib = Trel(ρel,vib), the reduced density op-
erator of the vibrational environment. The pure entangled state
of the molecular system being |�el,vib(t )〉 = |g〉⊗ |ψg(t )〉 +
|e〉⊗ |ψe(t )〉 [52], one obtains ρvib = |ψg〉〈ψg| + |ψe〉〈ψe|. In
an orthonormal basis {|un〉}n=1,Nv

of the vibrational Hilbert
space Hvib, the populations of ρvib are

〈un|ρvib|un〉 =
∑
vg,v′

g

cvgc
∗
v′

g
〈χv′

g
(R)|un〉〈un|χvg (R)〉

+
∑
ve,v′

e

cve c
∗
v′

e
〈χv′

e
(R)|un〉〈un|χve (R)〉. (94)

A similar formula gives the coherences 〈un|ρvib|um〉. Equa-
tion (94) shows the way in which the information about the
electronic population (Pg or Pe) is structurally encoded in the
vibrational environment.

2. 2 × 2 molecular system: One vibrational level in each
electronic state

We shall now refer to examples which allow to find simple
analytical formulas for ∂C

∂Pg
. We shall suppose only one vibra-

tional level populated in the ground electronic state. We begin
with the simple example of a 2 × 2 system, and afterwards we
shall discuss 2 × Nv molecular systems.

Let us suppose one vibrational level populated in each
electronic state, namely, vg in the electronic state g and ve

in the electronic state e. Therefore, Pg = |cvg|2, Pe = |cve |2,
Pg + Pe = 1. Equation (93) gives the coherence

C = √
Pg(1 − Pg)

∣∣Fvgve

∣∣, (95)

which does not vary in time, dC/dt = 0. With Eqs. (63) and
(59) the decoherence rates {γi}i=1,2 become

γ1,2 = ±
∣∣Evg − Eve

∣∣
h̄

. (96)

Using Eqs. (95) and (77) one obtains the QFI

FPg = 1

PgPe
, (97)

constant in time, dFPg/dt = 0. Equations (81), (83), and (84)
show dFPg/dt as the result of two opposite subflows corre-
sponding to the decoherence rates, a positive subflow −a2γ2

for γ2 < 0, and a negative subflow −a2γ1 for γ1 > 0,3 which
cancel each other out:

dFPg

dt
= −a2γ1 − a2γ2 = 0, (98)

with a = (Pe − Pg)(1 − |Fvgve |2)/L.

3The condition (85) is fulfilled in this case, with |∂C2/∂Pg| = |Pe −
Pg||Fvgve |2 < |Pe − Pg|.

042204-10



DYNAMICS OF QUANTUM FISHER INFORMATION FROM A … PHYSICAL REVIEW A 106, 042204 (2022)

3. 2 × Nv system: One vibrational level in the electronic state g
and Nv − 1 vibrational levels in the electronic state e

Let us consider one vibrational level vg populated in the
electronic state g and Nv − 1 vibrational levels {ve} populated
in the electronic state e, such that

|ψg(R, t )〉 = cg(ti )e
− i

h̄ Evg (t−ti )|χvg (R)〉, (99)

|ψe(R, t )〉 =
∑
ve

cve (ti )e
− i

h̄ Eve (t−ti )|χve (R)〉. (100)

The electronic populations are Pg = |cg(ti )|2 and Pe =∑
ve

|cve (ti )|2, with Pg + Pe = 1.
Writing the complex amplitudes as cvei

(ti) = |cvei
|eiei , and

the overlap integral Fvgvei
between the ground vibrational

wave function vg and an excited vibrational wave function vei

as Fvgvei
= |Fvgvei

|ei fi , Eq. (93) gives

C2(Pg, t ) = Pg

( ∑
ve

∣∣cve

∣∣2∣∣Fvgve

∣∣2

+ 2
∑
vei

∑
ve j 
=vei

∣∣cvei

∣∣∣∣cve j

∣∣∣∣Fvgvei

∣∣∣∣Fvgve j

∣∣Ai j (t )

)
.

(101)

The temporal behavior of C2(Pg, t ) is shaped by the various
Ai j (t ) = cos[ai j + ωve j vei

(t − ti )], with ai j = ei − e j + fi −
f j a phase depending on the quantum molecular preparation at
ti, and ωve j vei

= (Eve j
− Evei

)/h̄. For example, if there are only
two neighboring vibrational levels ve and ve + 1 populated
in the excited electronic state e, A12(t ) and C2(t ) oscillate
with a characteristic time which is the vibrational period of
ve: Tvib(ve) = 2π h̄/|Eve+1 − Eve | [54].

The partial derivative ∂C2

∂Pg
= 2C ∂C

∂Pg
can be deduced from

Eq. (101) taking into account that
∑

ve
|cve |2 = 1 − Pg. Fi-

nally, we find

∂C

∂Pg
= C

2Pg
− Pg

2C

[ ∑
ve

∣∣Fvgve

∣∣2

+
∑
vei

∑
ve j 
=vei

∣∣Fvgvei

∣∣∣∣Fvgve j

∣∣
∣∣cvei

∣∣2 + ∣∣cve j

∣∣2∣∣cvei

∣∣∣∣cve j

∣∣ Ai j (t )

]
.

(102)

D. Example: FPg (t ) dynamics in a molecule with two electronic
states and mainly five populated vibrational levels

We will take as example a quantum preparation of the Cs2

molecule, which is obtained by simulating the action of a
chirped laser pulse, chosen such that mainly five vibrational
levels are populated in the electronic states a3�+

u (6s, 6s) and
1g(6s, 6p3/2): the level vg = 0 of the ground state g = a3�+

u ,
and the vibrational levels ve = 2, 3, 4, 5 of the excited state
e = 1g (see Fig. 1).

Quantum preparations of this type were analyzed in
Ref. [53], where various chirped pulses were used to simu-
late molecular preparations with different electronic-nuclear

10400

10450

10500

10550

10 12 14
R (a

0
)

-250

-200

V
(R

) 
(c

m
-1

)

a
3Σ

u

+
(6s,6s)

1
g
(6s,6p

3/2
)

v
e
=3

v
e
=4

v
g
=0

t=46.1 ps

t=47.6 ps

FIG. 1. a3�+
u (6s, 6s) and 1g(6s, 6p3/2) electronic potentials of

Cs2 (the energy origin is the dissociation limit E6s+6s = 0 of the
a3�+

u potential). Picture of a molecular preparation with mainly
five populated vibrational levels, vg = 0 of the a3�+

u potential and
ve = 2, 3, 4, 5 of the 1g electronic potential. The excited vibrational
wave packet |ψe(R, t )| in the 1g potential is shown at t = 46.1 ps
(coherence maximum) and 47.6 ps (coherence minimum).

entanglement dynamics. The theoretical model and numerical
techniques were described in previous works [52,53,55]. The
chirped pulse [56] is represented by an electric field E (t ) =
E0e(t ) cos[ωLt + ϕ(t )], with amplitude E0, Gaussian temporal
envelope e(t ), and central frequency ωL/2π reached at t = tP.
The phase ϕ(t ) is chosen such that the instantaneous fre-
quency varies linearly with the chirp rate χ around the central
frequency ωL/2π : ω(t ) = ωL + χ (t − tP ). The Gaussian en-
velope e(t ) = √

τL/τC exp{−2 ln 2[(t − tP )/τC]2} is centered
at t = tP and has the temporal width τC , with its maximum
determined by τL/τC � 1, τL being the temporal width of
the pulse before chirping. The multitude of the parameters
characterizing a chirped pulse allows various possibilities to
control the molecular preparations [55,57].

We describe briefly the choice of the pulse parameters al-
lowing to obtain the molecular preparation sketched in Fig. 1.
We have used a chirped pulse with central energy h̄ωL =
10 695 cm−1 to couple the electronic potentials a3�u and 1g at
the internuclear distance Rc ≈ 12 a0, transferring population
from the ground state vg = 0 of g = a3�+

u to the excited state
e = 1g (see Fig. 1). The pulse parameters are tP = 15 ps,
τL = 0.6 ps, a positive chirp rate χ = 3.33 ps−2, and τC = 1.7
ps. The strength coupling WL = E0Dge/2, a function of the
laser intensity I (E0 = √

2I/cε0) and the transition dipole
moment Dge between the electronic surfaces [58], is chosen
WL = 10.97 cm−1.

Here we refer only to the vibrational dynamics after pulse,
when the electronic populations remain constant in time.
The dynamics of the vibrational wave packets ψg,e(R, t ) in
the electronic channels is obtained by propagating in time
the wave packets on a spatial grid with length LR, using the
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FIG. 2. (a) Time evolution of the electronic coherence C(t ) and
linear entropy L(t ). (b) Time evolution of the partial derivative ∂C

∂Pg
.

(c) Time evolution of the QFI FPg (t ). (d) Non-Markovianity measure
f (t ). The filled surface shows the integral

∫
f (t )dt . The dashed

vertical lines and the dotted vertical lines correspond to minima and
maxima of the electronic coherence C(t ), respectively.

Chebychev expansion of the evolution operator [59,60] and
the mapped sine grid (MSG) method [55,61] to represent
the radial dependence of the wave packets. The electronic
populations and the electronic coherence are calculated from
the vibrational wave packets as Pg,e(t ) = ∫ LR

0 |�g,e(R′, t )|2dR′

and C(t ) = ∫ LR

0 �∗
g (R′, t )�e(R′, t )dR′, respectively. The co-

herence C(t ) can be chosen as the reference dynamical
quantity because its temporal behavior underlies the dynamics
of the other significant quantities, such as the electronic purity
[Eq. (76)] or the linear entropy measuring the electronic-
vibrational entanglement. The local minima (maxima) of the
coherence C(t ) are local minima (maxima) of the purity
P (t ) and maxima (minima) of the entanglement measured
by L(t ).

After pulse, the electronic population is distributed be-
tween g = a3�+

u and e = 1g, with vg = 0 populated in the
ground state g and mainly ve = 2, 3, 4, 5 populated in the
excited state e. The time evolutions of the coherence C(t ) and
linear entropy L(t ) after pulse are shown in Fig. 2(a). They
exhibit oscillations with the characteristic periods expected
from Eq. (101). Indeed, the vibrational levels ve = 2, 3, 4, 5
of the electronic state 1g are separated by an energy gap of
≈ 16 cm−1 (corresponding to a vibrational period of about
2 ps), therefore, three characteristic periods are expected to
appear in the time oscillations of the electronic coherence
and linear entropy, corresponding to the various frequencies
ωve j vei

: mainly 2.1 ps, but also 1.04 and 0.7 ps.
We have used Eq. (102) to calculate the partial derivative

∂C
∂Pg

after pulse, taking ti = 20 ps. Let us observe [Figs. 2(a)
and 2(b), and Eq. (102)] that the local maxima of the function
∂C
∂Pg

(t ) appear when C(t ) has local minima. Figures 2(a)–2(d)
illustrate the time evolution of FPg (t ) [Eq. (77)] in relation to
the coherence C(t ), the linear entropy L(t ), the partial deriva-
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FIG. 3. The QFI flow dFPg/dt in relation to the electronic co-
herence C(t ) and the non-Markovianity measure f (t ). (a) Time
evolution of the electronic coherence C(t ). (b) Time evolution of
the QFI derivative dFPg/dt . (c) Canonical non-Markovianity mea-
sure f (t ). The dotted vertical lines marks the change of the QFI
flow dFPg/dt from a sharp positive maximum to a sharp negative
minimum when the electronic coherence C(t ) reaches a minimum.
The dashed vertical lines correspond to maxima of C(t ).

tive ∂C
∂Pg

(t ), and the non-Markovianity measure f (t ) [Eq. (88)].
It can be seen that the minima of the coherence C(t ) [entan-
glement maxima of L(t )] correspond to sharp maxima in the
evolution of FPg (t ), and to maxima in the time evolution of
the non-Markovianity measure f (t ) (see the vertical dashed
lines on the figures). On the contrary, the coherence local
maxima correspond to smaller local maxima of FPg (t ) and
to minima of the non-Markovianity measure f (t ) (vertical
dotted lines on the figures). A similar observation can be
made on Figs. 3(a)–3(c) which depict the QFI flow dFPg/dt in
relation to the electronic coherence and the non-Markovianity
measure. It can be observed that diminution of the coherence
C(t ) to a minimum and its subsequent increase corresponds
to a sudden change of the QFI flow dFPg/dt from sharp
positive to sharp negative values. On the contrary, around
the local maxima of the coherence the QFI flow is rather
positive. The non-Markovianity maxima of f (t ) correspond
to maxima of the QFI FPg (t ) and to the sudden change of
sign of the QFI flow: dFPg/dt > 0 when f (t ) increases, and
dFPg/dt < 0 when f (t ) decreases [see the vertical lines on
Figs. 3(a)–3(c)].

Figures 4 and 5 depict the subflows Ti(t ) (i = 1, 2, 3) cor-
responding to the decomposition dFPg/dt = T1(t ) + T2(t ) +
T3(t ) [Eqs. (83) and (84)]. Figures 4(a) and 4(b) show the
QFI subflows T1(t ) and T2(t ) corresponding to the deco-
herence rates γ1(t ) > 0 and γ2(t ) < 0, respectively. Both
subflows oscillate taking positive and negative values. During
the time intervals with significant non-Markovianity [maxima
of f (t ) = |γ2(t )| = γ1(t )], the subflow T1(t ) corresponding
to the positive decoherence rate γ1(t ) > 0 becomes positive,
with maxima following the maxima of γ1(t ), and hence it
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FIG. 4. QFI subflows T1(t ) and T2(t ) corresponding to the de-
coherence rates γ1(t ) > 0 and γ2(t ) < 0, respectively. (a) Time
evolution of T1(t ) (full line) and γ1(t ) > 0 (dashed line). (b) Time
evolution of T2(t ) (full line) and γ2(t ) < 0 (dashed line). The canon-
ical non-Markovianity measure f (t ) = |γ2(t )| = γ1(t ) (thin line) is
shown.

contributes to the increase of the QFI. In the same intervals,
the subflow T2(t ), corresponding to γ2(t ) < 0, strongly oscil-
lates keeping rather positive values. In the time intervals in
which f (t ) has low values, both subflows T1(t ) and T2(t ) reach
large negative values.

Figures 5(a) and 5(b) show the sum T1(t ) + T2(t ) of the
subflows related to the decoherence rates, and the third sub-
flow, T3(t ). Figure 5(a) shows that non-Markovianity maxima
are accompanied by a positive sum T1(t ) + T2(t ), and that the
low values of f (t ) are associated to a negative sum of the
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FIG. 5. (a) The sum of the QFI subflows T1(t ) + T2(t ). The de-
coherence rates γ1(t ) > 0 and γ2(t ) < 0 are shown with dashed lines
(the canonical non-Markovianity measure f (t ) = |γ2(t )| = γ1(t )).
(b) The QFI subflow T3(t ).

subflows T1(t ) + T2(t ). The subflows T1(t ), T2(t ), as well as
their sum T1(t ) + T2(t ), have a very small contribution in the
total QFI flow, |T1(t ) + T2(t )| 
 |T3(t )|, such that the third
subflow is the dominant one, dFPg/dt ≈ T3(t ).

E. Discussion

This analysis shows that the time behavior of the QFI flow
dFPg/dt is strongly connected to the non-Markovian dynamics
of the electronic subsystem. Equations (87) and (88) disclose
that this connection is rooted in the time behavior of the
electronic coherence, a basic quantity in defining the corre-
lations between the electronic open system and its vibrational
environment. The positive QFI flow dFPg/dt can be correlated
to the increase of the canonical non-Markovianity measure
f (t ), the increase of electronic-vibrational entanglement L(t ),
and the decrease of the electronic coherence C(t ).

In the dFPg/dt decomposition into subflows, the third sub-
flow, which is not associated to the decoherence rates, is
the dominant one. We have shown that all three types of
subflows can take positive or negative values, contributing
to the increase or decrease of the information about the pa-
rameter in the open system. The subflow corresponding to
the negative decoherence rate T2 is the one to be associated
to non-Markovianity measured with the canonical measure
f (t ) = |γ2(t )|. T2 distinguishes by a strong oscillating charac-
ter when f (t ) has large values, acquiring large negative values
when non-Markovianity is diminished. On the other hand,
in this specific case, the positive decoherence rate γ1(t ) =
|γ2(t )| = f (t ). The subflow T1 corresponding to γ1(t ) appears
to take large positive values when γ1(t ) reaches maxima,
and large negative values when γ1(t ) has low values. There-
fore, the information on the parameter Pg quantified by FPg (t )
can be increased (or decreased) not only by the dynamics
corresponding to γ2 < 0 (usually associated to information
backflow from the environment to the system), but also during
the dynamics corresponding to γ1 > 0. The fundamental rea-
son is that the information about Pg is structurally contained in
the electronic open system, the vibrational environment (see
Sec. IV C 1), and in their correlations (coherence, entangle-
ment), being continuously circulated between them during the
dynamics.

V. CONCLUSIONS

We have analyzed the dynamics of the QFI Fθ (t ) for a
two-dimensional open quantum system which obeys a time-
local non-Markovian master equation in the canonical form
[37], characterized by decoherence rates γi(θ, t ), and opera-
tors H (θ, t ), Ai(θ, t ), that depend on the parameter θ to be
estimated. The dependence of the dynamics on the parameter
brings an extended framework, beyond the conditions on the
time-local master equation [36] implied in the approach to
the QFI flow employed in Ref. [31]. In the present case, the
information about θ is structurally encoded not only “inside”
the open system, but also “outside,” in the environment and
its interaction or/and correlations with the open system. As
the dynamical map defining the time evolution of the open
system is dependent on the parameter θ , the QFI Fθ (t ) may
increase also in Markovian dynamics.
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In this extended framework, we have explored the new de-
composition of the QFI flow into subflows, and their structural
relations to the open system dynamics. The non-Markovianity
of the open system dynamics was characterized using the
canonical measure f (θ, t ), defined from the occurrence of
negative decoherence rates γi(θ, t ) < 0 in the canonical mas-
ter equation. Because the decoherence rates depend on the
parameter, the canonical measure of non-Markovianity f (θ, t )
is a function of θ , and therefore it has an underlying connec-
tion with the QFI flow dFθ /dt .

In Sec. II we have derived analytic formulas expressing the
time evolution of the system’s purity (dP/dt) and of the QFI
flow (dFθ /dt), in terms associated to the decoherence rates,
in a general case, in which the decoherence operators may be
non-Hermitian, and the generator of the master equation may
be nonunital. The decomposition of dP/dt allows to distin-
guish the various contributions to the purity dynamics, for
example, those coming from nonunital dynamics, and from
the sum of the decoherence rates. In contrast to the results of
Ref. [31], we have shown that the QFI flow dFθ /dt contains
not only the subflows associated to the decoherence rates,
but also supplementary terms coming from the dependence of
the quantum state on the parameter θ . Moreover, the signs of
the QFI subflows associated to the decoherence rates cannot
be correlated to the signs of the decoherence rates, as it is the
case in the decomposition obtained in Ref. [31].

These analytic results were employed to explore the QFI
flow and subflows in two cases of open system dynamics: (i)
The Markovian nonunital evolution of a qubit under the GAD
channel, characterized by a master equation with decoherence
rates that depend on the estimated parameter, and then a dy-
namical map which depends on the estimated parameter. This
is a paradigmatic case of Markovian dynamics that can lead
to the increase of the QFI. (ii) The non-Markovian evolution
of the electronic subsystem in a molecule, as an open system
entangled with the vibrational environment. We shall briefly
present the main results obtained in these cases.

Section III explored the dynamics of the QFI Fp associ-
ated with the parameter p related to the bath temperature,
in the Markovian nonunital evolution of a qubit under the
GAD channel, for three initial states of the qubit. For all
initial states considered, the QFI flow dFp/dt associated with
the estimation of p is positive, showing that the precision
of the estimation increases with the interaction time. The
QFI growth during the GAD Markovian time evolution is
the consequence of the fact that the CPTP map depends on
p, a parameter which characterizes the interaction between
the qubit and the thermal bath. The qubit acts as a quantum
probe which extracts information about the environment, this
being its role in qubit thermometry [46,47,62]. The GAD
channel is particularly relevant for the decompositions of
dP/dt and dFp/dt into subflows associated to the decoher-
ence rates because the subflows have clear meanings related to
the change of information between the qubit and the thermal
bath. The two decoherence rates are proportional to p and
1 − p, respectively, the probabilities of the opposite processes
in which the qubit exchanges energy with the bath. dP/dt
and dFp/dt can both be written as sum of two subflows
proportional to p and 1 − p, while p is also the parameter
to be estimated. Consequently, the subflows have an infor-

mational content directly related to the estimated parameter
p, and this content is reflected in their signs during the time
evolution.

In Sec. IV we have examined the QFI flow and its sub-
flows in the non-Markovian evolution of a two-dimensional
electronic subsystem in the vibrational environment of a
molecule described in the bipartite Hilbert space H =
Hel

⊗
Hvib. In this specific case, the electronic open system

and the vibrational environment are entangled, and their cor-
relations are manifested in various dynamic quantities, such
as the electronic coherence C(t ), the electronic purity, and
the linear entropy of the electronic-vibrational entanglement
L(t ). The parameter Pg is the electronic population in one of
the two populated electronic states (Pg + Pe = 1). Pg charac-
terizes the electronic reduced state ρel(t ), but the information
about Pg is also encoded in the vibrational environment, and
in the correlations between system and environment [coher-
ences, linear entropy of the entanglement L(t )], through the
amplitudes defining the vibronic coherences. ρel(t ) obeys a
time-local non-Markovian master equation, with two time-
dependent canonical decoherence rates, one positive, the other
negative [γ1(t ) = −γ2(t ) > 0]. The decoherence rates and
operators appearing in the electronic non-Markovian master
equation are functions of the electronic coherence C(t ), and
therefore depend on the parameter Pg. We have shown that the
decomposition of dP/dt (electronic system’s purity) appears
as the sum of two subflows, one negative, corresponding to
the positive decoherence rate, and one positive, corresponding
to the negative decoherence rate, being significantly related
to the non-Markovian behavior. The QFI flow dFPg/dt is a
sum of three subflows, two of them being associated to the
positive and negative decoherence rates. The time behavior of
the QFI flow dFPg/dt , and its decomposition into subflows,
were observed in a numerical simulation of the vibrational
dynamics, relying on a specific molecular preparation in Cs2.
We have examined the QFI flow dFPg/dt in relation to the
non-Markovian behavior measured by the canonical measure
f (t ) = |γ2(t )|, showing that dFPg/dt becomes positive when
f (t ) increases. The connection between dFPg/dt and f (t ) is
rooted in the time behavior of the electronic coherence, which
is a reference quantity in defining the correlations between
the electronic open system and its vibrational environment.
All the three QFI subflows oscillate becoming positive and
negative during the dynamics, showing different sources able
to increase or decrease the information on the parameter Pg

quantified by FPg . In the example illustrated by numerical
results, the time behaviors of all QFI subflows are correlated
to the non-Markovianity measure f (t ), but they can be easily
differentiated, showing that they originate in distinct physical
mechanisms. For example, the subflow T1(t ) associated to
γ1(t ) > 0 becomes positive for large values of γ1(t ) and neg-
ative when γ1(t ) has low values; the non-Markovian subflow
T2(t ) associated to γ2(t ) < 0 shows a very oscillating behavior
when f (t ) reaches large values, and becomes negative when
non-Markovianity is diminished; the subflow T3(t ) is the dom-
inant one in the QFI flow, dFPg/dt ≈ T3.

These results allow some general observations. In the
framework proposed in this work, the information about the
parameter θ is encoded in the open system, environment, and
their interaction or/and correlations, being carried by the open
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system dynamics. The dynamics of the QFI Fθ and its sub-
flows reflect this sharing of information about θ , between an
open system and an environment, which have θ as a common
reference parameter. Therefore, specific mechanisms may
increase or decrease the QFI flow and subflows in Markovian
and non-Markovian dynamics. In the two specific examples
treated here, the Markovian dynamics of a quantum probe, and
the non-Markovian dynamics of an open system entangled
with its environment, we have disclosed these mechanisms by
relating the informational contents of the QFI flow and sub-
flows to basic dynamic quantities and processes underlying
the open system dynamics.

Let us highlight the reasons indicating that, in this case, the
canonical measures of non-Markovianity provide a pertinent
framework in addressing the connection between the QFI flow
dFθ /dt and non-Markovianity. One reason is that the canon-
ical measure f (θ, t ), defined from the negative decoherence
rates, depends on the parameter θ and, therefore, the QFI
flow dFθ /dt is structurally related to the non-Markovianity
measure f (θ, t ). On the other hand, this framework allows to
interrogate further the decomposition of the QFI flow into sub-
flows associated with the decoherence rates. In Ref. [31] this
decomposition disclosed a remarkable connection of the QFI
subflows with non-Markovianity, as the positive QFI subflows
were exclusively associated to the negative decoherence rates,
and then to the information backflow from the environment to
the open system. Here we have shown that the flow dFθ /dt
is composed of three types of subflows: subflows associated
with positive and negative decoherence rates, and a third type
coming through ∂ρ/∂θ . The part of the QFI flow related to
non-Markovianity is the “non-Markovian QFI subflow” as-
sociated to the negative decoherence rates γi < 0. All these
types of QFI subflows can become positive or negative during

the time evolution of the open system, increasing or diminish-
ing the information about θ present in the system at a certain
instant. One may consider a quantifier of “the information
about θ entering in the system,” defined from the positive parts
of the QFI flow dFθ /dt :∫

dFθ /dt ′>0

dFθ

dt ′ dt ′. (103)

We have shown that all the QFI subflows may contribute to
this quantifier; inside this total quantifier one can distinguish
the non-Markovian contribution, coming from the positive
parts of the non-Markovian QFI subflow.

Aside from their signs, the QFI subflows are enlightening
because they differentiate the various sources of the informa-
tion flow about the parameter. The non-Markovian example
given here shows that, even if all the subflows can become
positive and negative, they keep distinct temporal behaviors,
reflecting their different physical origins.

We hope that this work will contribute in understanding the
informational dynamics in cases where the dynamical relation
between the open system and environment is mediated by
a common parameter. This insight may be useful in cases
when the open systems are used as quantum probes [63], or
in metrological schemes “beyond the Cramér-Rao theorem,”
where there is a dependence of the measurement strategy on
the parameter [43].
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