
PHYSICAL REVIEW A 106, 042203 (2022)

Simulating spin measurement with a finite heat bath model for the environment
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Spin measurement is studied as a unitary time evolution of the spin coupled to an environment representing
the meter and the apparatus. Modeling the environment as a heat bath comprising only a finite number of boson
modes and represented in a basis of coherent states, following the Davydov ansatz, it can be fully included in
the quantum time evolution of the total system. We perform numerical simulations of projective measurements
of the polarization, with the spins prepared initially in a neutral pure state. The likewise pure initial state of the
environment is constructed as a product of coherent states of the boson modes with a random distribution of
their centroids around the origin of phase space. Switching the self-energy of the spin and the coupling to the
heat bath on and off by a time-dependent modulation, we observe the outcome of the measurement in terms
of the long-time behavior of the spin. Interacting with the heat bath, the spins get entangled with it and lose
coherence, thus reproducing the collapse of the wave function. The expected quantum randomness in the final
state is manifest in our simulations as a tendency of the spin to approach either one of the two eigenstates of the
measured spin operator, recovering an almost pure state. The unitary time evolution allows us to reproducibly
relate these random final states to the respective initial states of the environment and to monitor the exchange of
information between the two subsystems in terms of their purity and mutual entropy.
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I. INTRODUCTION

Since the Copenhagen interpretation, measurement has
played a special role in quantum mechanics. It is indispens-
able as a link to macroscopic classical processes, but for this
reason does not fit seamlessly in the formal framework of
quantum mechanics proper. The Copenhagen interpretation
postulates in particular the collapse of the wave function as an
irreversible discontinuous jump from coherent superpositions
to alternative classical facts. This ambiguous function has
elicited a debate on all aspects of quantum measurement that
continues today [1].

The first systematic mathematical account of observation
in quantum mechanics, owed to von Neumann [2], lists a
sequence of steps that are essential for what is called a projec-
tive quantum measurement. Two of them appear incompatible
with the unitary time evolution generated by the Schrödinger
equation: (i) the reduction of the density operator of the mea-
sured system to a set of probabilities for the eigenvalues of
the measured observable to be actually observed (the “first”
collapse of the wave function) and (ii) the projection of the
state of the measured system onto that eigenstate of the mea-
sured observable corresponding to the observed eigenvalue
(sometimes referred to as the “second” collapse), to warrant
the immediate repeatability of the measurement.

Of these two steps, the first collapse could be reconciled
with the unitary framework of quantum time evolution as
a manifestation of decoherence. Adopting the microscopic
approach to decoherence and dissipation pioneered by Feyn-
man and Vernon, Jr. [3], subsequently Zurek [4,5], Joos and
Zeh [6], and others developed microscopic models for the

loss of coherence in the measured system, coupling it to
a large number of degrees of freedom of the measurement
apparatus and its environment. In this way, the collapse not
only became amenable to a detailed physical analysis, but in
particular could be resolved as a gradual process taking place
in continuous time [4,6,7]. The progress in the understanding
of quantum measurement achieved by the decoherence ap-
proach is undeniable. It is an essential step towards integrating
the measurement process in an overall unitary description.
However, to accomplish the irreversible collapse for the part
of object, it has to project out the degrees of freedom of
the apparatus and treat the measured system in a statistical
fashion, in terms of its reduced density operator evolving in
time according to master equations, Redfield equations, and
similar schemes. In this way, it foregoes access to individual
runs of the measurement and obviously to the possibility of
resolving any internal structures of the macroscopic appa-
ratus. Evidently, the second collapse is out of reach for the
decoherence approach.

An explicit unitary account of the entire measurement
setup seems unfeasible, either, because in order to reach full
decoherence in the first collapse it is necessary to let the
number N of modes of the environment approach infinity.
There are other, subtler but no less cogent, arguments against
a unitary treatment, one of them asserting that the second
collapse is incompatible with the principle of coherent su-
perposition, unconditionally valid in a unitary framework [8].
We here explore a hybrid perspective that attempts to take
advantage of the virtues of a unitary treatment, but surmounts
its main deficiency, the inability to reproduce the first col-
lapse. As a decisive improvement, we combine the unitary
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approach with a method recently proposed for quantum optics,
quantum chemistry, mesoscopic physics, and related fields:
The finite heat bath method [9,10] has been introduced as
an alternative, in particular in numerical simulations, to the
traditional modeling of decoherence and dissipation based
on the incoherent dynamics of the reduced density operator
of the central system. Instead, it takes all the modes of the
heat bath explicitly into account, restricting their number to a
large but finite value N � 1. A system with a dense but still
discrete spectrum evolving unitarily should invariably show
revivals of coherence on long time scales. Indeed, a detailed
model of a quantum optical high-Q cavity coupled to another
cavity playing the role of the environment [11] suggests that
an apparent decoherence of Schrödinger cats in the first cavity
is followed by sharp revivals on longer time scales.

Yet numerical experiments with finite heat baths [9,10]
provided ample evidence that even with moderate values of
N systems converge to full decoherence on all practically
relevant time scales. Applying the finite heat bath method to
quantum measurement not only allows us to reproduce the
collapse, but to accomplish much more: We can define all
details of the initial states of the measured object and the
environment for each run and calculate the time evolution
of the entire system reproducibly for each initial condition
through the full measurement process. This permits us, for
example, to simulate measurements with linear superpositions
of particular initial states of the environment and thus to check
the superposition argument experimentally. The fact that in a
closed system the total quantum entropy is conserved [12,13]
opens the possibility to compare the entropy balances of mea-
surement object and environment and to monitor the sharing
and exchange of information between them. Surprisingly, we
are even able to reproduce essential features of the second
collapse.

In this paper, we work out our approach for the case of
spin measurement. Determining the polarization of spin-1/2
particles is a prototypical instance of quantum measurement
[14]. It combines simplicity with exceptional accessibility
to analytical calculations. In particular, spin measurement is
a paradigm of quantum randomness. Our approach results
in a kind of spin-boson model with a finite number of bo-
son modes, which we use as a starting point for extensive
numerical simulations of spin measurements. We focus on
measurements of σ̂z on spins prepared in an eigenstate of σ̂x

with random initial conditions of the apparatus and analyze
the statistics of the states approached for long times. The most
important result is that the spins, after losing all coherence,
recover nearly pure states again. However, instead of the dis-
crete alternative, spin up or down, expected for a projective
measurement, we find a continuous bimodal distribution, but
with a preference for the two extremes. The random scattering
of the individual outcomes can be traced back to the random-
ness of the initial states of the environment.

We construct our model, discuss its symmetries, and com-
pare it with other categories within the broad variety of
spin-boson models in Sec. II A. Of vital importance for our
approach is the precise modeling of the spectrum of the boson
sector, a crucial factor for the dynamical behavior of the spin,
detailed in Sec. II B. Section III is dedicated to our numer-
ical experiments. We explain their protocol in Sec. III A, in

particular the preparation of the initial states of spin and heat
bath, a decisive issue for our approach (Sec. III B). The results
of the simulations are then presented in Sec. III C, focusing on
the time evolution of the spin and the character and statistics
of its long-time behavior (Sec. III C 1), the interchange of
information between spin and environment in the course of the
measurement (Sec. III C 2), and special situations that arise
if the spin is already prepared in an eigenstate of the mea-
sured observable or in repeated measurements (Sec. III C 3).
In Sec. III C 4, we address simulations of measurements with
the environment prepared in linear superpositions of specific
initial states, a key issue in the debate on the unitary approach
to quantum measurement. We conclude in Sec. IV with a
summary of what we have achieved with a unitary approach to
spin measurement combined with the finite heat bath method,
and an outlook to pertinent issues left open.

II. MODELING SPIN MEASUREMENT
WITH FINITE HEAT BATHS

A. Constructing the model

Most of the literature on quantum measurement assumes a
partition of the total setup into three principal components, the
measured object (“O”); the apparatus or meter (“M”), possibly
still of microscopic nature, that directly couples to and gets
entangled with the object; and a macroscopic part, the envi-
ronment (“E”), that converts the quantum information on the
object shared by the meter into classically observable facts,
inducing a loss of coherence in the object and meter [15]. This
tripartite structure would correspond to a Hamiltonian for the
entire system comprising five terms, the self-energies of the
three components and the couplings between object and meter
and between meter and environment:

Ĥ = ĤO + ĤOM + ĤM + ĤME + ĤE. (1)

For the objectives of the present paper, the internal structure
of the meter and the coherent process of its entanglement with
the object are not of primary importance. In order to sim-
plify the model as far as possible, we therefore merge meter
and environment, reducing the number of components to two
and the Hamiltonian to three terms, the self-energies of object
and environment and their coupling:

Ĥ = ĤO + ĤOE + ĤE. (2)

We assume a standard energy splitting h̄ω0 for the spin, so that

ĤO = 1
2 h̄ω0σ̂x (3)

(adopting standard notation for the Pauli operator σ̂x). In the
context of spin measurement, the self-energy term represents
the preparation of the spin in a specific initial state, prior to the
measurement proper. It is typically accomplished by aligning
the spin to a magnetic field B = BuB in the direction uB of
the intended initial polarization, here the x direction, related
to the energy splitting by h̄ω0 = μB (with μ = gsμB/2, the
magnetic moment of the spin, gs denoting the spin g factor
and μB the Bohr magneton).

We model the environment as a set of N harmonic os-
cillators with discrete frequencies ωn, n = 1, . . . , N , to be
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specified further below:

ĤE =
N∑

n=1

h̄ωn

(
â†

nân + 1

2

)
. (4)

The interaction between spin and environment, now inter-
preted as the meter, is chosen as a linear coupling between
the spin operator σ̂z and the position operators â†

n + ân of the
bath modes, with individual coupling constants gn [16]:

ĤOE =
N∑

n=1

gnσ̂z(â†
n + ân). (5)

With this choice, σ̂z assumes the role of the measured ob-
servable, so that we are modeling measurements of the z
component of the spin or its vertical polarization. It is crucial
that the spin operator in the coupling term does not coincide
with that in the self-energy (3) of the spin, otherwise the
energy splitting would impose a bias on the measurement.

The total Hamiltonian thus takes the form of a spin-boson
model:

Ĥ =1

2
h̄ω0σ̂x fO(t ) +

N∑
n=1

gnσ̂z(â†
n + ân) fOE(t )

+
N∑

n=1

h̄ωn

(
â†

nân + 1

2

)
. (6)

The time-dependent modulation functions fO(t ) and fOE(t )
allow us a more detailed modeling of the measurement pro-
tocol, for example choosing sigmoid or box-shaped profiles
to switch them on or off. A two-level atom in a high-Q mi-
crowave cavity is one of the numerous possible experimental
realizations of this model.

The spin-boson Hamiltonian is an important workhorse of
theoretical quantum optics and atomic physics and has been
intensely studied for various regimes of the boson number N .
The case N = 1, known as the quantum Rabi model [17,18],
is a standard model for light-matter interaction. Powerful ap-
proximations such as the rotating-wave approximation [19]
allow us to explore the Rabi model in wide parameter regimes.
Even without such approximations, the spectrum can be
solved analytically [20,21]. In the opposite limit N → ∞, the
spin-boson Hamiltonian is a prototype of dissipative two-state
systems. Its long-time behavior is known for various types of
the heat bath spectrum [22]. The regime of moderate values
of N addressed here, on the other hand, is hardly explored
till now. As we are interested in coming close to “genuine”
decoherence as in systems with continuous spectra, however,
the limit N → ∞ is a pertinent reference and benchmark
for us.

An important feature of the Hamiltonian (6) is its invari-
ance under the reflection (parity) Pz : z → −z. The inversion
operators �̂z,O = σ̂x for the spin and �̂z,E = exp(iπ

∑
n â†

nân)
[23] for the operators of the bath combine to a total parity
operator:

�̂z = �̂z,O�̂z,E = σ̂x exp

(
iπ

∑
n

â†
nân

)
. (7)

The invariance �̂†
z Ĥ�̂z = Ĥ of the total Hamiltonian is read-

ily verified. With this symmetry, the Hilbert space H of the
total system decomposes into two eigensubspaces of �̂z:

H = H+ ⊕ H−. (8)

The Hilbert spaces of spin and bath, in turn, decompose each
into their even and odd subspaces HO+, HO− and HE+, HE−,
respectively, under Pz: For the spin, they are spanned by the
eigenstates of σ̂z, σ̂z|z±〉 = ±|z±〉, and for each bath mode by
its even and odd energy eigenstates, respectively. In this way,
the even (symmetric) and odd (antisymmetric) subspaces of
H can be broken down further into

H+ = HO+ ⊗ HE+ ⊕ HO− ⊗ HE,−,

H− = HO+ ⊗ HE− ⊕ HO− ⊗ HE+.
(9)

This symmetry has crucial consequences for spin measure-
ment: If the initial state of the total system belongs to one
of the invariant subspaces H+ or H−, it can evolve under Ĥ
only into states of the same symmetry class with respect to Pz.
If, in addition, the spin is prepared before the measurement
in a pure state with 〈σ̂z〉 = 0, for example an eigenstate of
σ̂x or σ̂y, it is itself symmetric under Pz and belongs to HO,+
or HO,−. In order that after the measurement the spin exits
as a polarized state, in particular as |z+〉 or |z−〉, the total
initial state must not have been an element of H+ ⊕ H−. This
is only possible if the initial state of the bath, in turn, had
violated Pz. A numerical example of this conditionality, in the
strong-coupling regime g1/ω0 � 1 of the Rabi model (N = 1)
[17], is given in Fig. 1. From the point of view of invariance
under Pz, a symmetry breaking by the initial condition of
meter and apparatus is therefore a necessary condition for
a definite outcome of the measurement, spin up or down, if
the initial state of the spin itself does not have such a bias.
Since the invariant subspaces HO,+ and HO,− are of measure
zero within HO, an initial state of the bath, chosen at random,
will break the symmetry anyway with probability 1. This is
the most relevant situation for quantum randomness and most
challenging for our approach; we shall therefore focus our
simulations on the particular case of the spin being prepared in
a symmetric initial state, while the initial condition of the bath
is defined by a probability distribution that is symmetric on
average, but can break the symmetry by random fluctuations
of the modes composing it. For the same reason, we abstain
from considering random initial conditions also for the spin,
as they would arise in a traditional Stern-Gerlach experiment
[24,25].

B. Spectrum of the heat bath

For models of dissipation and decoherence with continuous
spectra of the heat bath, the spectral distribution is a crucial
ingredient. It determines the influence of the bath on the
central system and thus, for example, which type of damp-
ing it induces (Ohmic, sub-Ohmic, or super-Ohmic [22]). In
our case of a discrete spectrum with a large number of fre-
quencies, it is appropriate to define the frequencies in terms
of a continuous spectral distribution, adopting the types of
spectra common in continuous models, and then to discretize
it in a suitable manner. The fundamental quantity defining
the spectral distribution is the frequency density ρω(ω), for
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FIG. 1. Simulation of spin measurements under well-defined
symmetry conditions concerning the parity Pz : z → −z, Eq. (7).
Panels show the time evolution of the components ax (blue), ay

(green dotted), and az (red dashed), of the measured spin, pre-
pared initially in the symmetric state |ψO(0)〉 = |+x〉 (element of
the symmetric subspace HO+), as functions of scaled time ω1t un-
der the Hamiltonian (6) with a single boson mode, N = 1 (Rabi
model), with particular initial states of the harmonic oscillator as
follows: (a) ground state |01〉, (b) superposition of even Fock states
|(2n)1〉 where n ∈ Z (elements of the symmetric subspace HE+),
(c) superposition of odd Fock states |2(n + 1)1〉 (elements of the
antisymmetric subspace HE−), and (d) superposition of even and odd
Fock states (no specific parity). Parameter values are ω0/ω1 = 4 and
g1/ω0 = 2.

a discrete spectrum given by

ρf (ω) =
∑

n
ω�ωn�ω+dω

δ(ω − ωn). (10)

Where it is adequate to determine the spectrum directly in
terms of the frequency density, a desired distribution can be
achieved by fixing the level separations accordingly [26]. In
our case, the impact of the environment on the measured
object is given by the interaction term, Eq. (5), and depends
as much on the coupling constants gn as on the spectrum of
the environment itself. In this case, it is more appropriate to
define the spectrum in terms of the spectral density [22,27]:

J (ω) = π
∑

n

g2
nδ(ω − ωn). (11)

Instead of modulating the level spacings, a desired spectral
density J (ω) can now be achieved by modulating the coupling
constants accordingly, while the frequency density can be any
convenient normalized function,

∫ ∞
0 dω ρf (ω) = 1 [27].

A standard form of the spectral density for continuous
spectra combines an algebraic increase ∼ωs for low frequen-
cies with an exponential high-frequency cutoff at ωc [22,27]:

J (ω) = 2πα ω1−s
c ωse−ω/ωc . (12)

The Kondo parameter α is a dimensionless global measure
of the system-environment coupling. Spectra are classified
according to the exponent s as sub-Ohmic (s < 1), Ohmic
(s = 1), or super-Ohmic (s > 1). To our best knowledge, es-
tablished models for the environment or the apparatus in the
context of quantum measurement, with specific physically
plausible assumptions for the spectral density, do not exist.
In this paper, we therefore vary s as well as α to identify
parameter regimes that appear suitable for a realistic account
of spin measurement. In our numerical experiments, we adopt
the discretization scheme outlined in Eqs. (11) and (12) with
appropriate finite values N ∈ N of the total number of boson
modes; see Sec. III C 1.

III. NUMERICAL EXPERIMENTS

A. Methods

Simulating the time evolution of the spin-boson system
requires us to solve the time-dependent Schrödinger equa-
tion with the Hamiltonian (6). A straightforward approach
would be representing this Hamiltonian in the direct product
basis of energy eigenstates |σx〉

⊗N
n=1 | jn〉, where jn ∈ N0, of

spin and bath modes,

ĤO|σx〉 = σx

2
h̄ω0|σx〉, σx = ±1,

ĤE

N⊗
n=1

| jn〉 =
N∑

n′=1

(
jn′ + 1

2

)
h̄ωn′

N⊗
n=1

| jn〉, (13)

diagonalizing Ĥ in this basis, and propagating arbitrary initial
states in the basis of its eigenstates. However, the exponen-
tial increase with the number of bath modes of the memory
space required to accommodate the Hamiltonian matrix is
prohibitive.

A more promising approach is to start from a basis for the
bath modes adapted to the problem, according to the following
criteria: Basis states (i) are readily accessible, (ii) are at least
not too different from the expected eigenstates of the Hamil-
tonian, (iii) are close to or coincide with the intended initial
states of the simulations, and (iv) evolve in time in a way that
is relatively easy to compute. In the case of the spin-boson
model, it is in particular coherent states of the bath oscillators
that meet these conditions. For a single harmonic oscillator
with ground state |0〉, a general coherent state is defined as

|γ 〉 = D̂(γ )|0〉, (14)

where

D̂(γ ) = exp(γ â† − γ ∗â) (15)

is a displacement operator, and the complex parameter
γ = √

mω/2h̄[q + (ip/mω)] determines the phase-space co-
ordinates r = (p, q) of the centroid of the coherent state.

Since the overlap of two coherent states |γ 〉, |γ ′〉,
|〈γ |γ ′〉|2 = exp(−|γ ′ − γ |2), (16)

is always positive, they cannot form an orthonormal basis.
However, discrete subsets of the continuous family of coher-
ent states can be overcomplete as well as incomplete. Placing
the centroids on a square grid such that each cell occupies
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exactly a Planck cell in phase space, forming a von Neu-
mann lattice, results in an exactly complete basis [2,28,29].
In order to apply coherent states to the integration of the time-
dependent Schrödinger equation, a time-dependent position of
their centroids is readily introduced as

|γ (t )〉 = D̂[γ (t )]|0〉,
D̂

(
γ (t )

) = exp[γ (t )â† − γ ∗(t )â],

γ (t ) =
√

mω/2h̄[q(t ) + ip(t )/mω]. (17)

We here adopt an implementation of the approximate so-
lution of the time-dependent Schrödinger equation based on
coherent states, the Davydov ansatz [30–33], that is partic-
ularly suited for our purposes. It introduces time-dependent
expansion coefficients for the coherent states representing the
bath modes as well as for the basis states of the central system,
i.e., here, the spin:

|�D2(t )〉 = [C+(t )|+〉 + C−(t )|−〉]|γ (t )〉,

|γ (t )〉 =
N⊗

n=1

|γn(t )〉, (18)

with |γn(t )〉 defined as in Eq. (17). In this form, it is known as
the D2 ansatz. Variations and refinements are possible [34];
for example, different coherent-state parameters γ +

n (t ) and
γ −

n (t ) can be assumed for the two spin terms in Eq. (18) (the
so-called D1 ansatz). Since the convergence towards stable
long-time states depends sensitively on the number of nearly
orthogonal coherent states included in the Davydov ansatz,
we increase their quantity by a computationally cost-efficient
enhancement of Eq. (18), known as a multimode ansatz:

|�D2(t )〉 =
M∑

m=1

[Cm+(t )|+〉 + Cm−(t )|−〉]|γm(t )〉,

|γm(t )〉 =
N⊗

n=1

|γmn(t )〉. (19)

It introduces independent amplitudes Cm±(t ) of the spin
states for each one of a set of M configurations |γm(0)〉,
m = 1, . . . , M, of the N coherent states of the boson modes.
Distinct initial conditions |γm(0)〉 are generated, for example,
by shifting a given set of coherent states, say |γ1(0)〉, rigidly
in different directions in their 2N-dimensional common phase
space. For M > 1, Eq. (19) implies substantial entanglement
of object and environment. In order to make sure that the two
subsystems nevertheless be uncorrelated before the measure-
ment [see Eq. (21) below], we have to choose the initial values
of the amplitudes Cm±(t ) accordingly, for example as

Cm±(0) =
{

C1±(0) �= 0 m = 1,

0 m �= 1.
(20)

Equation (19) already supposes implicitly that each bath
oscillator is initiated in a single coherent state |γmn(0)〉 =
D̂[γmn(0)]|0n〉. This assumption is not only physically plau-
sible, it is in particular an enormous advantage for the further
integration process. Substituted in the Schrödinger equation,
Eq. (19) leads to evolution equations for the functions γmn(t ),

which in turn take the form of Lagrangian equations of motion
and can be solved with corresponding numerical methods [9].

Since coherent states are not eigenstates of the spin-boson
Hamiltonian, they will not remain coherent states under the
time evolution and in particular lose their minimum un-
certainty property. This is taken into account by including
additional coherent states in the time evolution as required,
selected from a set of initially unoccupied coherent states
located on von Neumann lattices around the initially occupied
states D̂[γmn(0)]|0n〉. Inversely, coherent states can approach
one another so closely that they become nearly degenerate.
This is avoided by eliminating one state of such a pair, a
programed removal known as apoptosis [35].

B. Initial conditions

For the present paper it is essential to construct the initial
state of the entire system in such a way that it represents most
faithfully the conditions of a typical spin measurement. We
here adopt the conventional scheme of measurements result-
ing in a projection of the state of the measured system onto
the eigenspaces of the measured observable. Within a general
formalism of quantum measurement, our model therefore be-
longs to the category of projective measurements [36]. In most
of the literature on the subject, it is assumed that sufficiently
far before the measurement measured object and apparatus are
independent systems, i.e., the total state factorizes into two
pure states:

ρ̂(0) = |�(0)〉〈�(0)|, |�(0)〉 = |ψO(0)〉|ψE(0)〉. (21)

As we are modeling observations of σ̂z, in order to exclude
an initial bias of the measurement, we have to choose |ψO(0)〉
such that it is symmetric with respect to the parity Pz : z →
−z, i.e., located at the equator of the Bloch sphere. Eigenstates
of σ̂x and σ̂y,

|ψO(0)〉 = |±x〉, σ̂x|±x〉 = ±|±x〉 (22)

(likewise for σ̂y), or linear combinations thereof meet this
condition. For complementary simulations (see Sec. III C 3),
we shall exceptionally prepare the spin also in eigenstates
of σ̂z.

The initial condition of the environment, uncorrelated with
the central system and in a pure state not imposing a system-
atic bias on the measurement outcome either, should reflect
the random character of the uncontrolled degrees of freedom
of the apparatus. In addition, it is restricted by the rather
specific structure (18) implied by the Davydov ansatz, that is,
it should take the form of a product of coherent states |γn〉 of
the individual harmonic oscillators:

ρ̂E(0) = |ψE(0)〉〈ψE(0)|, |ψE(0)〉 =
N⊗

n=1

|γn(0)〉. (23)

The simplest option, preparing all the bath modes in their
ground state, i.e., |γn(0)〉 = |0n〉, n = 1, . . . , N , owing to
the symmetry of the Hamiltonian, could never result in any
nonzero final polarization of spins that have been initiated
likewise in a neutral state such as (21). In the present context,
it is essential to introduce a random component by an initial
displacement of the coherent states. How to define the initial
distribution p(γn, γ

∗
n ) of their centroids appropriately, at the
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(a) (b)

(d) (e)

(c)

(f)

FIG. 2. Examples of random ensembles of initial coherent states of heat bath modes, distributed according to Eqs. (24) (a–c) and (28) (d–f).
Blue dots mark the centroids of 150 coherent states in dimensionless phase-space coordinates Re(γ ) = √

mω/2h̄ q and Im(γ ) = p/
√

2h̄mω.
Parameter values are kBT = 0.2 h̄ω0 and ωc = 2ω0.

present exploratory stage, is largely a matter of trial and error,
guided by physical intuition. The most obvious choice is se-
lecting them according to a Gaussian distribution centered at
the origin in phase space:

p(γn, γ
∗
n ) = 1√

2πs
exp

(
−|γn|2

2s2

)
. (24)

If we define the variance s2 as a dimensionless temperature in
units of a photon energy h̄ω, s2 = kBT/2h̄ω, we can interpret
Eq. (24) as a thermal distribution of bosons, inspired by the
Glauber-Sudarshan or P function [19,37]. It is related to the
density operator as

ρ̂ =
∫

d2γ P(γ , γ ∗) |γ 〉〈γ | (25)

and for a thermal state reads

P(γ , γ ∗) = 1

π〈n〉 exp

(
−|γ |2

〈n〉
)

. (26)

With the high-temperature approximation of the mean photon
number 〈n〉 = 1/(eh̄ω/kBT − 1) → kBT/h̄ω for kBT � h̄ω, it
takes a form resembling Eq. (24):

P(γ , γ ∗) = h̄ω

πkBT
exp

(
− h̄ω|γ |2

kBT

)
. (27)

A first survey of simulated spin measurements revealed how-
ever that with a simple Gaussian distribution of initial states
as in Eq. (24) the expected convergence of the spin towards a

stable long-time asymptote is very fragile. A plausible expla-
nation is that a “democratic” distribution treating all modes on
the same footing ignores the dominating role of the low-lying
modes for the time evolution on long time scales. In order
to give these modes the appropriate weight in the ensemble, it
suggests itself to replace the photon frequency ω, representing
collectively all modes in the P functions (26),(27), by the
proper frequency ωn of each mode:

P(γn, γ
∗
n ) = eh̄ωn/kBT − 1

π
exp[−(eh̄ωn/kBT − 1)|γn|2]. (28)

In Fig. 2, we compare examples of the initial displace-
ments of ensembles of N = 150 coherent states as scatter
plots of their centroids in dimensionless phase-space coor-
dinates (Re γn, Im γn), generated according to the Gaussian
distribution, Eq. (24) [Figs. 2(a)–2(c)], and to the modified
distribution, Eq. (28) [Figs. 2(d)–2(f)]. It is evident that the
Gaussian ensembles are more compact, while with the mod-
ified distribution extreme outliers, contributed predominantly
by the low-lying slow modes, are significantly more frequent.
It is these outliers which increase the tendency of the mea-
sured spin to converge towards eigenstates of σ̂z.

The initial conditions defined by Eq. (28) may appear as a
particular, overly restrictive choice. Yet, in the wider frame-
work of the multimode Davydov ansatz (19), they are even
closed under coherent superposition and thus include super-
positions of initial states of the environment, considered as a
challenge for the unitary approach [8]. We are confident that
Eq. (28) represents typical states of measuring apparatuses as
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(c)(a) (b)

(d) (f)(e)

FIG. 3. Simulation of measurements of the polarization of the spin, with unbiased initial state |ψO(0)〉 = | + x〉 of the spin and random
initial conditions of meter and environment, Eqs. (25)–(27), modeled by the Hamiltonian (6) with time-independent modulations fO(t ) = const
and fOE(t ) = const (see text). (a–f) The three components ax (t ) (blue), ay(t ) (green dotted), and az(t ) (red dashed) of the Bloch vector vs time
for different specific initial conditions of the environment. Time is scaled as ωct , with the cutoff frequency ωc of the heat bath spectrum [see
Eq. (12)]. Parameter values are N = 150, M = 10, α = 0.3, kBT = 0.2 h̄ω0, and ωc = 2ω0.

macroscopic many-body systems, thus granting credibility to
the general conclusions we draw in Sec. IV.

C. Results

1. Simulations of standard spin measurements
with unbiased initial state

The main part of our numerical experiments are simula-
tions of measurements of σz under conditions expected to lead
to an unbiased random outcome for the polarization. This re-
quires the spin to be prepared as in Eq. (21). Initial conditions
of the heat bath modes are selected at random according to
a modified Gaussian distribution as specified in Sec. III B,
Eq. (28), and thus are distributed in phase space as illus-
trated in Figs. 2(d)–2(f). For the present context, it suffices
to focus on values for pertinent parameters, particularly of the
coupling with the heat bath modes and their spectrum, that
appear most promising for simulations of spin measurements.
A more systematic survey of the parameter regimes of our
model is deferred to upcoming work. Some of the simulations
shown in this section have been performed with N = 150 bath
modes, a viable number that allows a sufficiently good conver-
gence of the spin state with the limited computing capacity
available to us. Complementary calculations with N = 300
modes enabled significant improvements in some cases. We
implemented the spectral density of these modes according to
Eq. (12) with s = 0.25, that is, our simulations are located in
the deep sub-Ohmic regime of the heat bath coupling. With
the stated values of the number N of boson modes, we did
not observe any symptoms of the effectively discrete spectrum
of the heat bath, such as partial or complete revivals of the
initial state, at least on the time scales over which we can trust
our numerical simulations. In this respect, our results coincide

with those of related studies based on finite heat baths; see,
e.g., Refs. [27,38,39].

We implemented different measurement protocols, defin-
ing arbitrary time-dependent modulations fO(t ) of the self-
energy and fOE(t ) of the coupling term in the Hamiltonian
(6). In the sequel, we present detailed results in particular
for two cases: (i) time-independent modulation functions, so
that preparation and measurement take place simultaneously,
and (ii) modeling a protocol where the preparation defined
by fO(t ) antecedes the measurement proper, controlled by
fOE(t ). We prepared the spin throughout in the neutral initial
state (23), that is, with ax(0) = 1 and ay(0) = az(0) = 0. As
the most specific output data, we show examples of the time
evolution of the spin, represented by the reduced density oper-
ator ¯̂ρO = trE[ρ̂] and depicted as the three components of the
Bloch vector a(t ):

¯̂ρO = a0(t )ÎO + a(t ) · σ̂,

a(t ) = (ax(t ), ay(t ), az(t )), σ̂ = (σ̂x, σ̂y, σ̂z ). (29)

Figure 3 shows a selection of examples of the time evo-
lution of the Bloch vector for constant modulation functions
and negative splitting energy h̄ω < 0, so that the initial state
of the spin coincides with its ground state. While in all cases
the x component (blue) of the Bloch vector decays from its
initial value 1 to a small residual level around 0.25 and the y
component (green dotted) fluctuates around zero, we observe
essentially three types of behavior of az(t ) (red dashed), the
measured observable: In some cases, it approaches a pos-
itive value close to 1 and localizes there [Figs. 3(a) and
3(b)], in other cases it approaches a negative value close to
−1 [Figs. 3(c) and 3(d)], and in many instances it contin-
ues fluctuating with large amplitude around zero [Figs. 3(e)
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FIG. 4. Distribution of long-time asymptotes az(t ) for t �
2π/ωc, counting only those 41 simulations among a sample of 100
runs that converge to a stable long-time average. Parameter values
are as in Fig. 3.

and 3(f)]. All kinds of intermediate behavior between these
categories occur as well. Since in most cases an asymp-
totic value of az(t ) for t → ∞ can barely be defined, a
comprehensive statistical account of these asymptotes does
not make sense. If we only count those simulations where a
long-time average of az can be read off with sufficient preci-
sion, some 40% of the total sample of 100 simulations, their
probability distribution appears nearly symmetric, showing a
preference for the eigenvalues az = −1 and 1 of σ̂z but also a
significant lower plateau between these peaks (Fig. 4).

This scenario changes drastically if we allow for nontrivial
time dependences of fO(t ) and fOE(t ). In order to simulate
a typical measurement process, we assume the following pro-
tocol: The magnitude fO(t ) of the self-energy should reflect
the preparation of the spin in the ground state of ĤO by some

experimental device. It therefore takes a positive value ini-
tially but is then switched off, as the preparation should not
interfere with the measurement proper. The coupling strength
fOE(t ), in turn, describes the interaction with, e.g., a Stern-
Gerlach magnet. Modeling the profile of the magnetic field as
felt by the spin, it rises from its initial value zero to a positive
maximum and then decays, following a smooth box function;
see Fig. 6(a).

The sample simulations presented in Fig. 5 have been
obtained for the modulation functions shown in Fig. 6(a).
With this time dependence, the Kondo parameter rises from
zero to a peak value of α = 2 at the maximum of fOE(t ), to
drop to an asymptotic α = 0, sweeping all intermediate values
during ascent and descent. As far as this dynamic behavior
can be compared with the time-independent case, we estimate
this profile of the Kondo parameter as roughly equivalent in
its effect on the spin to the constant value α = 0.3 for the
time-independent case, featured in Fig. 3. We now observe
a strong tendency of the long-time averages of the Bloch
vector to converge against either one of the poles of the Bloch
sphere [Figs. 5(a)–5(e)], approaching almost pure states close
to eigenstates of the measured operator σ̂z. Only few initial
conditions of the environment lead to persistently large fluctu-
ations of az(t ) or to stable values close to az(t ) = 0 [Fig. 5(f)].
The x and y components decay to sustainedly very low levels.
This behavior is reflected in the statistics of long-time aver-
ages of az(t ), Fig. 6(b), based on a total of 100 simulations
(in contrast to Fig. 4, no simulation has been discarded). The
peaks close to the extremes az(t ) = ±1 are now more marked;
the intermediate residual plateau is lower than in Fig. 4.

We can compare these findings, for the time-independent
as well as for the modulated version of the Hamiltonian,

(a) (b) (c)

(d) (e) (f)

FIG. 5. Simulation of measurements of the polarization of the spin, with unbiased initial state |ψO(0)〉 = | + x〉 of the spin and random
initial conditions of meter and environment, Eqs. (25)–(27), modeled by the Hamiltonian (6) with time-dependent modulations fO(t ) and fOE(t )
as shown in Fig. 6(a). (a–f) The three components ax (t ) (blue), ay(t ) (green dotted), and az(t ) (red dashed) of the Bloch vector vs time for
different specific initial conditions of the environment. Time is scaled as ωct . The number of boson modes is N = 300; the Kondo parameter α

varies with fOE(t ), reaching a maximum of α = 2. Other parameter values are as in Fig. 3.
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(a) (b)

FIG. 6. (a) Modulation functions fO(t ) (blue dashed) and fOE(t ) (red) underlying the simulations shown in Fig. 5. (b) Distribution of
long-time asymptotes az(t ) for t � 2π/ωc, based on 100 simulations. Parameter values are as in Fig. 5.

with previous studies of decoherence, based on nonunitary
evolution equations for the reduced density operator of the
spin coupled to an infinite heat bath. Analytical calculations
in the context of quantum measurement [5,40] indicate that
the spin is projected towards the z axis of the Bloch sphere,
but without any preference for its poles. Detailed studies of
the spin-boson model, using advanced numerical simulation
techniques developed for molecular and solid-state physics
[41–43], revealed a crossover from localization (attraction
towards the z axis of the Bloch sphere with nonzero polariza-
tion) to relaxation (attraction towards the origin of the Bloch
sphere, i.e., complete depolarization), depending on specific
features of the coupling to the heat bath and the nature of its
frequency spectrum: sub-Ohmic, Ohmic, or super-Ohmic. A
deeper analysis of why in our case, with a finite heat bath,
we do observe a preference for the poles will require further
research.

2. Purity, partial, and mutual entropies

The two conditions that after the measurement the environ-
ment, representing meter and apparatus in our model, bears
information on the state of the spin, and that the final state of
the spin depends in turn on the initial state of the environment,
suggest that as a consequence of their entanglement during the
measurement the two subsystems have bilaterally exchanged
information [44,45]. This process should be reflected in re-
lated quantities, in particular in their purity and their partial
and mutual entropies. With the simulations detailed above,
we also monitored the time evolution of these quantities. The
linear entropy

Slin
O (t ) = 1 − trO([ ¯̂ρO]2) (30)

of the reduced density operator ¯̂ρO = trE[ρ̂] indicates how
far the spin deviates from purity. Its entanglement with the
apparatus is quantified by the partial entropy:

SO(t ) = −trO[ ¯̂ρO(t )] ln{trO[ ¯̂ρO(t )]}. (31)

The partial entropy SE(t ) of the environment is defined analo-
gously. An equivalent measure of entanglement is the mutual
or entanglement entropy [46]:

SO∩E(t ) = SO + SE − SOE, (32)

where SOE denotes the entropy of the total system. For a
bipartite system that as a whole is in a pure state as in our

model, a Schmidt decomposition of the total state allows us to
show that the two partial entropies are identical [46,47]:

SO(t ) = SE(t ). (33)

Since in this case the entropy of the total system vanishes,
Eq. (32) implies that

SO∩E(t ) = 2SO = 2SE. (34)

In Fig. 7, we therefore compare the time evolution of the
linear entropy (red) only with that of the partial entropy SO

of the spin (blue dashed), for the two cases featured above:
the time-independent Hamiltonian as in Figs. 3(a), 3(b) 4(a),
and 4(b) and modulation of self-energy and coupling terms
according to a standard measurement protocol as in Figs. 5(c),
5(d) 6(c), and 6(d). With constant terms of the Hamiltonian,
the scenario is as varied as it was found already for the under-
lying dynamics of the Bloch vector. From their initial value
zero, the entropies rise to values close to 0.5, indicating strong
entanglement of the two subsystems, but then show a behavior
ranging from localization in almost pure states of the spin to
strong oscillations sustaining a high level of the entropies.
For a time-dependent measurement protocol, the behavior is
much less ambiguous. An initial increase of the partial en-
tropy to moderate values around 0.1 can be attributed to the
first collapse of the wave function, reflected in considerable
entanglement. Subsequently, upon switching off the coupling
with the apparatus, it settles down to values of the order of
0.01, thus returning to a nearly pure state of the spin and in
agreement with the almost complete localization of the Bloch
vector. This scenario suggests being interpreted as a round trip
from a pure initial state through an intermediate mixed phase
back to a final state where both subsystems are close to purity,
but after having exchanged considerable information between
them. Besides this main conclusion, a surprising observation
is that even after decoupling the spin from the environment in
all simulations a positive residual mutual entropy remains that
does not wane on the time scales covered, indicating that the
measured spin never gets completely disentangled from the
apparatus.

3. Redundant measurements and repeatability

Besides the common scheme of measurements of σ̂z with
initial conditions of spin and apparatus that do not impose
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(a) (c)

(b) (d)

FIG. 7. Time evolution of the partial (blue dashed) and the linear entropy (red) of the spin, with unbiased initial state |ψO(0)〉 = | + x〉
of the spin and random initial conditions of meter and environment, Eqs. (25)–(27), modeled by the Hamiltonian (6) with time-independent
modulations fO(t ) = const and fOE(t ) = const (a, b) and time-dependent modulations as shown in Fig. 6(a) (c, d). Time is scaled as ωct ;
parameter values are as in Fig. 3 (a, b) or Fig. 5 (c, d).

any systematic bias on the outcome, we also performed
simulations where, as a consistency check, the spin is al-
ready in or close to an eigenstate of the measured observable
upon entering the apparatus. The simplest instance of such
redundant measurements is the case that the spin is initially
in an eigenstate of σ̂z and is stabilized there by a self-energy
term ∼σ̂z of the corresponding sign, instead of ĤO ∼ σ̂x as in
Eq. (3). The total Hamiltonian thus takes the form

Ĥ =1

2
h̄ω0σ̂z fO(t ) +

N∑
n=1

gnσ̂z(â†
n + ân) fOE(t )

+
N∑

n=1

h̄ωn

(
â†

nân + 1

2

)
. (35)

By contrast to the spin-boson model (6), this Hamiltonian
commutes with σ̂z, so that it conserves eigenstates of this
operator. It is therefore trivially guaranteed that after the mea-
surement the spin is still in the same eigenstate where it had
been prepared.

Less obvious is the case of repeated measurements of the
same observable. According to the projective measurement
scheme, a second measurement on an object that on exit
from the first run has been in an eigenstate of the measured
observable should yield again the same eigenvalue of this
eigenstate. This postulate ensures the repeatability of quantum
measurements [36]. Within our model, we simulate repeated
measurements with the following protocol.

(1) Prepare the spin in an unbiased initial state |ψO(0)〉 =
| + x〉 and the environment in a random initial condition,
Eqs. (25)–(27), as for a common unbiased measurement.

(2) Simulate a measurement of σ̂z according to the Hamil-
tonian (6), with time-dependent modulations fO(t ) and fOE(t )
as shown in Fig. 6(a).

(3) Assuming that after the measurement the spin is already
in a state close to |−z〉 or |+z〉, renormalize the Bloch vector
a = (ax, ay, az ) to |a|2 = 1, corresponding to a pure state.

(4) Repeat the measurement of σ̂z as above, but keeping
the self-energy term (3) switched off and initiating the envi-
ronment in a new random initial condition, independent of its
final state on exit of the first measurement.

Step 3 of this protocol, purifying the spin “by hand,” may
appear as an ad hoc intervention. It can be justified heuris-
tically, however, by the fact that before this renormalization
the spin states are already very close to purity, so that the
remaining discrepancy we are removing can be attributed to
deficiencies of our model and its implementation.

In Fig. 8, we depict the time evolution of the Bloch vector
for two such repeated measurements, one where the result of
the first run has been spin down [Fig. 8(a)] and the other where
it has been spin up [Fig. 8(b)]. The principal observation in all
these simulations is that the second measurement faithfully
reproduces the result of the first one. We thus conclude that,
as concerns repeatability, our model satisfies the postulates of
projective measurement.

4. Linear superpositions of initial states

An important critical argument in the context of a unitary
approach to quantum measurement refers to its consistency
with a basic tenet of quantum mechanics, the principle of
linear superposition. In essence, in the case of spin measure-
ment, it reads as follows: Consider two initial states of the
total system of the form as in Eqs. (21),(23), which in the
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FIG. 8. Simulation of two subsequent measurements of the same observable σ̂z of the spin, with unbiased initial state |ψO(0)〉 = | + x〉 of
the spin and random initial conditions of the environment, Eqs. (25)–(27), for the first measurement. The protocol (see text) is implemented
based on the Hamiltonian (6) with time-dependent modulations fO(t ) and fOE(t ). The state of the spin after the first measurement (full lines)
is kept as entrance condition of the second measurement (dashed lines), and the environment is initiated in a new random condition; see step 4
of the protocol. The figure shows the components of the Bloch vector (color code as in Fig. 3) vs time for a first measurement resulting in the
eigenstates |−z〉 (a) and |+z〉 (b). Light blue and gray lines indicate the modulation functions fO(t ) and fOE(t ), respectively. Time is scaled as
ωct ; parameter values are as in Fig. 5.

long-time limit converge against opposite eigenstates of the
measured operator σ̂z, say

|�0−〉 = |−x〉|ψE0−〉 −−−→
t→∞ |−z〉|ψE∞−〉,

|�0+〉 = |−x〉|ψE0+〉 −−−→
t→∞ |+z〉|ψE∞+〉. (36)

Can we expect that a coherent superposition of these initial
states,

|�0(φ)〉 = cos(φ)|�0−〉 + sin(φ)|�0+〉
= |−x〉(cos(φ)|ψE0−〉 + sin(φ)|ψE0+〉), (37)

with φ ∈ [0, π/2], will also evolve towards a definite out-
come, spin up or down? The mixing angle φ parametrizes the
Hilbert space spanned by the states |�0−〉 and |�0+〉. Varying
it from φ = 0 to π/2, the state |�0(φ)〉 scans the continuous
range of initial conditions from |�0(0)〉 = |�0−〉 through the
symmetric superposition

|�0(π/4)〉 = 1√
2

(|�0−〉 + |�0+〉) (38)

through |�0(π/2)〉 = |�+〉. For the symmetric case (38), the
answer should be negative, since a definite outcome would
break the parity z → −z of that initial state.

Checking this question experimentally would not have
been possible with the simple Davydov ansatz (18), since a
linear superposition of coherent states is not a coherent state
in itself, as required for this scheme. However, the multimode
Davydov ansatz (19) is sufficiently general to include also
superpositions of pairs of initial states of the environment,
specifically those which in previous simulations have led
to opposite spin eigenstates. It only requires us to augment
the original multiplicity M of these states to 2M for their
superposition.

Figure 9(a) shows the results of such simulations, where
the mixing angle has been varied in six discrete steps between
φ = 0 and π/2, in terms of the long-time average az∞(φ) of
the z component of the Bloch vector (blue dots). As expected,
for φ = π/4 the reduced density of the spin converges to
a symmetric depolarized state with |a|2 = 0. For all biased

superpositions φ �= π/4, however, it tends to localize at states
with az∞ �= 0. In particular, the transition from az∞(0) ≈ 1
to az∞(π/2) ≈ −1 is not linear but occurs predominantly in
the range of angles close to π/4, giving strong weight to the
marginal values az∞ ≈ ±1.

If we assume an incoherent superposition of the long-
time asymptotic states of the environment, with probabilities
p(|�∞+〉) = [cos(φ)]

2
and p(|�∞−〉) = [sin(φ)]

2
, respec-

tively, we would expect a projective quantum measurement to
result in a measured polarization [red dashed line in Fig. 9(a)]:

az∞(φ) = (+1)[cos(φ)]2 + (−1)[sin(φ)]2 = cos(2φ). (39)

It is the same outcome projective measurement would predict
for initial states |�0(φ)〉 = [|+z〉 cos(φ) + |−z〉 sin(φ)]|ψE0〉
instead of Eq. (37), with unbiased random environment state
|ψE0〉. This fit allows us to estimate the probability density
distribution of az∞(φ) as

p(az∞) ∼
√

1 + 1/
(
1 − a2

z∞
)
. (40)

Comparing Eq. (40) (red dashed line) in Fig. 9(b) with the
histogram of long-time averages shown above in Fig. 6(b),
we find remarkable agreement. In this sense, our numerical
results are consistent with the principle of linear superposi-
tion. This would suggest the uncomfortable conclusion that
the nonzero probability of indefinite outcomes near az∞ =
0 is an unavoidable feature for a unitary description of
spin measurement including the object and a macroscopic
environment.

IV. CONCLUSIONS

In this paper, we explored simulations of spin measure-
ments, following a hybrid approach that combines a unitary
account of measured object and apparatus with a finite heat
bath model of the environment, thus avoiding a statistical
description of the state of the spin. Realistic measurement
protocols, separating preparation, measurement, and postmea-
surement phases, could be implemented by a time-dependent
modulation of self-energy and coupling terms in the
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(a) (b)

FIG. 9. Simulation of measurements with the environment prepared in linear superpositions, Eq. (37), of pairs of initial states that converge
to opposite outcomes, parametrized by a mixing angle φ. (a) Long-time averages az∞(φ) of the polarization for discrete values φn = nπ/12,
n = 0, . . . , 6 (blue dots), compared to the fit (39) (red dashed line). (b) Probability density, Eq. (40) (red dashed line), corresponding to the fit
(39), compared to the histogram (blue) of az∞ shown in Fig. 6(b).

Hamiltonian. With a moderate number of a few hundred boson
modes and a frequency spectrum adopting spectral densities
common in quantum optics and solid-state physics, we have
been able to approximately reproduce all essential features
of projective measurements, the initial entanglement of the
measured object with meter and apparatus leading to the (first)
collapse of the wave function as well as their subsequent
disentanglement and the approach of the spin to one of the
eigenstates of the measured observable, corresponding to the
second collapse. In the case of an unbiased initial preparation
of the spin, we could simulate the stochastic nature of this
long-time asymptote, equivalent to the result of the measure-
ment, and trace it back trial by trial to the random initial
condition of the environment that led to this outcome. More
specifically, we even found clear indications that and how the
symmetry breaking expressed in the final outcomes relates
to small fluctuations of the first moments of the cloud of
initial conditions around zero and to the individual outliers
behind these deviations. In the light of our unitary approach,
quantum randomness of the measurement thus appears as a
manifestation of the thermal randomness of a macroscopic
many-body system. In complementary simulations of iterated
measurements of the same observable, we could verify the
repeatability of the first result.

To be sure, the basic features of projective quantum mea-
surements have only been met in an approximate sense. In our
simulations, the first collapse never leads to a complete loss
of coherence, and the second collapse never leads to a perfect
restoration of a pure state of the spin. In particular, the long-
time averages of the measured observable, the polarization
of the spin, do not satisfy the exclusive discrete alternative,
either spin up or spin down with 50% probability each. Rather
they show a smooth probability distribution with a significant
residual plateau between these extremes. However, in view of
the history of the theory of quantum measurement, this atten-
uation does not come as a surprise: For example, the detailed
microscopic modeling of the first collapse [4,6,7] replaced
the discontinuous jump from a coherent superposition to an
incoherent sum, postulated by the traditional account, by a
gradual decay taking place in finite time, epitomized in the
headline “Collapse of the wavepacket: how long does it take?”
[5], and never ending in perfect decoherence.

Known analytical and numerical results for the spin-boson
model with a continuous spectrum even indicate that the spin
is completely depolarized or at most attracted to the z axis
of the Bloch sphere [7,40–43] but not to its poles. Based
on these findings, we could not expect either to find the
preference for these points in the projective Hilbert space. In
fact, our numerical simulations of the superposition argument
[8] show that the unitary approach to quantum measure-
ment is compatible with the principle of linear superposition,
if and only if we replace the exclusive alternative by a
smooth continuous distribution that includes a nonzero, if
small, probability for intermediate, in particular indefinite,
outcomes of the measurement. In addition this means that
our simulations do not generally lead to perfectly distin-
guishable, i.e., mutually orthogonal, states of a meter that
could be interpreted as readouts. In the present paper, we
adopted a radical simplification of the standard account of
quantum measurement, merging everything outside the ob-
ject proper into a gross “environment,” in order to reduce
the required numerical effort. We are confident that a re-
fined modeling, particularly treating meter and apparatus
as separate subsystems [15], and improved implementa-
tions of the numerical simulations will bring this approach
even closer to a comprehensive description of quantum
measurement.

We have not yet been able to simulate a situation that
could serve as another touchstone of a unitary account of
quantum measurement: Certain steps in the implementation
of the Davydov ansatz that involve an inherent irreversibility,
specifically the elimination of basis states in case of overlap-
ping coherent states (apoptosis [35]), prevent simulating the
measurement in inverse time, from the final outcome back to
a neutral spin state and the specific initial condition of the
environment. It is left as a task for future work.

Our numerical simulations appear to be far away from
an experimental realization. Yet this could be a realistic per-
spective. Indeed, for example, Raimond, Brune, and Haroche
[11] proposed a detailed setup of a quantum optics exper-
iment where in a pair of weakly coupled cavities, one of
them serving as a “single-mode reservoir” but forming a
closed system with the other, as in our model, decoherence
is reached on a short time scale. On a longer time scale,
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the unitary nature of their common time evolution becomes
manifest in periodic revivals. In a similar vein, it has been
demonstrated that seemingly discontinuous processes induced
by a macroscopic environment, such as quantum jumps, can
not only be monitored as gradual transitions in continuous
time but even be reversed “mid-flight” [48], thus substan-
tiating the compatibility of unitary accounts with apparent
decoherence.

With our model, we have deliberately restricted our-
selves to a setup consisting of a measurement on a single
spin only. It is tempting to speculate about a similar ac-
count of experiments with pairs of correlated two-state
systems [14], observed in measurements at spacelike sep-
arated sites, i.e., in Einstein-Podolsky-Rosen (EPR) setups:
In this context, quantum randomness is inextricably tied to
quantum nonlocality, raising additional questions concerning
a microscopic modeling of the pair of measuring appara-
tuses. Analyzing quantum randomness in EPR experiments
in a correspondingly extended model, possibly including
two separate heat baths, will be a challenge for future
research.

As concerns the environment, we adopted the conven-
tional model of a set of harmonic oscillators linearly coupled
to the central system. The way entanglement and informa-
tion are distributed in the environment and shared with the
measured object is essential for the measurement process.
Recent research indicates that closed but strongly interact-
ing, possibly chaotic, quantum many-body systems do not
only relax, but generally even approach thermal equilib-
rium [49–52]. Another question worth exploring is therefore
how far quantum chaos in the degrees of freedom of me-
ter and apparatus would affect the exchange of information
with the observed system and become manifest in the

measurement process and the quantum randomness of its
results.

The two-state system representing spins in our model can
be considered as a low-energy approximation of the infinite-
dimensional Hilbert space of a symmetric double-well system
[22]. In a recent publication closely related to our paper,
Choudhury and Grossmann [39] studied such a double-well
potential in a similar quantum-mechanical approach with a
finite heat bath as followed here. They find that the central
system, if prepared initially in a symmetric state on the top
of the barrier with the environment in the ground states of
all boson modes, does not approach either one of the two
potential minima but relaxes to its own symmetric ground
state. Simulations with the environment prepared instead in a
random initial state that could lead to a spontaneous symmetry
breaking in the long-time behavior are pending. An analo-
gous spontaneous symmetry breaking, induced by the initial
conditions of a finite heat bath, has indeed been found in a
classical-mechanics account of a quartic double well coupled
to a reservoir of harmonic oscillators [26].
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