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Nonlinear three-state quantum walks
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The dynamics of a three-state quantum walk with amplitude-dependent phase shifts is investigated. We
consider two representative inputs whose linear evolution is known to display either full dispersion of the wave
packet or intrinsic localization on the initial position. The nonlinear counterpart presents much more involved
dynamics featuring self-trapping, solitonic pulses, radiation, and chaoticlike behavior. We show that nonlinearity
leads to a metastable self-trapped wave-packet component that radiates in the long-time regime with a survival
probability ∝t−1/2. A sudden dynamical transition from such a metastable state to the point when the radiation
process is triggered is found for a set of parameters.
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I. INTRODUCTION

The crucial role of stochastic processes in physics and
computer science, added to the tremendous progress in the
field of quantum computation in recent years, have fueled
studies of quantum analogs of random walks, namely quan-
tum walks [1]. Their main advantage comes from quantum
coherence, allowing for interference effects that result in bal-
listic spreading of the walker, in contrast to the classical
diffusive spreading [2]. Over the past few decades, quantum
walks have been proved to be a valuable tool for designing
quantum search algorithms [3–7], carrying out quantum com-
munication protocols [8–10], and realizing universal quantum
computation [11,12]. They have also been particularly useful
to simulate various physical phenomena such as quantum
phase transitions [13–15], Anderson localization [16–19],
rogue waves [20], and nonlinear dynamics [21–25]. The con-
venience comes from the fact that many quantum phenomena
can be broken down in terms of an effective single-particle
dynamics. This makes optical platforms relying on coherent
light propagation suited for their implementation in various
ways [26]. In the time-multiplexing approach, for instance,
one encodes the position space of the quantum walker as the
pulse arrival times [27–29], thereby saving a lot of resources.
By making it run in a loop, it is possible to feed the next input
with previous measurements of the light intensity, allowing
for the simulation of involved nonlinear dynamics [28,29].

Nonlinear models of discrete-time quantum walks have at-
tracted a great deal of attention since more complex dynamics
can turn up out of simple rules, these being a preestablished
iterated series of quantum gates. Navarrete et al. [23] proposed
a nonlinear version of the optical Galton board in which a
Kerr-type self-phase gain was applied at each step, giving
rise to hallmarks of nonlinear behavior such as soliton col-
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lisions and chaos. Years later the same model was found to
display self-trapping for specific angles of the coin operator
[24]. Other recent studies have been focusing on issues such
as noise tolerance [25] and nonunitary transformations [22].
Another motivation to study quantum walks of that kind is
that nonlinear effects are inevitably at play in many of the
platforms designed for their implementation, such as pho-
tonic devices [30–33], Bose-Einstein condensates [34], and
trapped-ion systems [35].

Therefore, it is paramount to develop ways to handle non-
linearity in discrete-time quantum walks, and even more so in
models with additional coin degrees of freedom, not yet ex-
amined in previous works. While it has been standard practice
to consider a two-dimensional coin space, Inui et al. [36] put
forward a three-state version of the Hadamard walk in which
the walker was allowed to stay put besides going left or right,
according to its chirality. This brings about an eigenvalue
degeneracy in Fourier space [36,37] that results in an intrinsic
form of localization around the walker’s starting position. A
number of studies followed the lead to cover limit theorems
[38,39], quantum-to-classical transitions [40], circuit imple-
mentation [41], and universal dynamical scaling laws [42]. A
similar class of quantum walks in which the walker is allowed
to perform self-loops in each vertex of a graph was shown to
improve search algorithms [6,7].

Here, we set out to explore nonlinear mechanisms in three-
state quantum walks. We are primarily interested in seeing
how nonlinearity acts upon the intrinsic trapping mechanism
mentioned above [36]. We find that the localized component
displays a metastable character, escaping from its initial posi-
tion after a transient time through a radiation process, which
is discussed in detail.

II. MODEL

We consider a discrete-time quantum walk on the line
that runs the Hilbert space H = Hp ⊗ Hc, made up of po-
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sition states {|n〉} in Hp and a three-dimensional coin space
Hc spanned by {|L〉 , |S〉 , |R〉}. The evolution of the walker’s
state vector is performed via successive applications of a
unitary operator Û following |ψ (t )〉 = Û (t ) |ψ (t − 1)〉. Its
standard form reads Û = Ŝ[Ĉ ⊗ IP], where Ip is the identity
operator acting on the n-dimensional position space, Ĉ is the
coin operator responsible for generating superpositions, and
Ŝ is the conditional shift operator which moves the walker
(wave-function amplitudes) through the lattice according to
its internal degrees of freedom. In three-state quantum walks,
the walker can move to the left, right, or stay at its current
position, as embedded in

Ŝ =
∞∑

n=−∞
[|n − 1〉〈n| ⊗ |L〉〈L| + |n〉〈n| ⊗ |S〉〈S|

+ |n + 1〉〈n| ⊗ |R〉〈R|]. (1)

The coin we consider here is a U(3) operator responsible for
shuffling the internal degrees of freedom of the walker. We
consider the so-called Grover coin defined by [36]

Ĉ = 1

3

⎛
⎝

−1 2 2
2 −1 2
2 2 −1

⎞
⎠. (2)

In order to introduce nonlinear effects into the quantum
walk model we place an amplitude-dependent phase shift
during evolution [23–25],

Ûnl(t ) =
∑

c

∞∑
n=−∞

eiG(n,c,t ) |n, c〉 〈n, c| , (3)

with c = L, S, R and G(n, c, t ) = 2πχ |ψn,c(t )|2, where χ is
the nonlinearity strength and ψn,c(t ) = 〈n, c|ψ (t )〉. There-
fore, the full unitary operator is rewritten as Û (t ) = Ŝ[Ĉ ⊗
IP]Ûnl(t − 1). The first operator of the sequence then uses
information about the local wave-function amplitudes at a
given instant to feed it back to the following round. Recursive
equations for each of the wave-function components can be
obtained:

ψn,L(t + 1) = 1

3
[−ei2πχ |ψn+1,L (t )|2ψn+1,L(t )

+ 2ei2πχ |ψn+1,S (t )|2ψn+1,S (t )

+ 2ei2πχ |ψn+1,R (t )|2ψn+1,R(t )],

ψn,S (t + 1) = 1

3
[2ei2πχ |ψn,L (t )|2ψn,L(t )

− ei2πχ |ψn,S (t )|2ψn,S (t )

+ 2ei2πχ |ψn,R (t )|2ψn,R(t )],

ψn,R(t + 1) = 1

3
[2ei2πχ |ψn−1,L (t )|2ψn−1,L (t )

+ 2ei2πχ |ψn−1,S (t )|2ψn−1,S (t )

− ei2πχ |ψn−1,R (t )|2ψn−1,R(t )]. (4)

III. RESULTS

Let us first recall that the dynamics of linear three-state
quantum walks is better conceived when the initial state is
written in terms of the eigenvectors of Ĉ [39],

|σ+〉 = 1√
3

|L〉 + 1√
3

|S〉 + 1√
3

|R〉 , (5)

|σ−
1 〉 = 1√

6
|L〉 − 2√

6
|S〉 + 1√

6
|R〉 , (6)

|σ−
2 〉 = 1√

2
|L〉 − 1√

2
|R〉 , (7)

where Ĉ |σ+〉 = |σ+〉 and Ĉ |σ−
i 〉 = − |σ−

i 〉, with i = 1, 2.
The dynamics obtained from state |σ−

1 〉 resembles that of the
standard one-dimensional (1D) Hadamard walk featuring full
dispersion of the wave function with its characteristic peaks
at the front pulse. In contrast, |σ+〉 leads to a kind of intrinsic
localization of the wave function as we will see shortly. The

FIG. 1. Time evolution of the probability density |ψn|2 in the
position space for some representative values of the nonlinear pa-
rameter χ . The coin component |c〉 of the input is set as (a)–(d) |σ+〉
and (e)–(h) |σ−

1 〉. From top to bottom, χ = 0, 0.2, 0.6, 1.0. Note that
nonlinearity brings the localized component to a metastable state and
induces some degree of localization when |c〉 = |σ−

1 〉.
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FIG. 2. Snapshots of the probability density |ψn|2 after t = 5000
steps. (a) Localized component around the initial position for lin-
ear (χ = 0) and nonlinear (χ = 0.6) cases. In the first case when
|ψ (0)〉 = |σ+〉, the wave function is exponentially localized, with
|ψn|2 = 12(−5 + 2

√
6)2|n| for n �= 0 and |ψ0|2 = 15 − 6

√
6 in the

asymptotic long-time limit (dashed-dotted line) [39]. In the nonlinear
regime, the localized component is well described by a hyperbolic
secant function of the form |ψn|2 ∝ sech2[an] (dashed line), with a
being a fitting parameter, for either coin input states |σ+〉 and |σ−

1 〉.
This is what we refer to as the self-trapped state. (b) Solitonlike pulse
propagating outwards, also fitted by the hyperbolic secant function
(dashed line).

input |σ−
2 〉 also yields a localized component coexisting with

a moving part but rendering a wave-function variance lying in
between the minimum and maximum, that is, for |σ+〉 and
|σ−

1 〉, respectively [39]. Thus, here we focus on these two
inputs only.

We shall now focus our attention on the influence of non-
linear phase shifts on the dynamics by initializing the state
of the walker as |ψ (0)〉 = |n = 0〉 ⊗ |c〉, with |c〉 set in ei-
ther |σ+〉 or |σ−

1 〉. Figure 1 shows the resulting evolution
of the probability density |ψn|2 = |ψn,L|2 + |ψn,S|2 + |ψn,R|2
for different values of χ . When only linear effects are taken
into account (χ = 0), the walker becomes strongly local-
ized around the starting position for |c〉 = |σ+〉, as expected
[Fig. 1(a)]. For |c〉 = |σ−

1 〉, the walker basically mimics the
two-state Hadamard walk [Fig. 1(e)] [42]. The situation
changes drastically when the nonlinear contribution sets in.
For weak nonlinearity, say χ = 0.2, and |c〉 = |σ+〉, the share
of the wave-function amplitude surrounding the origin is
much lower than in the linear case as a couple of outgoing
pulses build up. More pronounced solitonlike structures are
seen when |c〉 = |σ−

1 〉 including a self-trapped component. As
χ is increased, this component remains stable during some
transient time until it starts to radiate outwards. This behavior

holds for both coin inputs [see Figs. 1(c) and 1(g)]. Even more
complex patterns of soliton formation, wave-packet radiation,
and self-trapping take place as we further increase the strength
of nonlinearity [see Figs. 1(d) and 1(h)].

In order to characterize the difference between the local-
ized components found in both linear and nonlinear regimes,
in Fig. 2(a) we plot the probability density profile around the
origin for some representative cases at a fixed time step. In the
linear regime, the wave-function amplitude decays exponen-
tially as ∝c−2|n|.

In this case, localization is due to the extra degree of
freedom (coin state |S〉), responsible for the generation of
a constant eigenvalue associated with an eigenvector hav-
ing nonvanishing overlap with the initial input position. This
makes the wave-function amplitude at the origin saturate in
the long-time limit [36,37,39]. When nonlinearity is present, a
metastable self-trapped state well fitted by |ψn|2 ∝ sech2[an]
takes over, regardless of the input coin state. We also plot
the probability density of the traveling solitonlike pulse in
Fig. 2(b) when |ψ (0)〉 = |σ−

1 〉 [cf. Fig. 1(g)]. Its spatial profile
also fits reasonably well with the hyperbolic secant function, a
common form associated with solitonic structures in nonlinear
systems.

One peculiar signature found in the nonlinear scenario
is the dynamical transition from the metastable self-trapped
state to a regime of slow decay of the wave function at the
origin, what we refer to as the radiation process. For a better
characterization of such a phenomenon, it is useful to take
a look at the participation ratio PR, which accounts for how
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FIG. 3. Time evolution of the participation ratio for the coin
input states (a) |σ+〉 and (b) |σ−

1 〉. This quantity offers a clear sig-
nature of the radiation dynamics when nonlinear effects are taken
into account.
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FIG. 4. Survival probability vs time steps for the usual coin
inputs, |σ+〉 and |σ−

1 〉, and different values of χ . We note that the
radiation dynamics of the localized pulse approximately follows a
power law.

sparse the wave function is,

PR(t ) = 1∑
n |ψn(t )|4 , (8)

where the sum runs over all lattices sites (note that points
associated with a vanishing wave-function amplitude do not
contribute). Its evolution is depicted in Fig. 3 for the same cou-
ple of coin inputs and values of χ as before. In the absence of
nonlinearity, considering the coin input that leads to localiza-
tion (|σ+〉), the participation ratio saturates to a level about the
width of the trapped component. In the nonlinear case, we spot
two distinct regimes. The first one lasts for a short term during
which the participation ratio remains roughly constant, due
to the self-trapped state. In the long-time regime, PR grows
continuously, indicating spreading of the wave function. The
beginning of such a radiation process may occur suddenly
(for strong nonlinearities) or smoothly (typically for weak
nonlinearities). It is worth stressing that a series of radiation
processes may develop for strong nonlinearities. Furthermore,
the formation of solitonlike structures leads to the saturation
of PR [23,24]. When |c〉 = |σ−

1 〉, for χ = 0, the evolution of
PR is linear in time with a logarithmic correction, as recently
reported in Ref. [42]. In the presence of nonlinearity, again,
PR does not change much in the short term and this is due
to two distinct aspects. While for low values of χ it tells the
formation of outgoing solitonic structures at the wave front
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FIG. 5. Duration of the metastable state τc as a function of the
nonlinear strength χ for both coin inputs. Note the pronounced peaks
for specific values of χ when |c〉 = |σ+〉. To determine τc, we first
get the participation ratio data for a long-time frame. Then we make
every consecutive set of 20 numbers bundled up into a representative
value obtained by their mean. This is done so that the sharp increase
of these values can indicate the onset of the radiation process. τc

is finally defined whenever the difference between two consecutive
representative values of the participation ratio is largest.

[cf. Fig. 1(f)], for strong χ it is mostly due to the self-trapped
component [cf. Figs. 1(g) and 1(h)].

Now, in order to analyze the radiation dynamics from
a local perspective, we compute the evolution of the sur-
vival probability SP(t ) = |ψn=0(t )|2, which is displayed in
Figs. 4(a)–4(d) and 4(e)–4(h) for the coin inputs |σ+〉 and
|σ−

1 〉, respectively. When the quantum walk is purely linear,
the first renders saturation of the SP(t ), whose level can be
easily computed analytically as demonstrated in Ref. [39]. For
the other input, we find SP ∝ t−1, as expected. Their nonlinear
counterpart is mainly characterized by a short-time regime
during which the survivor probability oscillates around a con-
stant value and a long-time regime in which SP decays slowly
due to the radiation process. Therein, we find SP ∝ t−1/2,
although this trend is obscured with random fluctuations for
extreme values of χ .

We have seen that the triggering of the radiation process
can occur abruptly for specific sets of parameters. For these
cases, we evaluate how long, τc, the trapped component is
able to hold on to its metastable state. To do this, we track
the evolution of the participation ratio up to the moment its
slope suddenly increases (see Fig. 3). The result is plotted in
Fig. 5 against χ , set within the appropriate ranges. Overall,
when the initial state features |c〉 = |σ+〉, the metastable state
lives longer and does so over a wider range of nonlinearity
strengths. There are some particular values of χ for which
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FIG. 6. Phase portraits SP × d(SP)/dt for the coin inputs |σ+〉
(left column) and |σ−

1 〉 (right column), and distinct values of χ .
The color gradient is to give a sense of direction. Note that the
localized (self-trapped) component becomes unstable in the presence
of nonlinearity.

the self-trapped component is significantly more stable. This
is related to the complex structure of the dynamical attractor,
typically observed in nonlinear dynamical systems presenting
a chaoticlike dynamics. We discuss it below.

Finally, we offer a global view of the dynamical regimes
addressed above by working out some phase portraits of the
survival probability SP against its “speed” d(SP)/dt , as shown
in Fig. 6. In the linear three-state quantum walk (χ = 0) the
distinction between the portraits of the localization dynamics
originating from |σ+〉 and the dispersive one we get from
|σ−

1 〉 is striking. The former develops a spiral orbit toward
the fixed point representing the saturated survival probability
(due to the linear, intrinsic localization effect) whereas the
orbit for the latter follows a simple trajectory aimed to the full

release of the amplitude. Now, in the presence of nonlinearity,
the orbit will also converge asymptotically to zero survival
probability, regardless of its strength, but in a different way. A
small degree of nonlinearity (χ = 0.2) destabilizes the self-
trapped state and a full release from the origin is eventually
achieved in the long run. However, for intermediate values
of the nonlinear strength (χ = 0.6) one clearly observes the
emergence of metastable cycles around a self-trapped state
prior to its radiation. At last, for strong nonlinearity (χ =
1), the overall dynamics looks the same when |c〉 = |σ+〉,
whereas a chaoticlike trajectory from the start to full release
sets in when |c〉 = |σ−

1 〉.

IV. CONCLUDING REMARKS

We studied the role of an amplitude-dependent phase mod-
ulation on the dynamics of a three-state quantum walk. Such
a nonlinear contribution was shown to provide more involved
dynamics, with distinct paths depending on the input.

By tracking down the evolution of the walker over a range
of nonlinearity strengths, we showed the self-trapped state that
readily develops at the initial position becomes unstable, with
its survival (return) probability amplitude decaying asymp-
totically in time as SP ∝ t−1/2 as it radiates. We found the
transition from such a metastable state to the point it starts
to radiate can occur abruptly for a range of χ values. The
metastable regime could be properly identified for a wide
(narrow) range of nonlinear strengths for the coin input |σ+〉
(|σ−

1 〉) and found to last for about 103–104 time steps.
We highlight that the kind of localization the walker un-

dergoes when χ = 0 (of exponential form and purely via
linear mechanisms [36,37,39]) is quite different from the
self-trapping observed in the nonlinear case (fitted by a hyper-
bolic secant distribution). This originates from the recursive
amplitude feedback into the wave-function components as de-
scribed by Eq. (4). Self-trapping can take place for both inputs
considered and draw distinct orbits in the survival-probability
phase portrait (cf. Fig. 6) depending on χ .

While we have focused on the intrinsic localization (or lack
thereof) that occurs in the linear regime and the onset of non-
linear self-trapping followed by its radiation process, our work
has a greater appeal. Just as simple one-dimensional maps
often encountered in the field of nonlinear systems give rise to
incredibly complex dynamics, discrete-time quantum walks
are a versatile way to simulate a wide class of phenomena.
The freedom involved in setting up the unitary operator (or
even nonunitary if you will [22]), input, nonlinearity profile,
and internal degrees of the walker makes it a compelling case.
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