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Einstein-Podolsky-Rosen steering in symmetrical Gaussian states
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We have explored quantum Einstein-Podolsky-Rosen steering in symmetric two-mode Gaussian states using
Gaussian and non-Gaussian measurements. For Gaussian measurements, we show that steering between the out-
put modes of a symmetric beam splitter is possible regardless of purity when a threshold input-state quadrature
variance compression is achieved. Using the non-Gaussian operators introduced in Ji et al. [Sci. Rep. 6, 29729
(2016)] we show that non-Gaussian measurements can outperform Gaussian measurements for symmetrical
states. We also analyze the possibility of asymmetric measurements setups made possible by non-Gaussian
measurements and provide examples where such asymmetry is optimal for revealing steering.
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I. INTRODUCTION

Einstein-Podolsky-Rosen steering [1] (also known as EPR
entanglement) is a quantum correlation intermediate between
entanglement and Bell nonlocality. Unlike these correlations,
steering can be asymmetrical; one part (say Alice) may be able
to steer the other part (Bob) while the reverse is not possible
[2]. The term “steering” was first used by Schrödinger in 1935
[3] to refer to the ability of one system to influence the results
of measurements carried on another when the two systems
share an entangled state. While entanglement is a necessary
condition for steering, not all entangled states are steerable
[4,5].

In addition to its fundamental role in quantum theory
[6], steering has been identified as an important resource for
quantum information processing. Steering is required in two-
party quantum protocols, such as quantum key distribution
[7,8], quantum teleportation with continuous variables [9],
and randomness certification [10], for which entanglement
certification is needed although one of the parties cannot be
trusted. The study of steering was extended to the multipartite
scenario [11,12] in connection with its applications to quan-
tum communication networks [13,14].

A general definition of steering was formulated by Wise-
man and coworkers [5]. If Alice and Bob share a global
state, steering from Alice to Bob exists if the joint probability
P(a, b) of the outcomes a and b of measurements A and B
carried, respectively, by Alice and Bob is not compatible with
a local hidden state model where the probability of Bob’s
measurement outcomes are determined from a local quantum
state through the rules of quantum mechanics.

This article is concerned with Gaussian continuous vari-
ables states. Gaussian states are ubiquitous in nature including
such common states as the vacuum and thermal states.
These examples refer to classical states; however, nonclassical

*alezama@fing.edu.uy

Gaussian states can also be produced via the application of
squeezing operations.

Our attention is specifically focused on a particular class
of two-mode Gaussian states (symmetrical states) where Alice
and Bob have access to the same amount of information. Sym-
metric states where one part can be steered by the other exists.
However, in this case steering is necessarily bidirectional;
both parts are similarly able to steer the other, provided the
two perform the same measurements.

Within the vast ensemble of possible measurements one
category, Gaussian measurements, plays an important role
and has been extensively studied. Such measurements always
amount to measuring field quadratures which can be per-
formed via balanced homodyne detection. The conditions to
be met by a two-mode Gaussian state in order to be steerable
by Gaussian measurements are well known. They will be
reviewed below.

Two main questions are addressed in this paper. We first
inquire whether non-Gaussian measurements can detect steer-
able states that are not steerable by Gaussian measurements.
This question has previously received a positive answer for
some examples of nonsymmetrical states. We show here that
it is also the case for symmetric states.

We then explore the scenario where the two parts, Alice
and Bob, have access to different measurement setups. More
specifically we envision a scenario where Alice has a finite set
of measurements at her disposal while Bob’s measurements
set is composed of a different number of observables. Such
situation is asymmetric in spite of the state being symmetrical.
We provide examples showing that asymmetric setups are able
to reveal steering and outperform Gaussian measurements
with no loss of precision compared to larger symmetric setups.

The paper is organized as follows: In Sec. II we review
the description of symmetrical two-mode Gaussian states and
introduce a convenient parametrization of these states. In
Sec. III the criterion for steering by Gaussian measurements
is reminded and applied to the ensemble of symmetrical
states. A threshold quadrature variance compression allowing
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steering regardless of state purity is derived. In Sec. IV we
remind the non-Gaussian observables introduced in [15] and
present several steering inequalities applicable to these ob-
servables. Section V presents the numerical evaluation of the
steering inequalities and discusses the results. Concluding
remarks are presented in Sec. VI.

II. SYMMETRICAL TWO-MODE GAUSSIAN STATES

A quantum state is Gaussian if its Wigner phase-space
representation is a Gaussian function. In consequence, dis-
regarding translations in phase space, all state properties are
entirely defined by the knowledge of the covariance matrix
(CM), i.e., the matrix of second-order moments of the quadra-
ture operators.

A two-mode symmetric Gaussian state (2MSGS) corre-
sponds to a 4 × 4 CM in the block form

VS =
(

A C
CT A

)
, (1)

where the 2 × 2 blocks A in the diagonal represent the local
covariance matrices for Alice’s and Bob’s modes and block C
describes correlations between modes.

Using the fact that the quantum correlations between
modes are not affected by local unitary transformations, it has
been shown that the most general 2MSGS covariance matrix
can be brought through local symplectic transformations into
the standard form [16–18]

VS =

⎛
⎜⎝

pu 0 mu 0
0 p

u 0 n
u

mu 0 pu 0
0 n

u 0 p
u

⎞
⎟⎠ (2)

with p � 1, p � |m|, p � |n|, (p2 − 1)2 − 2mn − p2(m2 +
n2) + (mn)2 � 0, and u > 0.

The parameter u in (2) can be arbitrarily modified (or made
equal to one) through (symmetric) local squeezing. Therefore,
it does not affect the quantum correlation properties of sym-
metric states which are only dependent on the three relevant
parameters p, m, n.

However, parameters p, m, n are not necessarily the most
practical for a systematic exploration of the quantum cor-
relation properties of symmetric states; the parameters are
unbounded and not independent.

In this work we propose a new parametrization based on
three independent real parameters γ , μ, and α subjected to
the conditions

(0 < γ � 1), (0 < μ � 1), (0 � α � 1). (3)

The parametrization is physically motivated by the fact that
mixing arbitrary Gaussian states (generally squeezed thermal
states) in a symmetric beam splitter (BS) results in a symmet-
ric two-mode state.

Specifically, we consider the 2MSGS obtained by sending
through a symmetric BS the state described by the covariance
matrix

Vγ ,μ,α = Diag

[
γ −1

μ
,
γ

μ
,

(
γ

μ

)α

,

(
γ −1

μ

)α]
. (4)

FIG. 1. Unit cubic volume representing all symmetric two-mode
Gaussian states. States above the diagonal plane are entangled.
The states above the yellow surface are steerable by Gaussian
measurements.

The state described by (4) represents two squeezed thermal
states incident on the two input ports of the BS. It is always a
physical state if the conditions (3) are satisfied.

It can be shown (details are given in the Appendix) that
for any symmetric Gaussian state corresponding to parameters
p, m, n, a set of four non-negative real numbers γ , μ, α, u
can be found for which the passage of state (4) through a
symmetric BS results in state (2). The obtained value of μ ver-
ifies 0 < μ � 1 and with no loss of generality the conditions
0 < γ � 1 and 0 � α � 1 can be imposed.

We therefore conclude that, as far as quantum correlations
are concerned, all two-mode symmetrical Gaussian states can
be represented by the points of the the γ , μ, α parameter space
contained in a unit-volume cube (Fig. 1).

The convenience of our parametrization for the study of
quantum correlations in 2MSGS can be illustrated by the
simplicity of the condition for entanglement: γ < μ. A vi-
olation of this condition results in classical states entering
the beamsplitter and consequently a separable output state
[19,20]. The condition is also sufficient (see remark in the
Appendix).

Our parameter choice is also motivated by the fact that
it allows continuous variation of the 2MSGS between two
limiting cases of interest. When α = 1 the resulting state
corresponds to a symmetric two-mode squeezed thermal state
(2MSTS) with squeezing coefficient γ and purity μTot = μ2.
When μ = 1 the output state corresponds to the pure two-
mode squeezed vacuum state (2MSV). On the other hand,
α = 0 corresponds to a situation frequently encountered in
experiments where a squeezed thermal state is incident on
one of the input ports of a BS while vacuum is incident on
the other. We refer to the corresponding two-mode state as a
squeezed-thermal and vacuum state (STVS).
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FIG. 2. States steerable by Gaussian measurements. The filled
areas (overlapping) correspond to steerable symmetrical two-mode
Gaussian states obtained by sending the state defined by CM (4)
through a 50% transmission beam splitter.

2MSTS have been thoroughly studied (see for example
[21–24]). Recently, they have been considered in the context
of quantum metrology [25] and the extraction of quantum
work [26]. The properties of STVS have been less explored
in spite of being easily produced in experiments.

III. STEERING BY GAUSSIAN MEASUREMENTS

The condition for steering by Gaussian measurements in
two-mode Gaussian states was determined by Kogias and
coworkers [27]. Steering by Alice of Bob’s state occurs iff

det(A) > det(V ), (5)

where A refers to the CM for Alice mode and V is the total CM
of the two-mode system. The purity η of a state is related to
its covariance matrix V by η = 1/

√
det(V ). In consequence,

Eq. (5) implies that in the case of two-mode Gaussian states
and Gaussian measurements, the sufficient and necessary con-
dition for Alice to be able to steer Bob’s system is that her
reduced state is less pure than the whole state.

For the state obtained from (4) after passage through the
BS, condition (5) becomes

μ2(1+α)X 2 − (4 − μ2α − μ2)X + 1 � 0, (6)

where X ≡ (γ /μ)1+α .
The surface separating steerable and nonsteerable states

by Gaussian measurements is obtained by solving (6) for
equality. It is represented in Fig. 1.

The states steerable by Gaussian measurements for three
different values of the parameter α are represented in Fig. 2
where the horizontal axis corresponds to the maximally

squeezed quadrature variance v ≡ γ /μ in (4). Interestingly,
there exists a threshold value vth of the maximally squeezed
quadrature variance of the BS input-state below which steer-
ing by Gaussian measurements between output modes is
possible regardless of purity. In the general case (α > 0),
vth = (1/4)

1
1+α . For α = 0 (STVS) vth = 1

3 . The existence
of such a threshold, not previously identified, is relevant to
experiments.

IV. STEERING BY NON-GAUSSIAN MEASUREMENTS

So far we have been concerned only with Gaussian
measurements. One can inquire whether non-Gaussian mea-
surements can reveal steerable states that are not identified
through GM.

It has been conjectured that GM are optimal for detecting
steering in Gaussian states [28]. Prior to our work this conjec-
ture has not been disproved in the case of symmetrical states
such as two-mode squeezed vacuum states (TMSV). However,
it was shown [15,29] that when asymmetric losses act upon a
TMSV state, the conjecture is no longer true. In this work we
demonstrate that non-Gaussian measurements can outperform
Gaussian measurements also in the case of symmetric states.
In addition, non-Gaussian measurements allow addressing the
scenario where Alice and Bob perform measurements chosen
from different sets of observables (different setups). This is a
rich scenario which has been seldom addressed for continuous
variable states. It is not possible for GM which always amount
to quadrature measurements by both parties.

A steering criterion for arbitrary non-Gaussian measure-
ments is generally not available and must be established on
a case by case basis. In general, when such a criterion can
be derived, it is not directly expressed in terms of the two-
mode CM.

An experimentally useful criterion for the EPR paradox
was proposed by Reid [30]. Later, Cavalcanti and Reid have
shown that steering inequalities can be derived for experi-
mentally accessible observables constrained by multiplicative
or additive uncertainty relations [31]. A powerful method for
the derivation of steering criteria for arbitrary measurement
sets relying on experimentally observable quantities was es-
tablished in [32].

In our work we have used the set of non-Gaussian ob-
servables introduced by Ji and coworkers [15]. The set of
observables available to Alice is designated as {A(n)

i } where
the superscript (n) identifies the whole set and the subscript i
one of its members.

The set {A(n)
i } ≡ {λk, λ

±
kl} contains n2 projective measure-

ments defined as

λk = |k〉〈k|, (7a)

λ+
kl = |k〉〈l| + |l〉〈k|√

2
(k < l ), (7b)

λ−
kl = |k〉〈l| − |l〉〈k|√

2i
(k < l ), (7c)

where k, l = 0, 1, . . . , n − 1 and |k〉 and |l〉 are Fock
states. These observables are orthogonal projectors into
Fock-state-pair subspaces. Similar definitions apply to Bob’s
observables set {B(n′ )

j }.
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From measurements of the above observables a correlation
matrix can be defined:

Cnn′
i, j = 〈

A(n)
i ⊗ B(n′ )

j

〉 − 〈
A(n)

i

〉〈
B(n′ )

j

〉
. (8)

The observables on Bob’s mode must satisfy the uncertainty
relation [15]

n′2∑
j=1

�2(B(n′ )
j ) � (n′ − 1)

〈
1

(n′ )
B

〉
, (9)

where �2(X ) = 〈X 2〉 − 〈X 〉2 is the variance of the observ-
able X outcomes and 1

(n′ )
B ≡ ∑k=(n′−1)

k=0 |k〉 〈k| refers to the
identity operator truncated to Fock states with photon number
smaller than n′. A similar uncertainty relation holds for Alice’s
observables.

Applying the result in [32] to the uncertainty relation (9)
one can show that if Bob’s state is not steerable by Alice
measurements, then

min
{A(n)

j }

j=n′2∑
j=1

�2
inf

(
B(n′ )

j

∣∣A(n)
j

)
� (n′ − 1)

〈
1

(n′ )
B

〉
. (10)

Here �2
inf(B

(n′ )
j |An

j ) refers to the inferred variance of the output

of measurement B(n′ )
j in view of the output of Alice’s measure-

ment of observable An
j . The inferred variance of observable B

is defined as

�2
inf(B|A) =

∑
a,b

P(a, b)[b − best(a)]2, (11)

where a and b refer to the outcomes of Alice and Bob realizing
measurements A and B, respectively. P(a) is the probability of
outcome a and P(a, b) the joint outcome probability. best(a)
designates an estimate of the output b of the measure by Bob
of observable B given that the output of the measurement of
observable A by Alice was a. best(a) is an arbitrary function of
a generally chosen to satisfy

∑
b P(b)b = ∑

a P(a)best(a).
There is no general procedure for constructing best(a). A

bad estimation will result in an increase of the inferred vari-
ance resulting in a weaker inequality (10). Examples of two
convenient choices for best(a) are provided below.

It is worth stressing at this point that the sets of observables
{A(n)

j } and {B(n)
j } appearing in the left-hand side of inequality

(10) can be different, subindex j is being used to identify a
pair which does not need to be equal. Also the observables
contained in the set {A(n)

j } that minimize the left-hand side in-
equality (10) are not required to be all different. Consequently,
inequality (10) can be used to test steerability with asymmetric
(different) measuring setups for Alice and Bob.

From inequality (10), Ji et al. [15] have derived a steering
inequality involving the trace norm of the correlation matrix
Cnn′

. Steering from A to B is possible if

‖Cnn′ ‖tr

>

√√√√√
(

n
〈
1A

n

〉 − n2∑
j=1

〈
A(n)

j

〉2)⎛
⎝〈

1B
n′
〉 − n′2∑

j=1

〈
B(n′ )

j

〉2⎞⎠, (12)

where ‖ · ‖tr designates the trace norm.

The starting point of our analysis is also inequality (10)
whose violation implies steering. We have used two different
choices of the function best, j which gives the estimated value
of the output b of measurement Bj by Bob given that Alice
has obtained output a from her measurement of Aj .

Our first choice is

best, j (a) = 〈Bj〉a ≡ 〈1A ⊗ Bj〉a, (13)

where the subscript a indicates that the mean value is taken
on the state of the system after measurement of Aj ⊗ 1B

with output a. This choice of best(a) ensures that the inferred
variance �2

inf(Bj |Aj ) attains its minimum value �2
min(Bj |Aj )

[32,33] and can consequently be considered as optimum. With
this choice, inequality (10) becomes

min
{A(n)

i }

n′2∑
j=1

�2
min

(
B(n′ )

j |A(n)
i

)
� (n′ − 1)

〈
1

(n′ )
B

〉
. (14)

It should be noted that in order to evaluate 〈Bj〉a the knowl-
edge of the total two-mode state density matrix is required,
which cannot be obtained from local measurements only. In
consequence, the identification of steerable states obtained
by violation of inequality (14) with this estimate should be
considered as a theoretical limit.

Our second choice consists in the linear estimate (also
considered in [32], and shown on [33])

blin est, j (a) = −g j (a − 〈Aj〉) + 〈Bj〉, (15)

where g j is a real number. The best choice for g j

in order to minimize the inferred variance �2
inf(Bj |Aj )

is g j = −[〈BjAj〉 − 〈Bj〉〈Aj〉][〈A2
j〉 − 〈Aj〉2]−1. With this

choice inequality (10) becomes after some manipulation

max
{A(n)

j }

⎧⎨
⎩

n′2∑
j=1

[〈BjAj〉 − 〈Bj〉〈Aj〉]2〈
A2

j

〉 − 〈Aj〉2

⎫⎬
⎭

�
〈
1

(n′ )
B

〉 − n′2∑
j=1

〈Bj〉2. (16)

The results of the evaluation of inequalities for symmetric
Gaussian states are presented next.

V. RESULTS

We have numerically computed the two sides of inequali-
ties (12), (14), and (16) for the symmetric states corresponding
to parameters γ , μ, α. The calculation requires the knowledge
of the state density matrix in the Fock basis. We have cal-
culated the coefficients of the density matrix truncated to a
maximum photon number (N = 19) using multivariate Her-
mite polynomials [15,29]. It was checked that the truncation
of the density matrix does not affect the results presented be-
low which concern states for which the values of γ and μ are
relatively large (above 0.2). As these parameters are further
reduced, density matrix coefficients left aside by the trunca-
tion are expected to play an increasing role. Density matrix
coefficients were calculated over a grid of 441 equally spaced
states within the rectangle in the (γ , μ) plane presented in
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FIG. 3. Left column: steerable states according to inequalities
(16) (solid), (14) (dotted), and (12) (dashed-dotted) for different
values of α. Steering is possible in the region above the limiting lines.
Dashed line: steerability limit for Gaussian measurements. States
under the black dashed-dotted line are separable. Right column:
partial enlarged view.

each figure. The contour lines corresponding to equality were
obtained by extrapolation using MATLAB.

A. Symmetric setups

Figure 3 presents the results obtained for symmetric en-
sembles of observables {A(n)

j } and {B(n)
j } corresponding to

n = 1 and 4. The corresponding limit for Gaussian measure-
ments is indicated in each figure. Steering from Alice to Bob
is possible when either inequality (12) (dotted) or (16) (solid)
is violated. Steerable states correspond to the area above the
limiting curves. It is worth reminding here that the minimiza-
tion in (10) does not require that all operators in Alices’s set
{A(n)

j } are used. It could occur that the minimum is reached
using only operators contained in a smaller set corresponding
to a lower value of n. Such possibility is indicated by the
inequality in the figure legend and will be discussed in more
detail in the next section.

The results in Fig. 3 show that for some symmetric states,
the non-Gaussian observables considered in this work can out-
perform Gaussian measurements in revealing steerable states

for all values of the parameter α. This includes the case α = 1
corresponding to two-mode squeezed thermal states.

As expected, violation of inequality (14) which uses the
minimum inferred variance is stronger than violation of (16)
based on linear estimates with different parameters for each
observable. Inequality (16) is in turn stronger than violation
of (12) based on a single-parameter linear estimate.

It is interesting to signal that on the scale of Fig. 3 the limit-
ing curves corresponding to inequality (16) which is based on
locally accessible quantities is barely distinguishable from the
theoretical limit provided by inequality (14). Also, consider-
ing that all inequalities were derived from (10) it is remarkable
that inequality (12) behaves poorly as n = n′ is increased. This
can be traced to the fact that a single coefficient g is used for
the linear estimate of all observables and that the use of the
trace norm requires different observables on Alice’s set [15].

In the regions of Fig. 3 corresponding to small values
of γ and μ, Gaussian measurements remain more effective
for revealing steering than the considered non-Gaussian ob-
servables. This behavior is expected since for such states a
large amount of the information is contained in density matrix
coefficients corresponding to large Fock number states which
are not addressed by the non-Gaussian observables. On the
other hand, the steering criterion for Gaussian observables
makes use of the covariance matrix which contains all the
information regarding the state.

B. Asymmetric setups

The use of non-Gaussian observables allows the consider-
ation of scenarios where the setups available to Alice and Bob
corresponding to the sets {A(n)

i } and {B(n′ )
j }, respectively, are

different. The inequalities (16) and (14) are well suited for
the consideration of asymmetric setups. On the other hand,
inequality (12) requires that n � n′ and is not optimum for
n 	= n′ [15].

Figure 4 corresponds to a scenario where n′ (the number of
setups available to the steered system) is kept fixed (n′ = 3)
while n is varied. Inequality (16) is used to reveal states
steerable from Alice to Bob. As expected, due to the maxi-
mization on the left-hand side, adding new observables to the
set used by Alice cannot result in diminution of the ensemble
of steerable states. As a matter of fact, in this example n = 3
and 4 reveal the same set of steerable states. The situation is
different when n (the number of Alice’s observables) is kept
fixed while n′ is varied (Fig. 5). Notice that, depending on the
state, the ability of inequality (16) to reveal steerable states
does not necessarily increase with n′. This is due to the fact
that a different inequality must be violated for each value of n′.

The previous results show that identification of steerable
states by non-Gaussian measurements is sensitive to the sym-
metry of the setups available to both parties. We next address
the question of whether asymmetric setups can be more “effi-
cient” than symmetrical ones. An ensemble containing a given
number of observables will be considered more efficient than
another ensemble with a larger number of observables if it
can reveal the same steerable states (same results with fewer
resources).

Figure 6 shows the numerical evaluation of inequality (16)
for n′ = 7 with n � 7. The steerable states lie above the
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FIG. 4. Steerable states according to inequality (16) for different
values of α in three scenarios where the number of observables of
the steered party (Bob) is kept fixed (n′ = 3) while the number of
observables available to Alice is varied. Steering is possible in the
region above the limiting lines. Dashed line: steerability limit for
Gaussian measurements. Notice that for n = 3 and 4 the limiting
curves coincide.

continuous curve. The minimum value of m for which {A(m)
i }

includes all the observables corresponding to the maximum
of the left-hand side of (16) is indicated by the background
color. Notice that for α = 0, the use by Alice of observables
contained in the set {A(4)

i } is sufficient to detect steering while
Bob uses all observables in the {B(7)

j } set. In this case, the
use of asymmetric setups can be considered as optimal in
the sense that it provides the same steering identification than
larger symmetrical setups while involving fewer resources.

This example shows that if the detection of steering is
considered as a task, used for instance to certify entanglement
between trusted and untrusted parties, for some symmetric
states the use of asymmetric setups can be efficient and
optimal.

VI. CONCLUSIONS

We have explored quantum steering in symmetric two-
mode Gaussian states. The systematic survey of symmetric
states was facilitated by the introduction of a set of three
independent parameters which allows mapping all symmetric

FIG. 5. Steerable states according to inequality (16) for different
values of α in three scenarios where the number of observables n′

available to the steered party (Bob) is varied while the number of
observables available to Alice is fixed (n = 3). Steering is possible in
the region above the limiting lines. Dashed line: steerability limit for
Gaussian measurements. Notice that for α = 0.5 the red and yellow
lines overlap.

Gaussian states onto the points of a three-dimensional cubic
volume. Two different types of measurements were explored:
Gaussian measurements and the discrete sets of non-Gaussian
observables introduced in [15]. Using the latter we have used
three steering inequalities, all of which provided examples
showing that non-Gaussian measurements can outperform
Gaussian measurements even for symmetric states.

Previous work concerned with Gaussian and non-Gaussian
measurements has analyzed steering in asymmetric two-mode
states. Here we have addressed the scenario, made possible
by non-Gaussian measurements, where the global state is
symmetrical while asymmetry arises from the use of different
number of observables by the two parties. We provide exam-
ples where asymmetric setups, involving a smaller number of
resources on one party, can be as efficient in revealing steering
as the corresponding symmetric setups with equal resources
on both sides.

Our results provide insight into the topic of non-Gaussian
measurements applied to continuous variables systems. They
were based on a specific set of observables [15] and on a spe-
cific kind of steering inequalities [31]. For completeness we
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FIG. 6. Evaluation of inequality (16) with n′ = 7 for symmetric
states corresponding to the center of the colored cells. States steer-
able from Alice to Bob lie above the blue solid line. The cell color
indicates the minimum value m � 7 corresponding to Alice’s observ-
able set {A(m)

i } required to maximize the left-hand side of inequality
(16). White zones correspond to separable states. The dashed red line
indicates the steering limit for Gaussian measurements.

mention that we have explored a second set of non-Gaussian
observables introduced in [34] where it was shown that these
observables are suitable for revealing steering in nonsymmet-
ric states. However, we found that they do not outperform
Gaussian measurements for symmetric states.

The question of whether other types of non-Gaussian
observables and steering criteria can further increase the iden-
tification of steerable states remains largely open and worth
exploring.
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APPENDIX: EQUIVALENCE OF THE TWO
PARAMETRIZATIONS

We start by noticing that the state described by (2) can be
obtained by sending through a symmetric BS the state

Vin = Diag
[
u(p + m),

p + n

u
, u(p − m),

p − n

u

]
. (A1)

We equate each term of the two expressions of the covariance
matrices (A1) and (4) corresponding to the BS input. Taking
the logarithm on both sides of each equation and after some
mathematical manipulations we obtain

μ = 1√
(p + m)(p + n)

, (A2a)

α = log[(p − m)(p − n)]

log[(p + m)(p + n)]
, (A2b)

γ =
[

(p + n)(p − m)

(p − n)(p + m)

] 1
2(α+1)

, (A2c)

u =
[(

p − n

p − m

)(
p + n

p + m

)α] 1
2(α+1)

. (A2d)

Any physical covariance matrix of the form (2) must ver-
ify p � 1, p � |m|, p � |n|, (p + m)(p + n) � 1, and (p −
m)(p − n) � 1 [see (A1)]. In consequence, μ � 1, α � 0,
γ > 0, and u > 0. Also, with no loss of generality m and n
can be chosen to satisfy m � |n| [18] in which case 0 < γ � 1
and 0 < α � 1.

We conclude that any Gaussian symmetric state corre-
sponding to the parameters p, m, n in (2) can be represented
by a point inside the cube of unit edge in the γ , μ, α space.
The reciprocal statement is ensured by the fact that (4) always
describes a physical state.

Finally, from the equality between (A1) and (4) we obtain(
γ

μ

)α+1

= (p − m)(p + n). (A3)

In consequence, γ < μ implies (p − m)(p + n) < 1 which is
a sufficient condition for entanglement [18].
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