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In the work by Rebougas and Brandéo [Phys. Rev. A 104, 063514 (2021)] the authors compute the scattering
amplitude for a PT-symmetric double-5-function potential in three dimensions by invoking the far-zone
approximation and summing the resulting Born series. We show that the analysis of this paper suffers from
a basic error. Therefore, its results are inconclusive. We give an exact closed-form expression for the scattering

amplitude of this potential.
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The authors of [1] consider the scattering problem for a
PT-symmetric double-5-function potential in three dimen-
sions,

v(r) ;= 318(r —rp) + 328(r +rp), (D

where 3 = 35 = —ak’(0 +iy) and @, o, and y are real pa-
rameters; k is the wave number; and +r, are the positions of
the point scatterers. They substitute the Born series u(r) =
Y o2 o un(r)e” in the Lippmann-Schwinger equation to show
that

Un(r) = k? / x(G(r — ¥ Du,_ (), n=1, ()
R3

where x (') := v(r)/ak? and G(x) := ** /47 x. Then they let
r:=|r|, ¥ := |r|, and 3§ := r/r; denote the direction of the
incident wave vector by &; and use uy(r) = ¢*T and the far-
zone (FZ) approximation,

ikr

/ € ks /
G(r—1r'|))~ —e for r>r, 3)
drr
in (2) to obtain the recursion relation,
2 ikr o
Un (1) =———[(0 + iy Dy (r)e "™

drr
+ (0 — i1 (—ro)e™ ™), n=1. @)

The results of [1] rely on the authors’ solution of this relation.
But as we explain below, there is a basic error in their analysis.
To determine u;(r), they substitute (3) in (2) and set n = 1.
Because (3) holds whenever r >> ¥/, this gives an approximate
expression u}%(r) for u;(r) which is valid in the FZ, ie.,
u(r) ~ ulfz(r) for r — oco. Repeating the same procedure
for n =2, they express uy(r) in terms of u;(£ry), which
they calculate by substituting £ro for r in u{%(r), i.e., set
ui (£rg) ~ ufz(:lzr()). This is inadmissible because |ry| does
not tend to infinity. In general, the iterative solution of (4)
given in the Appendix of [1] is unacceptable because this
equation holds for r — oo. Therefore, one cannot use it to
determine u,(+r() even approximately.
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There is actually no need to invoke the FZ approximation to
treat this problem [2,3]. Reference [4] gives the exact solution
of the scattering problem for the multi-§-function potentials,

N
v(r) = ) 3,8(r —ay), )

n=1

in two dimensions, where 3, are real or complex coupling
constants and a, are the positions of the point scatterers.
The analysis of [4] has a straightforward extension to three
dimensions. To see this, first, we use the notation of Ref. [1]
to express the Lippmann-Schwinger equation for the poten-
tial (5) in the form

N
u(r) = uo(r) = Y 3,G(Ir — a,hu(ay). 6)

n=1

Setting r = a,, in this equation, we find a system of linear
equations for u(a, ). Because G(0) = oo, the matrix of coeffi-
cients of this system has divergent diagonal entries. Therefore,
we regularize G(x) and perform a coupling-constant renor-
malization to remove the singularities. We can do this with
a cutoff renormalization or dimensional regularization as out-
lined in [5] or other renormalization schemes [6]. In this way,
we can set r = a,, in (6) to arrive at

N
3 A, = e, )
n=1
where
=1 4 ik

+ = for m = n,
A = {"’" " ®)

G(la, —a,|) for m #n,

3. are the renormalized coupling constants and X, := 3,u(a,).
Solving (7) for X, substituting the result in (6), and noting
that the scattering amplitude ii;(r) is given by

ikr

u(r) — uo(r) + iig(r) for r — oo,

r

©2022 American Physical Society


https://orcid.org/0000-0001-6976-1447
https://orcid.org/0000-0002-0739-4060
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.037501&domain=pdf&date_stamp=2022-09-29
https://doi.org/10.1103/PhysRevA.104.063514
https://doi.org/10.1103/PhysRevA.106.037501

COMMENTS

PHYSICAL REVIEW A 106, 037501 (2022)

we find
N

1 [ a S
f(r)=—— Y A leh@na=ans) 9)
4

m,n=1

where A,! are the entries of the inverse of the N x N matrix
A = [A,,,] and we have also made use of (3).

For the P7T -symmetric double-§-function potential (1),
N=23=3= —ka(6 + iy); &, &, and 7 are real renor-
malized parameters; and a; = —a, = ry. Substituting these
relations and Eq. (8) in Eq. (9), we obtain

where

27 — ik3s
2w k(52 + g2)

4k2rg + e4ikr0
6472r;

D :=detA =

5:=@&6,g:=ay,ry:=|rg|, and &x := kry - (@ £ §). Notice
that the parameters s and g enter our calculations after we
renormalize the bare coupling constants «o and «y. There-
fore, they may depend on other physical parameters of the
problem.
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