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Controlling atomic spin mixing via multiphoton transitions in a cavity
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We propose to control spin-mixing dynamics in a gas of spinor atoms, via the combination of two off-resonant
Raman transition pathways, enabled by a common cavity mode and a bichromatic pump laser. The mixing rate,
which is proportional to the synthesized spin-exchange interaction strength, and the effective atomic quadratic
Zeeman shift (QZS), can both be tuned by changing the pump laser parameters. Quench and driving dynamics of
the atomic collective spin are shown to be controllable on a faster timescale than in existing experiments based
on inherent spin-exchange collision interactions. The results we present open a promising avenue for exploring
spin-mixing physics of atomic ensembles accessible in current experiments.
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I. INTRODUCTION

Establishing quantum entanglement between two parties
is crucial to quantum technology [1,2]. A direct approach
for entanglement generation is based on coherent interaction
between parties. To manipulate and protect quantum entangle-
ment in a quantum many-body system, strong and precisely
controllable quantum interaction is required. Quantum phases
with different entanglement properties can be realized by tun-
ing relative strengths of competing interactions [3].

Between spinful atoms, spin-exchange interaction natu-
rally arises when binary collision strengths differ for different
total spin channels [4–6]. Coherent quantum spin-mixing
dynamics, modeled by contact spin-exchange interaction
between pairs of atoms, have been observed for spinor Bose-
Einstein condensates (BECs) in all-optical trap experiments,
using 87Rb, 23Na, and 7Li atoms [7–12], as well as their
mixtures [13–15]. The resulting collective population oscil-
lations among different spin states enable the exploration of
many-body physics related to spin degrees of freedom, e.g.,
spin squeezing [16–19] and the generation of metrologically
meaningful entangled states [20–25] and in probing nonequi-
librium dynamics [26–31]. Any endeavor to establish tunable
two-body interaction is desirable for ground-state atoms in a
condensate, where inherent atomic spin-exchange interaction
is nominally weak [9–12].

Varying the density of particles could simply tune atomic
interaction strength versus single-particle energy [32]. More
elaborate techniques like Feshbach resonance achieve the

*mxue@nuaa.edu.cn
†xuzf@sustech.edu.cn
‡lyou@tsinghua.edu.cn

same at constant density [33] by tuning the scattering energy
between two atoms through a nearby closed-channel molec-
ular bound state [34–37], which in some limiting cases can
be viewed as inducing atom-atom interactions by coupling
off resonantly to their bound molecular state. Such a picture
extrapolates smoothly to the scenario of indirect interaction
mediated by a quantum channel or, more generally, any inter-
mediate bosonic quantum object. The physical constituent of
the channel can be an electromagnetic field mode in a cavity or
photonic crystal [38–45], vibrational phonons in trapped ions
[46–48] and opto(spin)-mechanical hybrid system [49,50],
or atoms with dipole-dipole interactions limited to excited
Rydberg state manifold [51–57].

Here in this work, we present a simple, but efficient,
scheme for controlling spin-mixing dynamics in spinor atomic
gases using only optical fields. Extending earlier studies
[43,44,58], we show that by using two σ -polarized laser fields
in an atom-cavity system, the effective spin-exchange inter-
action between ground-state atoms and the effective atomic
quadratic Zeeman shift (QZS) becomes tunable without re-
quiring more complicated setups.

Besides synthesized spin-exchange interaction in spin-1
atoms as previously studied [43,44,58], the ability to tune the
QZS in the present scheme provides a critical ingredient for
realizing a rich variety of quantum phases [59,60] and for
related quantum metrological applications of spinor atoms
[20–23,61]. The QZS from applied fields breaks the spin-
rotational symmetries, which is of great importance in many
experimental situations in which the linear Zeeman effect can
be ignored [23,24,28,29,62]. The interplay between the QZS
and atom-atom interaction under the conservation of longitu-
dinal magnetization can give rise to different ground states,
thus permitting access to quench across transitions between
phases with different symmetries [27–29].
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FIG. 1. (a) Atoms inside an optical cavity are pumped by two σ−-
polarized lasers with frequencies ω1 and ω2 and Rabi frequencies �1

and �2 from the side, denoted as L1 (blue solid arrows) and L2 (red
solid arrows), respectively. Spin-1 atomic ground states (|0〉, | − 1〉)
are coupled to two excited states |e1〉 and |e2〉 by a single cavity mode
(red wavy arrows) with frequency ωc and coupling strength gi=1,2.
The cavity axis is along the y direction with the polarization axis
along z, the direction of external magnetic field Bz. (b) Taking ω1 −
ω2 = 2q, the two four-photon Raman transition pathways illustrated
give rise to resonant atomic spin exchange.

The effective QZS here can be easily tuned to compete with
photon-mediated effective interaction by simply varying the
differential laser detuning, resulting in the formation of dif-
ferent quantum phases, as well as to provide faster controlled
dynamics [23,59,60]. Thus, our work goes beyond that of the
analogously synthesized interactions in spin-1 atomic systems
of earlier studies [43,44,58], where only linear Zeeman shifts
in external magnetic fields were considered and QZSs were
not tunable without additional dressing laser or microwave
fields [43,58]. By facilitating easy tuning of both the effective
spin-exchange strength and QZS, our approach can be adapted
to systems inside a significant bias magnetic field while main-
taining the desired interaction and the consequent spin-mixing
dynamics.

This paper is organized as follows. Section II is first in-
troduces the theoretical model of spin-1 atoms (in Sec. II A)
and then discusses our proposed scheme and its tunability in
Secs. II B and II C. In Sec. III, we numerically confirm the
validity of the effective Hamiltonian for the control of both
quench and driving dynamics. Finally in Sec. IV, we conclude
with a discussion.

II. MODEL AND SCHEME

A. Model

Our scheme is illustrated intuitively in Fig. 1 for a cloud
of spin-1 atomic gas or BEC tightly trapped inside an opti-
cal cavity. To simplify our discussion, atom-light coupling is
assumed to be spatially uniform, which can be achieved by
selective loading of atoms into a spatial lattice or, alterna-

tively, by using a ring cavity [58,63,64]. Atoms are pumped
by two external σ−-polarized lasers (labeled L1 and L2 with
respective frequencies ω1 and ω2) from the side and also are
coupled to a single cavity mode (with frequency ωc). The
atomic-level diagram contains two excited states, |e1〉 and
|e2〉, e.g., the 5P1/2 or 5P3/2 states for 87Rb atoms [64]. In
the bottom panel of Fig. 1(a), L1 and L2 induce σ transitions
|0〉 ↔ |e1〉 and |1〉 ↔ |e2〉 with coupling strengths �̃i=1,2 and
�i=1,2 (�̃i = �i is assumed), and the cavity field (wavy ar-
row) couples π transitions |0〉 ↔ |e2〉 and |−1〉 ↔ |e1〉 with
strengths g1 and g2, respectively.

Spinor BECs of F = 1 ground-state atoms, e.g., 23Na
or 87Rb atoms with antiferromagnetic or ferromagnetic
spin-exchange interactions, have been studied extensively
[5,11,23,25,65–68]. The formation of the spin domain be-
comes energetically suppressed when the spinful atoms are
trapped tightly; in addition to that, their spin-dependent inter-
action strengths are much weaker than the spin-independent
interactions. Hence, the atoms in different spin components
are assumed to have the same spatial wave function, i.e.,
the single-mode approximation (SMA). The SMA has been
verified as a reasonable approximation in current BEC exper-
iments [10,23,28,62,68]. Under the SMA [6,10,17,19,69–71]
for the spin-component density profiles, atomic spin-mixing
dynamics in a magnetic field as depicted in Fig. 1 is governed
by the Hamiltonian (h̄ = 1)

Ĥ = Ĥ0 + ĤB + Ĥe + ωcĉ†ĉ + ĤAL, (1)

where the inherent two-body s-wave spin exchange at rate c is
described by [6,69]

Ĥ0 = c

2N
[(N̂1 − N̂−1)2 + (2N̂0 − 1)(N̂1 + N̂−1)

+2(â†
1â†

−1â0â0 + H.c.)].

We denote âm=0,±1 as the annihilation operator for condensed
atoms in spin component |F = 1, m〉 and N̂m = â†

mâm as the
corresponding number operator (N = ∑

m N̂m), and the col-
lective spin operator for magnetization along the direction
(z) of the magnetic field is defined as F̂z ≡ N̂1 − N̂−1. The
Zeeman term for ground-state atoms inside a homogeneous
magnetic field is given by

ĤB = −pF̂z + q(N̂1 + N̂−1),

where p is the single-atom linear Zeeman shift and q is
the QZS, which competes with spin-exchange interaction
(∝ c) to govern system spin-mixing dynamics. The excited-
state atomic Hamiltonian Ĥe = ∑N

j=1

∑
k ωk|k〉 j〈k|, with k =

{e1, e2} denoting two excited states and ωk denoting the corre-
sponding level energy. The differential laser frequency shift is
set as ω1 − ω2 = 2q, exactly equal to the two-atom energy
deficit if spin exchange is to occur on resonance. This is
a necessary condition for efficient spin mixing, especially
when the bias magnetic-field-induced QZS is large and the
energy-matching condition is destroyed for spin-exchange
collision [43,44,58]. ωcĉ†ĉ is the free cavity-photon Hamil-
tonian, and the atom-light interaction Hamiltonian (under the
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rotating-wave approximation)

ĤAL =
N∑

j=1

[
(�1eiϕeiω1t + �2eiω2t )|1〉 j〈e2|

+(�̃1eiϕeiω1t + �̃2eiω2t )|0〉 j〈e1|
+g1ĉ†|0〉 j〈e2| + g2ĉ†|−1〉 j〈e1| + H.c.

]
, (2)

which describes the multiphoton transitions shown in the bot-
tom panel of Fig. 1(a).

In a typical ultracold 87Rb atom experiment, one finds |c| �
(2π )10 Hz [9,17,23,28]. Assuming an applied magnetic field
ranging from tens to hundreds of gauss, the induced Zeeman
effects satisfy p � q � |c|. Therefore, two-body collision-
induced spin-mixing processes in Ĥ0 are highly suppressed
by the large energy mismatch between spin-exchanged states.

Working in a rotating frame defined by the transform Û =
exp[i(ĤB + Ĥe + ωcĉ†ĉ)t], which transforms the Hamiltonian
in Eq. (1) by Ĥ → Û ĤÛ † + i(∂tÛ )Û †, the atom-light inter-
action Hamiltonian then becomes

H̃ =
N∑

j=1

[
(�1eiϕe−i�t + �2e−i(�+2q)t )|1〉 j〈e2|

+ (�̃1eiϕe−i�′t + �̃2e−i(�′+2q)t )|0〉 j〈e1|
+ g1ĉ†e−i(�+2q−δ)t |0〉 j〈e2|
+ g2ĉ†e−i(�′−δ)t | − 1〉 j〈e1| + H.c.

]
, (3)

where ϕ is the initial phase difference between the two lasers
(ϕ = 0 hereafter). � (�′) denotes detuning L1 from the tran-
sition |1〉↔|e2〉 (|0〉↔|e1〉), which can take values in the
range of gigahertz and even terahertz between the ground-
state manifold and akali-atom D-line transitions in the optical
range [72], and the detunings for the L2 couplings are � + 2q
and �′ + 2q, respectively. With a suitably locked cavity ωc,
we denote 2q − δ (δ) as the detuning for the two-photon
Raman transition pathways between |0〉 and |1〉 (|−1〉), with
L1 ( L2 ) and the cavity field shown in the bottom panel of
Fig. 1(a).

B. Effective Hamiltonian

When the detunings between optical fields and
atomic transitions are large, i.e., |g1,2|, |�1,2|, |�̃1,2| 

�(�′), �(�′) + 2q, � + 2q − δ, �′ − δ in Eq. (3), one can
neglect atomic spontaneous emission and safely eliminate the
excited states |e1〉 and |e2〉 to obtain the Hamiltonian projected
onto the spin-1 atomic ground-state manifold [42,43,73],

Ĥgs = {[
η1ei(δ−2q)t + η2eiδt

]
â†

0â1ĉ†

+ [
η̃1eiδt + η̃2ei(2q+δ)t

]
â†

−1â0ĉ† + H.c.
}
, (4)

where the two-photon Raman coupling strengths satisfy η1 ≈
η̃1, η2 ≈ η̃2, after ac Stark shifts induced by light fields are
neglected for the three ground-state levels (see Appendix A).

Since the parameters 2q ± δ and δ are larger than N |η1,2|
in typical experiments, the cavity-assisted Raman coupling
between different ground states is far off resonant, except for
the four-photon resonance pathways [presented in Fig. 1(b)]
accompanied by two-atom spin exchange that conserves the

total z-component angular momentum [9]

|0〉 + |0〉 � |1〉 + |−1〉.
We take δ = 3q/2 for convenience to derive the effective
Hamiltonian using Floquet-Magnus expansion; the Hamilto-
nian Ĥgs in Eq. (4) then reduces and becomes time periodic
with fundamental frequency 2q − δ = q/2. Since q/2 is large
compared to the magnitudes of the matrix elements of the
Hamiltonian, a time-independent effective Hamiltonian can be
derived by adopting the high-frequency expansion (details are
given in Appendix B). The Raman transition pathways (L1
and L2 plus the cavity mode in Fig. 1) with large two-photon
detunings would only virtually excite the cavity mode if one
starts from a cavity in a vacuum state [42,74]. The condition of
δ = q is avoided in order to circumvent simultaneous cavity-
photon-pair creation (ĉ†ĉ† term) in the four-photon resonance,
although such processes can be used to generate multiphoton
pulses [75]. Therefore, we substitute the cavity mode oper-
ators by 〈ĉĉ†〉 = 1 approximately and neglect other cavity
operators that will remain negligibly small. Finally, we obtain
the time-independent effective Hamiltonian,

Ĥeff = (c̃/N )(â†
1â†

−1â0â0 + â†
0â†

0â1â−1) − q̃0N̂−1N̂0, (5)

with effective spin-mixing rate coefficient c̃ =
−2

√
3Nη2/(3q) and q̃0 ∼ O(c̃/N ) when η2 = η2

1 = η2
2/3 is

taken. We have neglected the minute quadratic Zeeman term
−q̃0N̂0 in deriving Eq. (5) as detailed in Appendix B since
|q̃0| 
 |c̃| as a result of N � 1 implies spin-mixing dynamics
is hardly modified. The spin-mixing term (â†

1â†
−1â0â0 + H.c.)

in the effective Hamiltonian (5) thus is engineered based on
the intuitive two off-resonant Raman pathways, as depicted in
Fig. 1(b). The remaining density interaction is proportional to
N̂−1N̂0, which can be regarded as an N̂−1-dependent QZS and
may be neglected if the intermediate states have a vanishing
population in |−1〉 during spin mixing.

C. Tunability

The effective cavity-mediated spin-mixing rate coefficient
per atom |c̃|/N ∝ η2/q is directly determined by the in-
tensities and detunings of the pump laser fields, while the
single-atom QZS q remains tunable as in the previous imple-
mentation by changing the applied magnetic or near-resonant
microwave dressing fields [17,76]. These two key parameters
governing atomic spin-mixing dynamics are therefore tunable
experimentally. The sign of c̃ could also change to positive,
i.e., become antiferromagneticlike when the two Raman cou-
plings assume an alternative configuration of detunings. This
could be used to simulate the dynamics of antiferromagneti-
cally interacting spin-1 BECs [77–79] in a ferromagnetic one
such as 87Rb atoms.

In pioneering experimental studies [19,23,76,79], mi-
crowave dressing fields were implemented to augment the
effective tuning of the QZS from positive to negative, but
with the tunable range limited by the available power of the
microwave field. In the scheme we present, effective control
of the QZS can be directly accomplished without requiring
microwave or optical dressing, but with a slight detuning from
the four-photon resonance in Fig. 1(b), namely, by taking the
differential laser frequency ω1 − ω2 = 2(q − q̃). An effective
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quadratic Zeeman term,

HQZS = −q̃N̂0, (6)

in addition to the effective Hamiltonian Ĥeff in Eq. (5) will
emerge. The deviation of 2q̃ is so small (|q̃| 
 q) that it hardly
modifies the effective spin-mixing rate coefficient c̃, but the
magnitude of q̃ can easily be controlled to be on the same
order of |c̃|, i.e., q̃ ∼ |c̃|. This tunable effective QZS con-
stitutes a key contribution of this work which complements
the synthesized spin-exchange interaction already discussed
[43,44,58]. It will enable the realization of different quantum
phases as well as flexible fast dynamics control in spinor
atomic BECs for a variety of research topics [16,23,28,80].

Furthermore, the two pump laser beams, L1 and L2 in
Fig. 1, can be derived from a single laser by an acousto-optic
modulator. Experimentally, the difference between ω1/2π and
ω2/2π can be well controlled to high precision at the order of
1 Hz. Therefore, the frequency difference ω1 − ω2 = 2q (ap-
proximately megahertz) between L1 and L2 and the effective
QZS q̃ (approximately kilohertz) can both be precisely tuned.

For the estimation of parameters and numerical simula-
tions, we use 87Rb atoms with |c| � (2π ) 10 Hz for N ∈
[103, 105] as in current BEC experiments [19–24]; the linear
and quadratic Zeeman shifts at bias magnetic field Bz are given
by [23]

(p, q) = 2π
(
0.70Bz MHz/G, 71.6B2

z Hz/G2
)
.

At a high Bz = 80 G, (p, q) ≈ 2π (5.6, 0.46) MHz; thus, one
can safely neglect the inherent spin-exchange interaction
(∝ c) as q � |c|, and spin mixing becomes highly sup-
pressed by the energy mismatch q per atom. For a cloud
of N = 20 atoms inside an optical cavity, we can take g =
(2π ) 1.0 MHz [39,58,64,81–83] and assume g1 = g2 ≡ g; the
Rabi frequencies for the two pump lasers are �1 = �2 ≡ � =
(2π ) 40 MHz, and the detunings for the two lasers from the
87Rb atom D-line transition are taken to be, respectively, � ≈
�′ ≈ (2π ) 21 GHz [58]. The two-photon Raman coupling
strength then reduces to η ≈ 2g�/� ≈ (2π ) 3.8 kHz, and the
effective spin-mixing rate becomes |c̃| ≈ (2π ) 730 Hz, which
is many orders of magnitude larger than |c| from inherent
spin-exchange collisions.

We emphasize that the two-beam method proposed here is
experimentally feasible. Pumping the atoms by bichromatic
laser fields is shown to offer optical control of the synthe-
sized spin-exchange interactions by tuning individual pump
strengths (or detunings) and the spin-dependent dressing for
single-particle levels by fine tuning of the differential laser fre-
quency. Adding more optical beams certainly provides more
complex degrees of freedom to tune the photon-mediated
interactions, which is a promising way to more complex
atom-atom coupling graphs via a multifrequency optical drive
[45,58,84].

III. NUMERICAL SIMULATIONS

We now confirm the validity of Ĥeff in Eq. (5) with a
tunable effective QZS (i.e., q̃) by numerically simulating
the sudden quench dynamics following earlier experimental
protocols (the quench q̃ protocol) [16,21]. In the Fock-state
representation, with the atom state |ψ〉 = |N1, N0, N−1〉 and
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FIG. 2. Spin-state atomic populations during quench q̃ dynam-
ics. Solid (dashed) lines denote simulations with Ĥ2 (Ĥeff ), shown
by green solid (magenta dashed) and red solid (black dashed) lines
for n0(t ) and n1(t ), respectively. (a)–(c) Evolution from the initial
state |�0〉 = |0, N, 0〉⊗|0〉c with effective QZS q̃ = 0|c̃|, 1.0|c̃|, and
−1.0|c̃|, respectively. Gray solid lines in (a) are results with cav-
ity dissipation κ = 2|c̃| included, and the inset in (a) shows the
photon population n(t ) of the cavity mode during quench q̃ dynam-
ics. (d) Evolution for |�0〉 = |N/4, N/2, N/4〉⊗|0〉c and q̃ = 0.5|c̃|.
Other parameters used for the numerical simulation are N = 20 and
q = 6Nη.

the cavity state |n〉c, the complete basis state for the sys-
tem becomes |�〉 = |ψ〉 ⊗ |n〉c, specified by N1, N0, N−1,
and n. Assuming atoms initially reside in the polar state
|ψ0〉 = |0, N, 0〉 with zero magnetization, which is easy to
prepare experimentally [19,23], and the cavity is empty
in the vacuum state |0〉c, the atomic population nm(t ) =
〈N̂m〉/N (wherein m = 0,±1) is simulated by numerically
solving the following Schrödinger equation by using the
Runge-Kutta method [85]:

i∂t |�(t )〉 = Ĥ|�(t )〉, (7)

where the Hamiltonian Ĥ denotes Ĥgs(t ) in Eq. (4) or the ef-
fective Hamiltonian Ĥeff in Eq. (5) and the initial state |�(t =
0)〉 ≡ |�0〉. The two results of quench q̃ dynamics are com-
pared in Fig. 2. In Fig. 2(a), with the initial atomic polar state,
the effective Hamiltonian Ĥeff simulates almost all the same
features of atomic population dynamics as Ĥgs(t ) (with rela-
tive deviations being less than 5%) over an extended timescale
with respect to the characteristic spin-mixing timescale 1/|c̃|.
The inset in Fig. 2(a) shows that the population of the cav-
ity mode remains negligibly small (n
1) during the time
evolution, supporting our assumption that the cavity mode
is only virtually excited, and thus, our scheme is found to
be immune to photon loss. By adjusting the laser frequency
difference between L1 and L2, we effectively tune the QZS
by q̃. Figures 2(b) and 2(c) show evolutions from the same
state |�0〉 = |0, N, 0〉 ⊗ |0〉c but at different effective QZSs
q̃ = ±|c̃|. Comparisons are also performed for a different
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FIG. 3. (a) Adiabatic preparation of the atomic twin-Fock state from a linear q̃ driving starting with an initial polar state |N1, N0, N−1〉 =
|0, N, 0〉, with zero magnetization M = 0. Red and black solid lines denote n0 and n±1 defined in the text (for κ = 0), respectively. The
shaded area, with upper [n−1(t )] and lower [n1(t )] borderlines surrounding n±1 at κ = 0 (black solid line), measures the deviation from M = 0
(n1 = n−1) due to photon loss at rate κ = 0.2|c̃| (blue shading) or 2.0|c̃| (gray shading). Inset: metrology gain of optimal phase sensitivity
(�φ)opt beyond the SQL (�φ)SQL (dashed line). (b1)–(b3) The probability distributions of the cavity-atom state ρ(t ) in the Fock basis |k, n; M〉
at different times t = 0, t1, and t2 [labeled by gray vertical lines in (a)], respectively. N = 20, q = 6Nη, and the Hilbert space is truncated at
|M| � 2 with max n = 1.

initial state, |�0〉 = |N/4, N/2, N/4〉 ⊗ |0〉c, in Fig. 2(d),
whose results again support the validity of the effective
Hamiltonian in Eq. (5).

The effects of photon loss from the cavity can be included
by employing a master equation for the complete cavity-atom
state ρ,

∂tρ(t ) = −i[Ĥgs(t ), ρ] + (κ/2)D(ĉ, ρ), (8)

where the Lindblad term

D(ĉ, ρ) = 2ĉρĉ† − ĉ†ĉρ − ρĉ†ĉ (9)

describes dissipative processes associated with cavity loss
at rate κ . The numerical simulations of the master equa-
tion [Eq. (8)] were performed with the PYTHON toolboox
QUTIP [86]. We can use an ultranarrow-band optical cavity
with κ/(2π ) at the order of approximately kilohertz [87–89];
hence, we choose κ/|c̃| = 0, 0.2, 2.0 for the following simula-
tions at N = 20. We find that evolutions of atomic populations
are hardly modified when cavity dissipations are included, as
shown in Fig. 2(a) by the gray solid lines (κ = 2|c̃|).

To emphasize the utility of controlling both c̃ and q̃ in the
present scheme, we simulate a dynamic driving q̃ protocol,
as shown in Fig. 3, which is implemented here for adiabatic
preparation of metrologically useful quantum entangled states
[23,24]. Twin-Fock states with half of the atoms (N/2) in
each of two spin modes, enabling precise metrology reaching
the Heisenberg limit [90], have been proposed and gener-
ated in a number of pioneering experiments in atomic BECs

[16,23,66,91–94]. The effective QZS q̃ is swept linearly by
scanning the frequency difference of the two pump lasers,
from polar to twin-Fock phases of the instantaneous effective
Hamiltonian. Figure 3(a) shows that the atomic population
transfer from |0〉 to the spin |± 1〉 states largely follows the
driving q̃ and almost perfectly prepares the desired twin-Fock
state at the moment of t = t2, as clearly revealed by the state
distribution in the Fock basis |k, n; M〉 in Fig. 3(b3). The
shorthand for the basis state is now indexed according to

|k, n; M〉 ≡ |N1, N0, N−1〉 ⊗ |n〉c, (10)

with

N1 = k, N−1 = k − M + n,

N0 = N + M − 2k − n, (11)

where N = N1 + N0 + N−1 and M = N1 − N−1 + n are good
quantum numbers in the absence of dissipation for the initial
M = 0. A near-unit peak centered at the target twin-Fock state
|N/2=10; 0, 0〉 results even in the presence of dissipation.
The inset in Fig. 3(a) shows the phase sensitivity of the pre-
pared twin-Fock state when fed into a Ramsey interferometer
[23]. We find an entanglement-enhanced phase sensitivity
(�φ)opt at t2 of about 4.3 dB beyond the standard quantum
limit (SQL) [(�φ)SQL = 1/

√
N] at κ = 0, and the enhance-

ment reduces to 1.6 dB at κ = 2|c̃|, implicating a favorable
robustness of the present scheme for operational metrol-
ogy gain. Photon loss tends to polarize atoms into M � 0,
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exemplified by the shifting distributions in Figs. 3(b1)–3(b3)
out of the initial M = 0 subspace from t = 0 → t1 → t2. Such
atomic polarization mainly arises from the intrinsic asymme-
try of our scheme via the presence of a significant QZS, which
was not considered in early studies [43,44,58].

IV. CONCLUSIONS

In conclusion, we have proposed an efficient scheme for
controlled spin-mixing dynamics based on tuning of both the
spin-mixing rate and the competing QZS by changing pump
lasers parameters. The tuned interaction occurs on a much
faster timescale than inherent spin-exchange dynamics, and
the synthesized spin-spin interaction and the effective QZS
are essentially independent of the inherent atomic collision
properties and therefore can be generalized to other atomic
species, such as atoms with higher spins, alkali metals, and
atomic mixtures. We hope this work will open the door to
more tunability in cold-atom spin-spin interactions and their
dynamic controls to enrich future experimental studies.
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APPENDIX A: ADIABATIC ELIMINATION OF EXCITED
STATES

The large single- and two-photon detunings considered
in this work ensure negligible occupation on atomic excited
states; therefore, adiabatic elimination of excited states is ap-
propriate [73,95].

One can eliminate the atomic field operators of the excited
states by substituting their steady solutions in the Heisenberg
equations for ground-state atomic operators [45] or by using
the projection method to formally integrate the fast subspaces
in the Schrödinger equation (for details refer to Refs. [41,96]).

We can obtain the Hamiltonian projected onto the spin-1
atomic ground-state manifold:

Ĥgs = {[
η1e−i(2q−δ)t + η2eiδt

]
â†

0â1ĉ†

+ [
η̃1eiδt + η̃2ei(2q+δ)t

]
â†

−1â0ĉ† + H.c.
} + ĤStark,

(A1)

where η1,2 (η̃1,2) denote the cavity-assisted two-photon Ra-
man coupling strengths defined by

η1 = g1�1

(
1

�
+ 1

� + 2q − δ

)
,

η2 = g1�2

(
1

� + 2q
+ 1

� + 2q − δ

)
,

η̃1 = g2�̃1

(
1

�′ + 1

�′ − δ

)
,

η̃2 = g2�̃2

(
1

�′ + 2q
+ 1

� − δ

)
.

The Stark shift ĤStark = [( �2
1

�
+ �2

2
�+2q )â†

1a1 + ( g2
1 ĉ† ĉ

�+2q−δ
+ �̃2

1
�′ +

�̃2
2

�′+2q )â†
0â0 + ( g2

2 ĉ† ĉ
�′−δ

)â−1â−1] + [�1�2ei2qt ( 1
�

+ 1
�+2q )â†

1â1+
�̃1�̃2ei2qt ( 1

�′ + 1
�′+2q )â†

0â0 + H.c.] induced by light fields is
neglected in Eq. (5) of the main text for three ground-state
levels. This term can be absorbed by the initial linear and
quadratic Zeeman shifts in ĤB. In fact, it is much smaller than
the Zeeman shifts for a reasonably sized bias magnetic field.

APPENDIX B: TIME-INDEPENDENT HAMILTONIAN
WITH FLOQUET-MAGNUS EXPANSION

Here we use a simple approach to derive the effective
Hamiltonian Ĥeff given in the main text. For the time-periodic
Hamiltonian,

Ĥgs(t ) = [(η1e−iωt + η2ei3ωt )â†
0â1ĉ†

+(η1ei3ωt + η2ei7ωt )â†
−1â0ĉ† + H.c.], (B1)

with ω = q/2, we can carry out the Floquet-Magnus expan-
sion [97] and keep terms up to the order of 1/ω. This yields
the time-independent Hamiltonian,

Ĥeff = 1

ω
[V̂1, V̂−1] + 1

3ω
[V̂3, V̂−3] + 1

7ω
[V̂7, V̂−7], (B2)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator of operators Â
and B̂ and we have

V̂1 = η1â†
1â0ĉ, V̂3 = η2â†

0â1ĉ† + η1â†
−1â0ĉ†,

V̂7 = η1â†
−1â0ĉ†, V̂m = 0 for m = other integers.

It is straightforward to work out all the terms, and we find

[V̂1, V̂−1] = η2
1(â†

1â1ĉĉ† − â†
0â0ĉ†ĉ) + η2

1â†
1â†

0â0â1[ĉ, ĉ†],

[V̂3, V̂−3] = (
η2

1â†
0â†

−1â−1â0 + η2
2 â†

0â†
1â1â0

)
[ĉ†, ĉ]

+η1η2(â†
0â†

0â1â−1 + â†
−1â†

1â0â0)[ĉ†, ĉ]

+ η2
1(â†

−1â−1ĉ†ĉ − â†
0â0ĉĉ†)

+η2
2(â†

0â0ĉ†ĉ − â†
1â1ĉĉ†),

[V7,V−7] = η2
2 â†

−1â†
0â0â−1[ĉ†, ĉ]

+η2
2 (â†

−1â−1ĉ†ĉ − â†
0â0ĉĉ†),

which give

Ĥeff · ω = (
1
3η2

2 − η2
1

)
â†

1â†
0â0â1[ĉ†, ĉ]

+(
1
3η2

1 + 1
7η2

2

)
â†

−1â†
0â0â−1[ĉ†, ĉ]
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+ 1
3η1η2(â†

0â†
0â1â−1 + â†

1â†
−1â0â0)[ĉ†, ĉ]

+(
η2

1 − 1
3η2

2

)
(â†

1â1ĉĉ† − â†
0â0ĉ†ĉ)

+(
1
3η2

1 + 1
7η2

2

)
(â†

−1â−1ĉ†ĉ − â†
0â0ĉĉ†).

Substituting ĉ†ĉ = 0 and ĉĉ† = 1 and taking η2
2 = 3η2

1 = 3η2,
the above equation reduces to the effective Hamiltonian,

Ĥeff = c̃

N
(â†

0â†
0â1â−1 + H.c.) − q̃0 â†

−1â†
0â0â−1 − q̃0 â†

0â0,

(B3)

where c̃ = −√
3Nη2/(3ω) and q̃0 = 16η2/(21ω) =

16
√

3|c̃|/(21N ). The residual density-density interaction
term ∝ â†

−1â†
0â0â−1 does not appreciably modify the

spin-mixing dynamics. Note that c̃ may be positive if we
choose an alternative cavity frequency condition to maintain
an opposite sign of two-photon detuning, thereby rendering
antiferromagnetic atomic spin-exchange interaction as in
23Na atoms.

APPENDIX C: TUNABILITY OF THE EFFECTIVE
QUADRATIC ZEEMAN SHIFT

We consider (ω1, ω2) → (ω′
1, ω

′
2) = (ω1 + q̃/2, ω2 +

5q̃/2), which gives ω′
1 − ω′

2 = 2(q − q̃), with |q̃| (
 q) being
a small deviation from 2q. The time-periodic Hamiltonian
then takes the form

Ĥ (t ) = {[η1e−i(q/2+q̃/2)t + η2ei(3q/2−5q̃/2)t ]â†
0â1ĉ†

+[η1ei(3q/2−q̃/2)t + η2ei(7q/2−5q̃/2)t ]a†
−1a0c† + H.c.}.

We now change to work in the rotating frame defined by Û ′ =
eiq̃â†

0 â0t and find

H̃ = {[
η1e−i( q

2 − q̃
2 )t + η2ei( 3q

2 − 3q̃
2 )t

]
â†

0â1ĉ†

+[
η1ei( 3q

2 − 3q̃
2 )t + η2ei( 7q

2 − 7q̃
2 )t

]
a†

−1a0c† + H.c.
} − q̃â†

0â0.

Following the same Floquet-Magnus approximation, we ar-
rive at

Ĥeff = c̃

N
(â†

0â†
0â−1â−1 + H.c.) − q̃0 â†

−1â†
0â0â−1

−q̃0â†
0â0 − q̃â†

0â0, (C1)

where c̃ = −√
3Nη2/(3ω), q̃0 = 16η2/(21ω), and ω =

(q − q̃)/2. Therefore, q̃ indeed behaves as an effective
quadratic Zeeman shift which can easily be tuned by changing
the difference of two pump laser frequencies.

APPENDIX D: PHASE SENSITIVITY

The optimal phase sensitivity is given by [23]

(�φ)2
opt = Vxz + 2�Ĵ2

z �Ĵ2
x

4
(〈

Ĵ2
x

〉 − 〈
Ĵ2

z

〉)2 , (D1)

with

Vxz = 〈(ĴxĴz + ĴzĴx )2〉 + 〈
Ĵ2

x Ĵ2
z + Ĵ2

z Ĵ2
x

〉 − 2
〈
Ĵ2

z

〉〈
Ĵ2

x

〉
,

where Ĵi=x,y,z is the collective spin operator for N spins 1/2.
The expectation of observables is defined as 〈Ô〉 ≡ Tr(ρ̂Ô)
for density matrix ρ̂.
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