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Tunable photon-mediated interactions between spin-1 systems
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The exchange of off-resonant photons between quantum optical emitters in cavity QED or quantum nanopho-
tonic setups induces interactions between them which can be harnessed for quantum information and simulation
purposes. So far, these interactions have been mostly characterized for two-level emitters, which restrict their
application to engineering quantum gates among qubits or simulating spin-1/2 quantum many-body models.
Here, we show how to harness multilevel emitters with several optical transitions to engineer a wide class
of photon-mediated interactions between effective spin-1 systems. We characterize their performance through
analytical and numerical techniques and provide specific implementations based on the atomic level structure
of Alkali atoms. Our results expand the quantum simulation toolbox available in such cavity QED and quantum
nanophotonic setups and open up different ways of engineering entangling gates among qutrits.
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I. INTRODUCTION

Nonlocal quantum correlations are the key resource
of most quantum information and simulation technolo-
gies [1–3]. One way of obtaining them between quantum
emitters is through the exchange of photons via their op-
tical transitions [4,5]. When such an exchange involves
mostly off-resonant photons, as occurs in the disper-
sive regime of cavity quantum electrodynamics (cavity
QED) [6–11] or in the “band-gap regime” of quan-
tum nanophotonic platforms [12–18], it induces coher-
ent photon-mediated interactions between the emitters
which can be harnessed for engineering entangling gates
[9,18–20] or simulating exotic many-body Hamiltonians
[10,12–14], among other applications. Since these interac-
tions can be longer ranged than in other platforms, they
provide a way of observing novel many-body phases, such as
supersolid [21–23], magnetic [24–27], or topological [28–31]
ones, difficult to obtain otherwise.

Remarkably, except for some studies [32–47], most stud-
ies have focused so far on characterizing these interactions
and their consequences between (effective) two-level systems.
This sets limitations, for example, on the types of gates that
can be engineered, i.e., only qubit gates, and the many-body
models that can be simulated, i.e., spin-1/2 systems. Since
quantum emitters, like atomic systems, can have a much richer
level structure, there is an increasing interest in the last few
years [48–51] on harnessing them to find exotic phenomena,
such as multicritical behavior in Dicke phase transitions [48]
or emergent dark entangled states [51], as well as to develop
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new applications, such as new multiphoton sources [51]. One
very attractive reason for considering multilevel emitters is
the possibility to engineer photon-mediated interactions be-
tween higher-dimensional spins, which can find applications
in the quantum simulation of nontrivial high-energy physics
problems [52–57], to prepare symmetry-protected topological
states in spin-1 chains [58,59], to solve complex optimization
problems [60], and, more generally, to engineer universal
quantum gates between spin-1 systems [61,62].

Here, we show how to harness multilevel emitters to en-
gineer different types of spin-1 photon-mediated interactions
(ZZ and XX ) in cavity QED and quantum nanophotonic se-
tups. For that, we use a combination of judiciously chosen
Raman-assisted transitions which connect the ground- and
excited-state levels that, after tracing out the photonic and
excited-state degrees of freedom, result in different photon-
mediated interactions between the effective spin-1 system
appearing in their ground-state manifold. To characterize
them, we use projection operator techniques for open quantum
systems [63] to find the effective dynamics and characterize
the performance of the interactions as entangling gates. We do
our analysis in two steps: first, in a platform-agnostic way, so
that our results can be of interest to different type of multilevel
emitters (such as quantum dots, vacancy centers, molecules
[62] or atoms), and then, particularizing for the multilevel
structure of a particular atom, i.e., rubidium. In the latter
case, we fully take into account the different Clebsch-Gordan
coefficients of the transitions and explain how to compensate
the corrections introduced by them. The text is structured as
follows: in Sec. II, we explain the general setup and theoret-
ical framework that we consider along the paper; in Sec. III
we analyze in a platform-agnostic way the different type of
photon interactions that can be obtained in these setups. Then,
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FIG. 1. (a) Left: full multilevel structure of the quantum emitters considered, differentiating between ground or slow (blue) and excited or
fast (red) state subspaces. We also depict the Raman lasers connecting them (represented by the Hamiltonian HL in the main text), the coupling
between the emitter and the quantized cavity or waveguide field (denoted HI ), and also the additional microwave driving generating transitions
between the ground and excited subspaces (Hm). Right: in the conditions where the excited states can be adiabatically eliminated (see the main
text for details), the evolution of the system can be captured by the effective light-matter Hamiltonian HI,eff with only transitions between the
ground-state levels. If the photon field can further be eliminated, one then obtains effective photon-mediated interactions between the ground
state levels of the different emitters. (b), (c) Schemes of the two photonic setups of interest: (b) Two emitters coupled to a nanophotonic
waveguide. When the emitter’s frequency lies within a band gap, their emission becomes localized, forming what has been called an atom-
photon bound state [64,65] (in red), which can mediate purely coherent interactions [12–14] between the emitters. (c) Two emitters trapped
inside an optical cavity. When the emitter’s optical transition are far off-resonance from the cavity transition, purely coherent interactions
between emitters are also generated

in Sec. IV we particularize for an atomic system, taking into
account the complexity introduced by the Clebsch-Gordan
coefficients. In Sec. V, we enumerate a few examples where
such spin-1 photon-mediated interactions can be exploited,
and finally in Sec. VI we summarize our main findings and
conclude.

II. SYSTEM AND THEORETICAL FRAMEWORK

The general setup that we consider in this paper is
sketched in Fig. 1: several multilevel quantum optical emitters
[Fig. 1(a)] are interfaced with the photonic modes confined
in a photonic waveguide [Fig. 1(b)] or cavity [Fig. 1(c)].
The multilevel structure of the emitters is comprised by a
ground (with slow dynamics) and an excited (with faster
dynamics) state manifold denoted by {|α〉} = {|1〉 , |2〉 , . . . }
and {|β̃〉} = {|1̃〉 , |2̃〉 , . . . }, respectively, and whose intrin-
sic Hamiltonians are Hs and Hf, with Hs = ∑

i

∑
α ωασ i

αα

and Hf = ∑
i

∑
β̃ ωβ̃σ i

β̃β̃
, where we use the notation σ i

αβ̃
=

|α〉i 〈β̃| for the atomic operators of the ith atom (we take h̄ = 1
throughout this paper).

The ground- and excited-state manifolds are connected by
two different mechanisms:

i. Through classical laser fields described by
Hamiltonians:

HL(t ) =
∑

i

∑
α,β̃

�i
αβ̃

2
σ i

αβ̃
eiωαβ̃ t + H.c., (1)

with �i
αβ̃

and ωαβ̃ being the amplitude and frequency of the

laser driving the α ↔ β̃ transition of the ith emitter (in general
we take the same amplitude for each emitter, �i

αβ̃
≡ �αβ̃).

ii. Via photon exchange with the cavity or nanophotonic
confined modes. We can describe both situations through the
following light-matter interaction Hamiltonian:

HI =
∑

i

∑
α,β̃

gi
αβ̃

σ i
αβ̃

A†
i + H.c., (2)

where gi
αβ̃

is the coupling strength of the α ↔ β̃-optical

transition of the ith atom to the photonic mode A†
i , which

would be A†
i = a† for the single-mode cavity QED setups if all

emitters couple to equivalent positions of the cavity, or A†
i =∑

k e−ik·ri a†
k for the case where the emitters interact with

the continuum of photon modes confined in a nanophotonic
structure. This light-matter Hamiltonian has to be comple-
mented by the one associated with the energy of the photonic
modes, which reads Ha = ωaa†a or Ha = ∑

k ω(k)a†
kak, for

the cavity and nanophotonic situation, respectively.
On top of that, we assume that there can be additional

couplings within the excited- or ground-state manifolds, e.g.,
using microwave drivings, described by

Hm(t ) =
∑

i

∑
β̃,β̃ ′

�i
β̃β̃ ′

2
σ i

β̃β̃ ′e
iωβ̃β̃′ t + H.c. (3)

Thus, the complete dynamics of the emitters and bath
system is given by a Hamiltonian with all previously de-
scribed contributions, i.e., H (t ) = Hs + Hf + Ha + HL(t ) +
HI + Hm(t ). However, both the cavity and excited-state levels
are generally subject to losses. This means that the system
must be described by a density matrix ρ(t ) whose dynamics
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is governed by the following Born-Markov master equation:

d

dt
ρ(t ) = i[ρ, H (t )] +

∑
j

[
LjρL†

j − 1

2

(
L†

j L jρ + ρL†
j L j

)]
,

(4)

where Lj are the different jump operators describing the noise
processes. For example, Lκ = √

κa accounts for the cavity
losses at rate κ , whereas Lγαβ̃

= √
γαβ̃σαβ̃ accounts for the

incoherent decay between the excited state β̃ and the ground
state α at rate γαβ̃ .

In this work, we are interested in the photon-mediated in-
teractions appearing in effective spin-1 systems arising in the
ground-state manifold. To obtain their shape, we adiabatically
eliminate the other degrees of freedom, that is, excited-state
and photonic ones, using the projection operator techniques
for open quantum systems developed in Ref. [63]. These
adiabatic elimination techniques can be applied when there
is a separation of timescales within the Hilbert space in which
some of states evolve much slower than the rest. Then, one can
define projection operators over the fast and slow subspaces,
denoted by Pf and Ps, respectively, satisfying Ps + Pf = 1
and PfPs = PsPf = 0. Using these operators, we describe the
interactions inside the ground (excited) subspace with Hs ≡
PsHPs (Hf ≡ PfHPf ), and the connections between them
with V+ ≡ Pf HPs (V− ≡ PsHPf = V †

+), with which one can
obtain an effective master equation for the slow subspace [63]:

d

dt
ρ(t ) = i[ρ, Heff] +

∑
j

L j
effρ

(
L j

eff

)†

− 1

2

[(
L j

eff

)†
L j

effρ + ρ
(
L j

eff

)†
L j

eff

]
, (5)

where we have introduced the effective Hamiltonian,

Heff = Hs − 1
2V−

[
H−1

NH + (
H−1

NH

)†]
V+, (6)

and the effective Lindblad operators L j
eff = LjH

−1
NHV+, defined

in terms of the non-Hermitian Hamiltonian used in the quan-
tum jump formalism,

HNH = Hf − i

2

∑
j

L†
j L j . (7)

Looking at Eq. (6), it can be seen that the accuracy of this
effective evolution will increase with the energy gap between
the ground and excited subspaces but will decrease as the
amplitude of the perturbative (de-) excitations V± grows. Fi-
nally, let us emphasize again that these expressions have been
obtained for ||Hs|| � ||HNH||, such that the evolution within
the slow subspace is neglected when compared with the fast
subspace.

III. GENERAL ANALYSIS OF EMERGENT SPIN-1
PHOTON-MEDIATED INTERACTIONS

In this section we apply the previously described formal-
ism in two steps: first, we eliminate the emitter excited-state
manifold to obtain an effective light-matter Hamiltonian as
in Eq. (2), but with renormalized parameters depending on
the laser configuration. Then, we eliminate the photonic field

FIG. 2. Minimal multilevel configuration to obtain a spin-1 Ising
ZZ interaction ground state manifold: one requires three ground-state
levels 1, 2, 3 to codify a spin-1 operator. Then, two of them must be
connected through a laser (blue) or cavity (red) field to an optically
excited state, as depicted in the picture.

under the Born-Markov assumptions [66] to obtain the ef-
fective photon-mediated interactions between spin-1 systems.
We illustrate it with two minimal examples of increasing
complexity and show how one can obtain effective ZZ and
XX interactions in these systems. For concreteness, we only
do the derivations for the cavity QED setup, i.e., A†

i = a† in
Eq. (2), although the expressions can be readily generalized to
the nanophotonic setups in the band-gap regime, as explained
in section IV C and shown with more detail in Refs. [12–14].
Besides, let us note that, in this section, we just explain the
minimal level structure required to obtain the different type of
interactions so that our findings can be of interest for different
types of emitters (quantum dots, vacancy centers, atoms, ...).
Then, in the next section (IV), we explain how to obtain these
configurations with alkali atoms.

A. ZZ interactions

1. Hamiltonian dynamics

Let us first illustrate the method explaining how to obtain
the simplest instance of a spin-1 interaction; that is, the Ising
ZZ interaction, Si

zS
j
z , with Si

z being the spin-1 Z operator of
the ith atom. Here, we discuss first the effective Hamilto-
nian evolution obtained, and then consider the non-Hermitian
terms in section III A 2. The minimal level structure required
is depicted in Fig. 2: one needs at least three ground-state
levels (1, 2, 3) to codify the spin-1 operators, which with
our notation can be written as Si

z = σ i
11 − σ i

33. To engineer the
nonlocal gates between emitters, one can connect states 1 and
3 to two optically excited states 1̃ and 3̃, as depicted in Fig. 2,
with laser fields and design the cavity structure so that it can
also connect back to 1 and 3.

Going to a rotating frame oscillating at the laser frequency
ωL of the lasers �11̃ and �33̃, the Hamiltonian part of the fast
subspace (excited-state levels plus cavity) reads

Hf =
∑

i

(

1σ

i
1̃1̃ + 
2σ

i
2̃2̃ + 
3σ

i
3̃3̃

) + 
aa†a, (8)

where 
k = ωk − ωL, with k = 1, 2, 3, a. The Hamiltonians
connecting the slow (ground-state manifold described by a
Hamiltonian Hs) and fast subspaces in this case are given by
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both the laser fields:

HL =
∑

i

(
�11̃

2
σ i

1̃1 + �33̃

2
σ i

3̃3 + H.c.

)
, (9)

and the light-matter Hamiltonian, which in this case reads

HI =
∑

i

(
gi

11̃σ
i
11̃a† + gi

33̃σ
i
33̃a† + H.c.

)
. (10)

Note that we intentionally assume that neither the cavity
mode nor the laser field couple the 2 state with any other
excited state, which is critical to obtain the right effective
Hamiltonian with the minimal number of ingredients. In
Sec. IV, we provide a way for this to be achieved using optical
selection rules in a realistic setup, e.g., in rubidium, were all
allowed transitions are considered.

With that separation between the different Hamiltonian
terms and assuming that the laser amplitudes and cavity
couplings are far smaller than their detunings, max|�αβ̃ | �
max|
i| (i = 1, 2, 3), and max|gαβ̃ | � max|
a| so that there
is a timescale separation between the two subspaces, we
can apply the projection operator technique explained in
the previous section, see Eq. (5), to adiabatically elimi-
nate the excited-state and photonic degrees of freedom to
obtain (the details of the derivation can be found in Ap-
pendix A)

Heff = Hs −
∑

i

[(

1|�11̃|2
4
2

1 + γ 2
1

σ i
11 + 
3|�33̃|2

4
2
3 + γ 2

3

σ i
33

)

+ 4
a

4
2
a + κ2

[|μi|2σ i
11 + |νi|2σ i

33

]] + Hint, (11)

with Hint being

Hint = − 4
a

4
2
a + κ2

∑
i 	= j

μiμ̄ jσ
i
11σ

j
11 + νiν̄ jσ

i
33σ

j
33

+ (
μiν̄ jσ

i
11σ

j
33 + μ̄iν jσ

j
11σ

i
33

)
, (12)

and where we have introduced the parameters

μi = 2�11̃ḡi
11̃


1

4
2
1 + γ 2

1

and νi = 2�33̃ḡi
33̃


3

4
2
3 + γ 2

3

(13)

to simplify the notation (the overbar means complex conju-
gate). Note that, although only Hamiltonian dynamics have
been considered up until now, the non-Hermitian contribution
coming from the photon-loss processes for both the excited-
state levels, Lγα

= ∑
i
√

γασ i
αα̃ , and cavity modes, Lκ = √

κa,
already enter these formulas, renormalizing the detunings.
Furthermore, as expected, we obtain two different terms: on
the one hand, the energies of the levels 1, 3 become shifted
by the interactions with the off-resonant laser or cavity fields,
as captured by Eq. (11). On the other hand, the exchange
of photons between atoms leads to a nonlocal exchange be-
tween different atoms, see Eq. (13), whose particular shape
depends on the atomic configuration chosen (�, g, 
). For
example, by choosing the parameters such that μi = −νi,
the state-dependent shifts of Eq. (11) become equal for both
levels. Thus, they can be removed, connecting both of them to
another far-detuned excited state to generate an additional ac

Stark shift of the same absolute value and opposite sign so that
they oscillate with the same phase as level 2. Another option
is to induce a similar shift on the 2 level by connecting it with
another independent excited state. Irrespective of the method
chosen, the effective dynamics of the ground-state manifold
can be mapped to a pure Ising spin-1 ZZ Hamiltonian:

Heff = Hs +
∑
i< j

Ji j
z Si

zS
j
z , (14)

with

Ji j
z = Re

[−8
aμiμ̄ j

4
2
a + κ2

]
. (15)

As a final remark, we note that, although the ZZ interac-
tion between qutrit systems only involves directly transitions
between two levels, the system can be initialized in a superpo-
sition state which also has a contribution from the uncoupled
level, so when applying the ZZ gate over this state the contri-
bution arising from this third level cannot be neglected. This
can be further understood when considering digital-analog
schemes, such as the one described later in Sec. V: a global
rotation in the qutrit Hilbert space will map the Si

z spin-1
matrices to Si

x spin-1 matrices (see Fig. 11), for example,
where it is then clear that all the three levels play a role.

2. Nonunitary contributions

In the previous section we considered only the effective
Hamiltonian dynamics induced. However, let us note that,
together with the effective Hermitian Hamiltonian in Eq. (14),
both the cavity and atomic decay rates, κ and γi, respec-
tively, induce nonunitary dynamics that will compete with the
effective unitary dynamics induced by the photon-mediated
interactions. In particular, the terms corresponding to sponta-
neous decay would lead to the operators

Leff
γ j

=
∑

i

� j j̃
√

γ j

2
 j − iγ j
σ i

j j, (16)

with γ j being the corresponding decay rate and j = 1, 3 (for
simplicity we take γ j := γ for all j). Meanwhile, the loss of
photons induces terms of the form

Leff
κ = 2

√
κ

2
a − iκ

∑
i

(
μiσ

i
11 + νiσ

i
33

)
. (17)

To compare the effects of these terms with the effective
coherent interaction given by Eq. (14), we can use the non-
Hermitian Hamiltonian of the quantum jump formalism with
the effective interaction and jump operators found, respec-
tively. We focus on the case where μi = −νi, which is the
situation of interest for this paper, assuming that all the pa-
rameters (�, g, 
, and γ ) are equal in absolute value for all
the levels. In that scenario, the non-Hermitian terms entering
the effective Hamiltonian to take into account the losses would
be ∑

j

Leff †
γ j

Leff
γ j

= |�|2γ
4
2 + γ 2

∑
i

Si 2
z and

Leff †
κ Leff

κ =
∑

i

4κ|μi|2
4
2

a + κ2
Si 2

z =
∑

i

Jii
z κ

2
a
Si 2

z . (18)
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Therefore, in the complete evolution of the system, there
are two competing processes: a coherent evolution according
to the effective Hamiltonian in Eq. (14), and the nonunitary
dynamics induced by the incoherent terms given by Eq. (18).
From the first one we find that the time needed to appreciate
the effects of the effective Hamiltonian is of order τ ∼ 1/Ji j

z .
Thus, the probability of inducing an error in the coherent
evolution in that period of time due to the losses would be
of order

εlosses ∼ τ

[ |�|2γ
4
2 + γ 2

+ 4κ|μi|2
4
2

a + κ2

]
, (19)

which becomes

εlosses ∼ 4
a

g2

[
γ + κ

( g


a

)2]
(20)

to first order in γ /
 and κ/
a. This expression shows the ex-
pected trade-off between canceling spontaneous emission or
cavity decay errors that occur in other cavity QED situations
with simple two-level emitters [12]. To reduce this value, we
may optimize εlosses as a function of 
a to find an optimal
detuning:


opt
a = g

√
κ

γ
, (21)

which yields an error scaling as εlosses ∼ 1/
√

C, where C =
g2/(κγ ) is the single-atom cooperativity [12].

However, apart from the errors coming from spontaneous
emission and photon decays, there might appear additional
errors due to deviations from the adiabatic elimination con-
ditions. In particular, it is necessary that the effective slow
subspace dynamics (with energy scale ∼Ji j

z ) is much slower
than the fast subspace dynamics (with corresponding energy
scale 
 ∼ 
a). We can then parametrize the errors introduced
by the projection onto the slow subspace as εapprox ∼ Ji j

z /
, so
the condition of different timescales means that εapprox � 1.
Imposing the optimal detuning in Eq. (21) and expanding the
result up to first order in γ /
 and κ/
a, we find the scaling

εapprox ∼ |�|2

2

|g|2



opt
a 


= |�|2

2

γ

κ



opt
a



= |�|2


2

γ




√
C. (22)

Thus, when comparing the expected quantum evolution
that could be found in a real setup (hence including the ex-
cited levels and also the non-Hermitian jump operators) with
the ideal one given only by the effective coherent part of
the photon-mediated interactions, the total error (that is, the
infidelity I between the states) will be such as

I = 1 − F ≈ εlosses + εapprox + · · · , (23)

where the dots include other possible terms of higher order or
origin that we do not consider in this discussion, and where
the fidelity F is defined as

F = Tr(
√√

ρρtarget
√

ρ)2. (24)

This quantity quantifies the overlap between the state ρtarget

obtained only with the effective Hamiltonian (that is, a fully
coherent evolution) and the actual ρ expected, including the
non-Hermitian contributions and also the excited levels. This

fidelity should be considered as the potential capability of the
setup to produce entangled quantum states in a coherent and
controlled way.

Therefore, according to Eq. (23), the cooperativity cannot
be increased indefinitely in order to completely reduce the
errors, since this will decrease εlosses but will increase εapprox.
If we fix the ratio �/
 (which sets a general timescale in
the dynamics and should not be excessively small, or the
dynamical evolutions would be quite slow), and aim to reduce
εlosses increasing the cooperativity, one needs also to keep the
ratio γ /
 low (or conversely, 
/γ high) in order to keep
εapprox small.

Let us now numerically benchmark the accuracy of all
these expressions and arguments by comparing the evolution
obtained using the effective operators against the exact, full
quantum evolution. We acknowledge that all the numerical
calculations shown in this paper have been performed with
the aid of the QUTIP package [67]. This comparison is what
we show in Fig. 3. There, we initialize two emitters in the state
|�(0)〉 = |m = 1〉x ⊗ |m = −1〉x and let them evolve with the
full Hamiltonian (solid lines) H = Hf + HL + HI [Eqs. (8)–
(10)] and the effective Hamiltonian shown in Eq. (14) (dotted
lines). In both cases we include the possible losses of atoms
and photons, properly projected onto the slow subspace for
the effective situation, and take Hs = 0, i.e., assuming that we
compensate the different ac Stark shifts between the ground-
state levels. First, in Fig. 3(a), we check how the dynamics
governed by the effective Hamiltonian (dotted) deviates from
the exact dynamics (solid) for system with different coopera-
tivities C, and a small ratio γ /
 so that the error introduced
by the projection operator technique, εapprox, is low. As ex-
pected, high values of the cooperativity show a behavior much
similar to the ideal case (perfect oscillations with period T =
2π/J , J := Jii

z , shown by black dashed lines), meanwhile the
simulations with C ≈ 1 show almost no coherent dynamics
because everything is governed by the nonunitary processes.
In Fig. 3(b) we fix the cooperativity to a large value, C = 104,
and move the ratio 
/γ , so that it explores situations where
εapprox becomes larger. There, we see how, for the smaller val-
ues of 
/γ ≈ 103, the dynamics of the effective Hamiltonian
(dotted) deviate significantly from the exact ones (solid). Note
that, in this case, the errors do not appear because of a predom-
inance of the nonunitary processes, but rather deviations from
the purely coherent dynamics. Thus, they induce systematic
errors that, in certain cases, could be corrected by choosing
appropriately gate times.

To give a quantitative estimation of the accuracy in both
cases, we also show in Fig. 3(c) the infidelity, Eq. (23), to
quantify the total error between the Hermitian effective evo-
lution and the actual one including the losses. In both cases
we fix ttarget = π/J and use the parameters in Figs. 3(a) and
3(b) for the top and bottom panels, respectively. The top
panel shows indeed that the expected error decreases as the
cooperativity is increased as long as γ /
 � 1, so the contri-
bution from εapprox can be neglected. Under these conditions,
I ≈ εlosses, and we find a numerical scaling of I ∼ 1/C0.46

[Fig. 3(c), inset on the top panel] in approximate agreement
with the εlosses ∼ 1/

√
C discussed above (the slope tends to

0.5 as bigger values 
/γ are considered, since this reduces
the effect of the other contributions to the error). On the other
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FIG. 3. (a) Mean values of the 〈Si
x〉 operators as functions of time for two multilevel quantum emitters interacting with a quantized mode

and driven with an external field, according to the scheme in Fig. 2 and including losses, for different values of the cooperativity C = g2/(κγ ).
The solid lines show the numerical calculation considering the system’s slow and fast subspaces while the dots correspond to the effective
operators obtained in Eqs. (14) and (18). The initial state was |�(0)〉 = |m = 1〉x ⊗ |m = −1〉x , and the parameters were 
1 = 
3 := 
,
�1 = �3 = 
/20, 
opt

a = −100
, g3 = −g1 = √
γ /κ
opt

a . γ ranges from 
/105 to 
/103 and γ /κ = 10−5 (the dashed lines show the
ideal evolution, with γ , κ → 0 and therefore C → ∞). (b) Same as in panel (a) but keeping the cooperativity constant at C = 104 and instead
modifying the value of the rate of spontaneous emission against the detuning, 
/γ , while κ = |
opt

a |/√C. Note that all the effective evolutions
collapse onto the same dots. (c) Top panel: Infidelity where the fidelity, as defined in Eq. (23), quantifying the overlap between the state
ρtarget at t = π/J [J := Jii

z , Eq. (15)] obtained with a coherent effective and the actual state including the fast subspaces and non-Hermitian
contributions, taking the same parameters as in panel (a). The inset shows the same plot on a log-log scale, with a numerical line fit of slope
≈0.46 superimposed. Bottom panel: Same as in the top panel but now using the parameters of panel (b) and plotting the infidelity as a function
of 
/γ . The inset shows a numerical line fit of slope ≈ − 1.09 superimposed.

hand, the bottom panel of Fig. 3(c) confirms that keeping a
high value of the cooperativity (C = 104) is not enough to
obtain an accurate effective evolution, since the actual dy-
namics including the whole Hilbert space can be different if

/γ is not big enough. In particular, we see that the total
error decreases as 
/γ is increased up to a constant value
(which is given by the error due to the losses, εlosses, that is
fixed by the finite value of the cooperativity), and the linear
fit to the log-log plot around this region shown in the inset of
the bottom panel of Fig. 3(c) yields a scaling of I ≈ εapprox ∼
(
/γ )−1.09, in agreement with Eq. (22) [a more detailed study
of these arguments can be found in Appendix B, were we
extend the top and bottom panels of Fig. 3(c) for more values
of γ /κ and C, respectively, to unveil the different sources of
errors in the total I].

B. XX interaction

1. Hamiltonian dynamics

Let us now consider how to engineer one type of interac-
tion which involves explicitly all the ground-state levels, e.g.,
the XX Hamiltonian Si

xS j
x + Si

yS j
y = (Si )†S j + (S j )†Si, with

Si
x and Si

y being the spin-1 operators (once again, we will focus
here on the purely Hamiltonian case and leave the discussion
concerning the nonunitary dynamics to Sec. III B 2). These
operators can be codified in a ground-state manifold like the
one depicted in Fig. 4 as follows:

S j
x = σ

j
12 + σ

j
23 + H.c.√
2

,

S j
y = −iσ j

12 − iσ j
23 + H.c.√
2

. (25)

To obtain that type of interaction, one needs to induce
photon-exchange processes which change the atomic state
from m ↔ m ± 1. Thus, the simplest configuration for the
optically excited states which can do that is the one depicted
in Fig. 4, in which the Raman lasers connect the excited states
through the following Hamiltonian terms:

HL =
∑

i

[
�12̃

2
σ i

12̃ + �23̃

2
σ i

23̃

]
+ H.c., (26)

FIG. 4. Minimal multilevel configuration to obtain an effective
spin-1 XX -type interaction between emitters coupled to a single-
mode photonic field. Although it does not need to be forbidden, the
transition |1〉 ↔ |1̃〉 is not shown here since it does not enter in the
effective dynamics.
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whereas the light-matter interaction term reads

HI =
∑

i

gi
22̃σ

i
22̃a† + gi

33̃σ
i
33̃a† + H.c., (27)

both already written in a rotating frame with the laser fre-
quency ωL. Note that we did not write explicitly the 1 ↔
1̃ transition because, with that laser configuration, it will
not play a role in the dynamics. Moreover, the jump (or
Lindblad) operators considered in this case not only need
to include the two possible channels of decay from the ex-
cited states to the ground ones via spontaneous emission,
Lγ2,1 = ∑

i
√

γ2σ
i
12̃

, Lγ2,2 = ∑
i
√

γ2σ
i
22̃

, Lγ3,1 = ∑
i
√

γ3σ
i
23̃

,
and Lγ3,2 = ∑

i
√

γ3σ
i
33̃

, but also need to include the loss of
photons, Lκ = √

κa.
Furthermore, the Hamiltonian of the fast subspace has the

same form than the one written in Eq. (8). Then, under the
conditions in which the fast subspace levels can be adiabat-
ically eliminated, max|�αβ̃ | � max 
i for the atomic case
(i = 1, 2, 3) and max|gαβ̃ | � max|
a| for the field case, one
arrives to the following effective Hamiltonian for the ground-
state subspace (see Appendix A 2 for details):

Heff = Hs −
∑

i

(

2|�12̃|2

4
2
2 + 4γ 2

2

σ i
11 + 
3|�23̃|2

4
2
3 + 4γ 2

3

σ i
22

+ 4
a|ξi|2
4
2

a + κ2
σ i

11 + 4
a|ηi|2
4
2

a + κ2
σ i

22

)
+ Hint, (28)

where the interaction term Hint now reads

Hint = − 4
a

4
2
a + κ2

∑
i 	= j

[
ξiξ̄ jσ

i
21σ

j
12 + ηiη̄ jσ

i
32σ

j
23

+ ξiη̄ jσ
i
21σ

j
23 + ξ̄ jηiσ

i
32σ

j
12

]
, (29)

written in terms of the parameters

ξi = 2�̄12̃gi
22̃


2

4
2
2 + 4γ 2

2

and ηi = 2�̄23̃gi
33̃


3

4
2
3 + 4γ 2

3

. (30)

Setting ξi = ηi, the interaction Hamiltonian then becomes
the desired XX Hamiltonian

Hint =
∑
i< j

Ji j
XX

(
Si

xS j
x + Si

yS j
y

)
, (31)

with overall strength given by

Ji j
XX = Re

[−4ξiη̄ j
a

4
2
a + κ2

]
. (32)

However, differently from the ZZ ones, where the energy
shifts between the 1, 3 levels become equal for μi = −ν j ,
here the Stark shifts generated by the lasers [first line in
Eq. (28)] are different for the condition ξi = ηi. This generates
an effective detuning between the 2 ↔ 1 transition which in
the limit where γi � |
i| reads

δ21 ≈ |�23̃|2
4
3

(
1 − g33̃

g22̃


2


3

)
. (33)

Such detuning can then be canceled by choosing g33̃
2 ≈
g22̃
3, or by connecting one of the two states (2 or 1) to

another far-detuned excited state to generate another addi-
tional ac Stark shift of the same order and opposite sign.
However, in the different realizations, such as those discussed
in Sec. IV), other ac Stark shifts than those discussed here
could appear. Thus, the particular way to deal with these shifts
would depend on the emitter chosen.

As a final remark, in the cases where the laser driving
is linearly polarized and couples states m ↔ m̃, it should
be the cavity or nanophotonic transtion the one that couples
m ↔ ˜m ± 1. However, in that case, one typically needs to
include both the left and right circularly polarized modes, see,
e.g., Ref. [51], unless one exploits chiral quantum optic setups
[68]. In any case, the resulting interactions can also be made
to emulate an effective XX Hamiltonian.

2. Nonunitary contributions

Regarding the effective jump operators of the induced evo-
lution, we find the operators

Leff
γ j ,1 =

∑
i

� j−1, j̃
√

γ j

2
 j − 2iγ j
σ j−1, j, (34)

Leff
γ j ,2 =

∑
i

� j−1, j̃
√

γ j

2
 j − 2iγ j
σ j−1, j (35)

for the spontaneous decay from the atomic excited states,
whereas the photon losses induce another one given by

Leff
κ = −2

√
κ

2
a − iκ

∑
i

(
ξiσ

i
21 + ηiσ

i
32

)
. (36)

These operators are proportional to the same parameters
as those derived in the previous section for the ZZ interac-
tion, so an identical analysis concerning the losses as that
in section III A 2 could be made to find the same scaling of
the expected errors εlosses ∼ 1/

√
C, again competing against

the accuracy of the adiabatic elimination [as can be seen in
Figs. 5(a) and 5(b)]. Moreover, note that, for the high cooper-
ativity case (C = 103 − 104) and considering a moderate rate
of spontaneous emission (γ /
 � 10−5), both the evolutions
considering the whole Hilbert space (with solid lines) and the
effective ones (with dots) match the ideal coherent evolution
(represented with black dashed lines), although this agreement
is worse as time increases. This situation justifies a simplified
analysis in Sec. IV B, where we study the capability of our
system to entangle a pair of atoms in a controlled way consid-
ering an ideal coherent evolution, since one only requires the
first quarter period (t/T = 1/4, where T = 2

√
2π/J for this

initial state).

3. Recovering an Ising-type interaction

Furthermore, as a fundamental difference with the two-
level case, the rich multilevel manifold that we have in this
case allows the use of more ingredients in our models, lead-
ing to different ways to obtain the same interactions (which
can be more or less useful depending on the experimental
platform considered). In particular, we can slightly modify
the configuration proposed in Fig. 4 including another Raman
laser driving transitions in the opposite direction, as shown
in Fig. 6. This modification differs from the previous one in
two aspects: first, the transition |1〉 ↔ |1̃〉 now enters in the
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FIG. 5. (a) Values of 〈Si
z〉 as function of time (during a half pe-

riod, T = 2
√

2π/J for the considered initial state) for two multilevel
quantum emitters interacting with a quantized mode and driven by an
external field, according to the scheme in Fig. 4 and including losses,
for different values of the cooperativity C = g2/(κγ ). The solid lines
show a calculation considering the whole Hilbert space, while the
dots correspond to the effective operators obtained in Eqs. (31) and
(34)–(36) (for the coherent part and the losses, respectively, while
removing the ac Stark shifts of the ground-state manifold and tak-
ing Hs = 0). The initial state was |�(0)〉 = |m = 1〉z ⊗ |m = −1〉z,
and the parameters are 
2 = 
3 := 
, �12̃ = �23̃ = 
/20, 
a =
−100
, g22̃ = g33̃ = √

γ /κ
a (so 
a minimizes the losses) and γ

and κ are taken as described in Fig. 3. (b) Same as in panel (a), but
keeping the cooperativity constant at C = 104 while modifying the
rate of spontaneous emission, γ /
 keeping κ = |
opt

a |/√C to obtain
the optimal detuning. Note that the effective evolutions collapse onto
the same dots. In both figures we plot the ideal coherent evolution
with a black dashed line.

dynamics, and, second, the driving term in Eq. (26) becomes

HL =
∑

i

�12̃

2
σ i

12̃ + �23̃

2
σ i

23̃ + �12̃

2
σ i

21̃ + �32̃

2
σ i

32̃ + H.c.

(37)
The discussion is almost equal to that in Sec. III B 1 (for
simplicity in notation, now we only take into account the
jump operators inducing π transitions), where the effective
Hamiltonian projected onto the slow or ground subspace now

FIG. 6. Multilevel configuration to obtain an effective spin-1
Ising-type interaction between emitters coupled to a single-mode
photonic field, as a minimal variation of the setup in Fig. 5 used to
obtain an XX interaction.

reads

Heff = Hs −
∑

i

(

2|�12̃|2
4
2

2 + γ 2
2

σ i
11 + 
3|�23̃|2

4
2
3 + γ 2

3

σ i
22 (38)

+ 
1|�12̃|2
4
2

1 + γ 2
1

σ i
22 + 
2|�23̃|2

4
2
2 + γ 2

1

σ i
33 + 4
a|ξi|2

4
2
a + κ2

σ i
11

+ 4
a(|ηi|2 + |ζi|2)

4
2
a + κ2

σ i
22 + 4
a|ϕi|2

4
2
a + κ2

σ i
33

)
+ Hint,

with an interaction term Hint that reads

Hint = − 4
a

4
2
a + κ2

∑
i 	= j

(
ξiσ

i
21 + ηiσ

i
32 + ϕiσ

i
23 + ζiσ

i
12

)

× (
ξ̄ jσ

j
12 + η̄ jσ

j
23 + ϕ̄ jσ

j
32 + ζ̄ jσ

j
21

)
. (39)

The condition to be imposed now is that ξi = ηi = ϕi = ζi,
and this leads to an interaction term of the form:

Hint =
∑
i< j

Ji j
IsingSi

xS j
x , (40)

with strength

JIsing = Re

[−8ξiξ̄ j
a

4
2
a + κ2

]
. (41)

The Hamiltonian in Eq. (40) is an Ising-type interaction, but
now it is defined along the X axis (instead of the Z axis, as was
the case for the ZZ interaction derived in Sec. III A). On the
one hand, this feature highlights the versatility of multilevel
emitters to obtain different types of interactions. Besides, the
similarities between the configurations shown in Figs. 5 and
6, which only differ by a single laser, allow for a simple
transition from the XX interaction to the Ising one, which can
be used to perform digital-analog quantum simulation of spin
models with a reduced number of Trotter steps (see Sec. V for
more details).

IV. PARTICULARIZING TO ATOMIC EMITTERS

After having derived the general conditions to obtain ZZ
and XX spin-1 Hamiltonians, we now particularize for spe-
cific multilevel quantum emitters. A particularly appealing
system is that of alkali atoms, such as rubidium, where a
natural ground and excited-state multilevel structure appears
due to the coupling between the electronic and nuclear degrees
of freedom. This coupling generates a set of multiplets in the
ground (and optically excited) states characterized by their
total angular momentum F (F̃ ), which are well separated in
energy and thus can be addressed independently. Besides,
each hyperfine level contains 2F + 1 (2F̃ + 1) degenerate
states distinguished by their angular-momentum projection
over a fixed axis mF (mF̃ ), which we take as ẑ without loss
of generality, and which can be labeled mF = −F,−F +
1, . . . , F − 1, F . Note that these levels can also be separated
in energy by applying a magnetic field. Thus, a ground state
with hyperfine angular momentum F = 1 represents an excel-
lent candidate to encode the spin-1 system that we require to
obtain the interactions developed in the previous Sec. III.

However, a complication arises from the angular-
momentum origin of these subspaces, which is that the
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TABLE I. Clebsch-Gordan coefficients corresponding to the
|F̃ , mF̃ 〉 → |F = 1, mF 〉 π transitions in the D1 line of 87Rb taken
from Ref. [69].

mF = 1 mF = 0 mF = −1

F̃ = 2
√

1/4
√

1/3
√

1/4
F̃ = 1 −√

1/12 0
√

1/12

connection between the ground and excited levels has cer-
tain limitations imposed by the optical selection rules and
Clebsch-Gordan (CG) coefficients. For example, optical se-
lection rules only allow transitions such as mF̃ = mF + q,
with q ∈ {0,±1} being the units of angular momentum that
the photon mediating the transition carries. Besides, each
transition is weighted by a different CG coefficient given by
CmF

q ≡ 〈F, mF ; 1, q|F̃ , mF + q〉. This means that, if one shines
a laser with a frequency ωL and a given amplitude over the
atoms, the driving term must be written as

Hq
d =

∑
i

(
�

2
Si †

q e−iωLt + H.c.

)
, (42)

where

Si †
q =

∑
mg

CmF
q σ i

F̃mF −q,FmF
, (43)

with σ i
F̃mq−q,Fmq

= |F̃ , mF − q〉i 〈F, mF | being the atomic co-

herence operator between states |F, mF 〉 and |F̃ , mF − q〉. The
same happens with the light-matter interaction Hamiltonian
which has also to be weighted by the same coefficients:

Hq
I = g

∑
i

(
Si †

q aq + H.c.
)

(44)

(in the following, we include the Clebsch-Gordan coefficients
into the amplitudes for each atomic transition). Overall, these
limitations make that generating the simplified level structure
depicted in Figs. 2 and 4 requires additional engineering. In
what follows, we explain how to obtain it using the Rb or Na
atomic level structure.

A. Engineering ZZ interactions

Let us start with the simpler case of the ZZ interactions.
According to the level scheme of Fig. 2, one requires that lin-
early polarized lasers which connect the mF = ±1 ↔ mF̃ =
±1 transitions, while leaving the state mF = 0 unaltered.
Interestingly, according to the selection rules (see Table I),
the transition |F = 1, mF = 0〉 ← |F̃ = 1, mF̃ = 0〉 is forbid-
den, so that condition would come for free by considering a
F = 1 ← F̃ = 1 level scheme. However, the other condition
is that μi = −νi in Eq. (13) so that the system engineers a
perfect ZZ interaction. Since the CG coefficient between the
mF = ±1 ↔ mF̃ = ±1 transitions that appears in both gii and
�ii is equal in absolute value, the only way to achieve that con-
dition with only that level would be by imposing 
−1 = −
1.
In principle, one can achieve that by using a magnetic field
that yields a Zeeman splitting between the mF̃ = ±1 at a rate
−0.2 MHz/G. However, this also breaks the degeneracy in the
ground-state subspace at even larger rate −0.7 MHz/G, which

FIG. 7. Proposed configuration to obtain an effective ZZ inter-
action between multilevel quantum emitters. It uses the D1 line in
87Rb. The excited levels with mF̃ = ±2 have not been plotted here
since they do not play a role in the proposed scheme.

breaks the assumptions under which the effective dynamics of
Eqs. (5) and (6) is obtained. Thus, one needs to search for
alternatives.

One possibility is depicted in Fig. 7: it consists in using
the F = 1 ↔ F̃ = 1 to couple to the cavity or nanopho-
tonic mode to take advantage of the forbidden transition,
but then driving it through an effective two-photon transi-
tion through the F = 2 manifold, i.e., |F = 1, mF = ±1〉 ↔
|F̃ = 2, mF̃ = ±1〉 ↔ |F̃ = 1, mF̃ = ±1〉, using a laser (mi-
crowave) field �mF mF̃

(�MW
mF

), respectively. Under the con-
ditions that the F̃ = 2 states can be adiabatically eliminated
(see Appendix A), the resulting effective driving between the
F = 1 ← F̃ = 1 transition reads

H eff
L =

∑
i

(
�eff

1

2
σ i

11̄ + �eff
2

2
σ i

22̄ + �eff
3

2
σ i

33̄ + H.c.

)
, (45)

with �eff
j ≡ −2� j j̄�

MW
j 
2/(4
2

2 + γ 2
2 ), with γ2 being the

rate of spontaneous emission from that level and where we
have introduced the detunings from the F̃ = 1 and F̃ = 2
transitions, respectively, as


1 = ω1 − ωL + ωMW and 
2 = ω2 − ωL, (46)

where we also include the effect of the microwave driv-
ing (the details can be found in Appendix A 1 b). The
key point is that the CG coefficients for the laser
transition |F = 1, mF = ±1〉 ↔ |F = 2, mF = ±1〉 and mi-
crowave transitions are equal (see Tables I and II),
whereas those of the transition |F = 1, mF = ±1〉 ↔
|F = 1, mF = ±1〉 have different sign. This makes �eff

1 =
�eff

−1 while gi
11 = −gi

33, the parameters required to satisfy the
condition μi = −νi of Eq. (13). Note also that, with that effec-
tive driving H eff

L term, the Hamiltonian describing the physics
are formally equivalent to those used in Sec. III A except for
the additional driving of |F = 1, mF = 0〉 level because the
transition to the |F̃ = 2, mF = 0〉 is not forbidden. Thus, by

TABLE II. Clebsch-Gordan coefficients corresponding to the
|F̃ , mF̃ 〉 → |F̃ = 1, mF 〉 π microwave transitions in the D1 line of
87Rb taken from Ref. [70].

mF̃ = 1 mF̃ = 0 mF̃ = −1

F̃ = 2 −√
3/4 −1 −√

3/4
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adiabatically eliminating the F̃ = 1 states and the photonic
modes, we arrive to the desired ZZ Hamiltonian with an
additional ac Stark shift:

HZZ ,eff = Hs +
∑
i< j

Ji j
z Si

zS
j
z +

∑
i

(δ1 − δ0)Si 2
z , (47)

with Ji j
z being

Ji j
z = − 2
a

4
2
a + κ2

|�|2|�MW|2|g|2
2
2


eff 2
1,±1(

4
2
2 + γ 2

2

)2(
4
eff 2

1,±1 + γ 2
1

)2 , (48)

and

δk = 4|�kk̃|2|�MW
k |2
2

2

eff
1,k(

4
2
2 + γ 2

2

)2(
4
eff 2

1,k + γ 2
1

) , (49)

where 
eff
1, j = 
1 − |�MW

j |2
2/(4
2
2 + γ 2) and 
a = ωa −

ωL + ωMW . Note that this ac Stark shift can be compensated
by connecting off-resonantly with another excited state in
such a way that generates another Stark shift with the opposite
sign.

Finally, let us benchmark numerically that indeed all the
approximations we made are correct, such that the dynamics
of the multilevel emitter of Fig. 7 is captured by Hamiltonian
Heff of Eq. (47). For that, we assume to be in the conditions
where δ1 = δ0 and consider that Hs describes an additional
transverse field of the spin-1 system, i.e., Hs = h

∑
i Si

x, which
can be obtained through a microwave field or with additional
two-photon Raman-assisted processes. In Fig. 8(a), we ini-
tialize two atoms in the |ψ (0)〉 = |m = 1〉 ⊗ |m = −1〉 state
and let them evolve with the effective Hamiltonian of Eq. (47)
(dotted lines) and the full Hamiltonian of the multilevel struc-
ture of Fig. 7 (solid lines) for a transverse field h/J ≈ 0.5. The
different colors indicate different driving amplitudes �/
 to
show how the agreement becomes better as �/
 → 0. Be-
yond the dynamics, another magnitude of interest that one can
inspect is how well the Hamiltonian can capture the ground
states of the interacting models. This is what we illustrate in
Fig. 8(b), where we plot the fidelity of the ground state of
the effective model vs the one of the full Hamiltonian. As ex-
pected again, the smaller �/
, the better the agreement, since
this is the regime where adiabatic elimination is expected to
work. Note that these simulations have been made assuming
κ = γi = 0 to focus on the effects on the deviations in the
purely Hamiltonian simulation.

B. Engineering XX interactions

To engineer the XX Hamiltonian we also use the multilevel
structure appearing in the D1 line of rubidium, as depicted
in Fig. 9. Differently from the ZZ case, now the cavity field
should be closer to the F̃ = 2 levels, so that they couple
preferentially to them. The reason is that, in this case, we
need the transition between the mF = 0 ↔ mF̃ = 0 to be ac-
tive, something that cannot be obtained by using the F̃ = 1
states as the intermediate states due to the optical selection
rules. Besides, the laser connecting the ground (F = 1) and
optically excited (F̃ = 2) states must be circularly polar-
ized, so that it enables the effective transitions mF ← mF ±
1 exchanging a cavity or nanophotonic photon. However,

FIG. 8. (a) Mean values of the 〈Si
z〉 operators for two atoms

interacting with the electromagnetic field as a function of time for
different driving strengths � [Eq. (42)]. The solid lines are the
numerical results obtained with a full calculation that considers both
the slow and the fast subspaces, whereas the dots correspond to the
effective evolution given by (14), taking in both cases Hs = h

∑
i Si

x .
The initial state was |�(0)〉 = |m = 1〉 ⊗ |m = −1〉, while the pa-
rameters were 
1 = 
2 :≡ 
 (the microwave in resonance with the
F̃ = 2 ↔ F̃ = 1 transition), 
f/
 = 2, �MW = −2�, g/
 = 1/5,
and h/
 = 5/3 × 10−7. The amplitude J of the effective Ising evo-
lution for each case was of order J/
 ≈ 10−7 [given by Eq. (15)].
(b) Close detail of panel (a) showing how the accuracy of the ef-
fective evolution decreases as �/
 increases (we show here half of
the lines). (c) Fidelity, defined as F = Tr(

√√
ρρeff

√
ρ )2, between

the ground state of a two-qutrit spin-1 Ising model according to
Eq. (14) and the ground state of the full Hamiltonian including also
the excited subspaces and the cavity mode for two atoms (tracing
the extra degrees of freedom). These simulations were made with
κ = γi = 0.

similarly to what occurs for the ZZ interaction, the different
CG coefficients for the circularly polarized transitions (see
Table III) again complicates obtaining the desired conditions
to achieve the pure XX Hamiltonian, i.e., ξ = η in Eq. (30).
In fact, if the detuning between the three transitions is the
same, achieving ξ = η is not possible due to the different

FIG. 9. Proposed configuration to obtain an effective XX inter-
action between multilevel quantum emitters. It uses the D1 line in
87Rb, and we set the microwave in resonance with the transition F̃ =
1 ↔ F̃ = 2, so ωMW = ω2 − ω1 and hence 
1 = ω1 − ωL + ωMW =

2 = ω2 − ωL ≡ 
. Although they are allowed, the transitions in-
volving the mF̃ = 1 levels are not shown here since they do not enter
into the effective dynamics.
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TABLE III. Clebsch-Gordan coefficients corresponding to the
|F̃ , mF̃ 〉 → |F = 1, mF − 1〉 σ− transitions in the D1 line of 87Rb
used in Fig. 9.

mF = 1 mF = 0 mF = −1

F̃ = 2 −√
1/12 −√

1/4 −√
1/2

CGs of the |F = 1, mF = 1(0)〉 ↔ |F̃ = 2, mF = 0(−1)〉 ↔
|F = 1, mF = 0(−1)〉 transitions.

A possible way out is to harness the F̃ = 1 levels as de-
picted in Fig. 9 to induce a state-dependent ac Stark shift on
the excited levels via a resonant microwave field. In fact, if
the intermediate level (detuned by 
1 ≡ ω1 − ωL + ωMW ) is
adiabatically eliminated first, the effect over the excited-state
levels of F̃ = 2 is to renormalize their energies by

δmF̃
= −|CmF̃

|2|�MW|2
4
1

, (50)

where CmF̃
are the CG coefficients written in Table II. Such

state-dependent shifts add up to the effective laser detuning
between the F = 1 ← F̃ = 2 transitions, 
2 ≡ ω2 − ωL, and
thus can be used a tuning knob to compensate the CG and
enforce the condition ξ = η. In fact, in Appendix A 2 b we
show that the microwave amplitude for which this occurs is
such that

|�MW| =
√

8

3

1
2. (51)

Imposing that value, one indeed obtains the desired XX
interaction, plus a correction introduced by additional state-
dependent ac Stark shifts that appear between the F = 2
states:

HXX ,eff = Hs + HStark +
∑
i< j

Ji j
XX

(
Si

xS j
x + Si

yS j
y

)
, (52)

where now Ji j
XX reads (up to first order in γ /
 and κ/
a)

Ji j
XX = − 1

16

|�|2|g|2

2
a

, (53)

where condition (52) is already satisfied and 
a = ωa − ωL +
ωMW . Furthermore, we have included the ac Stark shifts into
the term HStark, that can be rewritten as

HStark =
∑

i

ε01
i + ε1 − ε−1

2
Si

z + ε1 + ε−1 − 2ε0

2
Si 2

z , (54)

where 1i is the unit operator and εi = |Ci|2|�|2/(4
eff
2,i ), with

Ci being each of the Clebsch-Gordan coefficients in Table III.
These are different for each transition, so the Hamiltonian
HStark in Eq. (54) includes the terms proportional to Si

z and the
terms proportional to Si 2

z , so both of them mask the effective
evolution given by the pure XX Hamiltonian. In principle, two
extra off-resonant lasers could be used to remove these terms,
properly adjusting the detunings and amplitudes, but this in-
troduces an extra experimental complication in our proposal.
Thus, we consider a situation in which the ac Stark shifts
are not completely removed, and instead only the condition
ε1 = ε−1 is satisfied. This could be achieved using a circularly

polarized laser coupled off-resonantly to transitions in the D1

line or even by using a constant magnetic field to cancel the
Si

z term using a Zeeman term appearing in Hs (however, our
conclusions regarding the effect of the remaining ∝Si 2

z term
can be easily applied to a case were the ∝Si

z term is not fully
eliminated).

In the following, we numerically benchmark that indeed
the dynamics of the effective model in Eq. (52) captures the
physics of the full Hamiltonian and how it is able to entangle
two atoms despite an incomplete elimination of the ac Stark
shifts, which would lead to a term HStark = D

∑
i Si 2

z . To do so,
we first start from an initial atomic state |�(0)〉 = |mF = 1〉 ⊗
|mF = −1〉 and let it evolve under the full Hamiltonian (solid
lines), showing also the effective evolution according only to
the corresponding effective XX Hamiltonian, with J given by
Eq. (53) (with blue dots). Thus, in Fig. 10(a) we first check
the accuracy of the adiabatic elimination as the amplitude
of the driving term is increased studying the values of 〈Si

z〉.
Remarkably, although a high-amplitude driving populates the
excited levels and reduces the accuracy of the effective Hamil-
tonians, we find a very similar evolution up to the first quarter
of period (that is only kept in the lower-amplitude case as time
increases). Furthermore, this good agreement for shorter times
is also kept when the ac Stark shifts are not fully eliminated,
as it can be seen in Fig. 10(b).

Moreover, since we are interested in the controlled and
coherent generation of entangled atomic states, we also check
the fidelity between the state resulting from the evolution un-
der the full Hamiltonian in a case were the Stark shifts are not
fully eliminated (hence leading to an anisotropy term propor-
tional to D) and the one obtained with only the effective XX
term at t = T/4 in Fig. 10(c). We consider different driving
amplitudes �/
 and also different anisotropies D/J . We find
that small values of �/
 lead to fidelities up to >95% even if
the ac Stark shifts are not fully compensated, which means
that it is possible to create entangled states in a controlled
way using this setup, even considering practical limitations.
Finally, note that, for fixed D/J , the fidelity as a function
of �/
 in Fig. 10(c) shows oscillations when the amplitude
increases. To understand this effect, we have included an inset
of Fig. 10(a) in Fig. 10(d), where it can be seen that the
smaller oscillations in 〈Si

z〉 as �/
 grows, due to the increased
population in the fast subspace. This leads to crossings in the
observables, making some fidelities at t = T/4 higher even
if the accuracy of the global adiabatic elimination would be
worse.

C. Differences between the cavity and nanophotonic setups

Although at the beginning of the paper we highlighted
that our results could be applied to both atoms coupled
to nanophotonic structures [Fig. 1(b)] and inside a cavity
[Fig. 1(c)], we focused on the latter for the derivations. The
difference in the nanophotonic setup is that atoms can couple
to any of the possible modes of a band with energy dispersion
ω(k), and this modifies the final interaction amplitude and
also its range. Now, we show the main differences between
both setups, following closely Refs. [12–14].

In particular, any product of terms of the form
gigj
a/(4
2

a + κ2) derived previously would need to be
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FIG. 10. (a) Mean values of 〈Si
z〉 for two atoms interacting with the electromagnetic field as a function of time for different driving strenghts

� (Eq. (42)), where we have normalized the time using the period of coherent ideal oscillations for this initial state evolving only under Hint,
T = 2

√
2π/J , with J := Ji j

X X . Solid lines show numerical solutions considering the slow and fast subspaces and the dots correspond to the
effective evolution given by Eq. (52). The initial state was |�(0)〉 = |m = 1〉 ⊗ |m = −1〉, while the parameters were 
1 = 
2 :≡ 
 (the
microwave in resonance with the F̃ = 2 ↔ F̃ = 1 transition), 
a/
 = −2, �MW/
 = 3

√
8 and g/
 = 1/15. (b) Same as in (a), but fixing

�/
 = 1/10 and instead modifying the value of the anisotropy introduced by a nonzero HStark = D
∑

i Sz 2
i Hamiltonian. (c) Fidelity between

the state at t = T/4 of two spin-1 qutrits initially at |m = 1〉 ⊗ |m = −1〉 evolving under the XX Hamiltonian without anisotropy and the state
at t = T/4 of the atoms evolved under the full Hamiltonian, including also a nonzero anisotropy HStark proportional to D. (d) Inset of panel
(a) at t = T/4 for only six of the amplitudes, showing how the small oscillations around the effective evolution increase as the amplitude �/


grows. These simulations have been made setting κ = γi = 0.

replaced by

f (ri − r j ) = gigj
a

4
2
a + κ2

→
∑

k∈1BZ

|gk|2
k

4
2
k + κ2

eik·(ri−r j ), (55)

with 
k = ωk − ωL and gk being the coupling constant be-
tween the atoms and the k mode, and we have introduced
the function f (ri − r j ) to characterize the coupling between
atoms i and j. Furthermore, if we assume the relevant atomic
transitions are quadratic ω(k) [and also isotropic in the two-
dimensional (2D) case], we can get analytical expressions of
the effective interactions by turning the sums into integrals. In
particular, when the atomic frequency lies in the band gap, the
effective interactions between the emitters are mediated by an
atom-photon bound state that leads to

| f (ri − r j )| ∝ e−|ri−r j |/L (56)

for the case of a one-dimensional (1D) waveguide and

| f (ri − r j )| ∝ e−|ri−r j |/L
/√|ri − r j |/L (57)

when considering a 2D photonic crystal. Importantly, in both
cases the effective interactions have a finite range L [in con-
trast with the cavity QED setup, in which | f (ri − r j )| = 1].
However, this length, which corresponds to the atom-photon
bound-state shape can be dynamically tuned by adjusting the
system’s parameters (such as the Raman laser frequency ωL).
For more details we refer to the reader to Refs. [12–14].

V. POTENTIAL APPLICATIONS

Taking the examples that we previously derived as the
basis, there are many interesting directions one can pursue:

i. Expanding the quantum simulation toolbox by strobo-
scopic methods So far, we have considered how to simulate
XX and ZZ Hamiltonians. However, as shown, e.g., in
Refs. [71–73] for qubits, combining such interactions with
single-qudit rotations one can generate more complex spin-1
Hamiltonians.

For example, in Fig. 11 we show an example of how a
possible time evolution performed in sequential Trotter steps
can be used to engineer the dynamics generated by a full

FIG. 11. Procedure to obtain an effective dynamical evolution
under a Trotterized XY Z Hamiltonian if the considered system only
implements a ZZ-type interaction natively using different rotations
alternated with free evolutions.
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Heisenberg model from an analog ZZ interaction only (up to
the Trotter error):

(1) The system evolves freely under the ZZ
Hamiltonian HZZ

int for a time 
t , so the corresponding
time-evolution operator for this period is U1 = e−iHZZ

int 
t .
(2) A single-emitter rotation of π/2 around the x axis

is then applied (using, for example, a pulse) so the HZZ
int is

mapped to HYY
int (an interaction along the y axis). Again,

the emitters are allowed to evolve freely under this Hamil-
tonian for a time 
t , so the time-evolution operator is now
U2 = e−iHYY

int 
t .
(3) Then, the emitters are rotated π/2 radians around

the z axis, so HYY
int → HXX

int , and evolve for another time

t , leading to U3 = e−iHXX

int 
t .
(4) Finally, a rotation Ry( π

2 ) is applied to recover the
original interaction along the z axis.
Thus, the final time-evolution operator is

UXY Z = U3U2U1 ≈ e−i(HXX
int +HYY

int +HZZ
int )
t

= e−i
∑

i< j Ji j
zzSi·S j 
t , (58)

where Ji j
zz is given by equation Eq. (48) in this case. Fur-

thermore, considering a different time-interval in each Trotter
step, a general anisotropic spin-1 XY Z Hamiltonian can be
simulated.

ii. Lattice gauge theory quantum simulators. One of the
most attractive avenues nowadays in quantum simulation is to
use them to simulate lattice gauge theories (LGTs) [52–57]. In
particular, this could be applied for the quantum simulation of
ZN LGTs, which are physically meaningful for two reasons.
First, their large-N limit reproduces compact QED [74], and
thus they may be used as approximations for compact QED
[75], which is feasible for quantum simulation. Furthermore,
being the center of SU(N ) groups, it was shown that ZN

gauge theories play a key role in confinement effects of such
models [76], which is an open and highly important nonper-
turbative question in particle physics. A challenging aspect
in the design of quantum simulators of such theories is that
they require tailoring multi-quNit quantum gates for the mag-
netic plaquette interactions. In a recent proposal [77], it was
shown how one can harness the photon-mediated interactions
to obtain the four-qubit plaquette terms required for the Z2

LGT. The key idea was to use an auxiliary atom to entangle
the four neighboring atoms, codifying the physical degrees
of freedom of the LGT, using the nonlocal photon-mediated
interactions. In Ref. [78] it was shown that using a ZZ in-
teraction between spin-1 atoms is sufficient for implementing
the magnetic terms of the Z3 LGT. Thus, our findings of
Secs. III A and IV A can be combined with the proposal of
Ref. [77] to simulate the most challenging parts of Z3-LGT
Hamiltonians.

iii. Qudit quantum computation. Beyond the quantum sim-
ulation perspective, our results can also find applications in
qudit quantum computation [61]. In fact, the quantum gate
analyzed in Fig. 10 is an entangling gate between qudits which
can be the basis of more complex ones. Furthermore, if the
proper single-qudit gates are given, it is known that a single
two-qutrit entangling gate (as the one obtained in this work)
is enough to obtain universal qudit quantum computation [61].

Furthermore, from only the XX interaction found here, the ex-
act gate-sequences to obtain universal quantum computation
with qutrits are known [79]. Thus, the results in this work can
also find applications in qudits quantum computing.

VI. CONCLUSIONS

Summing up, we have shown how to obtain different types
of photon-mediated interactions between spin-1 systems us-
ing multilevel emitters. We provide first an emitter-agnostic
analysis, and then particularize for the case of atomic emit-
ters where the multilevel structure emerges from hyperfine
couplings. In the latter case, we explain how to take care of
the complexity introduced by the different Clebsch-Gordan
coefficients and numerically benchmark our results by com-
paring the effective Hamiltonians obtained with the dynamics
obtained by the full system with no approximation. Our results
expand the quantum simulation toolbox that can be obtained
with cavity and nanophotonic systems to spin-1 models and
can also find applications in qutrit quantum computation. An
interesting outlook of our work consist in exploiting larger
hyperfine multiplets, like those that can be found in alkaline-
earth atoms [80,81] to obtain photon-mediated interactions
between larger-dimensional spin systems. Another perspec-
tive is to consider the dissipative scenario in which the optical
transitions match the cavity or band energies, where one ob-
tains highly nonlocal dissipative terms [82,83], which can be
used to engineer nontrivial steady states [84–86].
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APPENDIX A: MULTILEVEL CONFIGURATIONS

In this section, we collect the different multilevel configu-
rations that we propose, showing their full Hamiltonians and
calculating the effective Hamiltonians once that the extra de-
grees of freedom are removed for both the Ising (A 1) and the
XX (A 2) interactions, including the details missed in the main
text. In both cases, we divide the discussion into the platform-
agnostic discussion (A 1 a and A 2 a) and the discussion where
we particularize for atomic systems (A 1 b and A 2 b).

1. The spin-1 Ising ZZ interaction

a. Platform-agnostic case

This first situation considers two three-level manifolds
where a linearly polarized driving connects the ground and
the excited states as shown in Fig. 12. These excited states
can then decay to the original ones through a quantized elec-
tromagnetic field, which has the same polarization as that the
laser.
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FIG. 12. Configuration proposed to obtain a spin-1 Ising ZZ
Hamiltonian.

The Hamiltonian in this case reads (in a frame rotating with
the laser frequency ωL)

H = Hs + Hf + HL + HI . (A1)

Here Hs is the projection of the Hamiltonian over the slow or
ground state subspace,

Hs =
∑

i


1σ
i
1̃1̃ + 
2σ

i
2̃2̃ + 
3σ

i
3̃3̃ + 
aa†a, (A2)

which accounts for the noninteracting parts of both the excited
emitters states and the field, with a single driving frequency
ωL and detunings 
i = ωi − ωL and 
a = ωa − ωL, with ωa

being the cavity mode energy. On the other hand, the laser
field enters H as an external driving,

HL =
∑

i

�11̃

2
σ i

1̃1 + �33̃

2
σ i

3̃3 + H.c. (A3)

Meanwhile, the light-matter Hamiltonian reads

HI =
∑

i

gi
11̃σ

i
11̃a† + gi

33̃σ
i
33̃a† + H.c. (A4)

(note that we do not include a term for the |2〉 ↔ |2̃〉 tran-
sition). Finally, the Lindblad operators account not only for
spontaneous emission from each atomic excited state, Lγ ,1 =∑

i
√

γ1σ
i
11′ and Lγ ,3 = ∑

i
√

γ3σ
i
33′ , but also for the lose of

photons, Lκ = √
κa.

Following now the procedure described in Sec. II of the
main text, we eliminate first the excited emitter states, leading
to the following renormalized light-matter Hamiltonian:

H (1)
eff = Hs + 
aa†a −

∑
i

[

1|�11̃|2
4
2

1 + γ 2
1

σ i
11 − 
3|�33̃|2

4
2
3 + γ 2

3

σ i
33

−
(

4
1|gi
11̃

|2
4
2

1 + γ 2
1

σ i
11 + 4
1|gi

33̃
|2

4
2
3 + γ3

σ i
33

)
a†a

−
(

2�11̃ḡi
11̃


1

4
2
1 + γ 2

1

σ i
11 + 2�33̃ḡi

33̃

3

4
2
3 + γ 2

3

σ i
33

)
a†

]
+ H.c.

(A5)

We want to find an effective description that only involves the
atomic operators. Thus, we further assume that a large cavity
detuning so that its population is very small and can be adi-
abatically eliminated. Doing that, we arrive to the following

effective Hamiltonian:

Heff = Hs −
∑

i

[

1|�11̃|2
4
2

1 + γ 2
1

σ i
11 + 
3|�33̃|2

4
2
3 + γ 2

3

σ i
33

+ 4
a

4
2
a + κ2

(
μi|2σ i

11 + |νi|2σ i
33

)]
+ Hint, (A6)

where we neglect the terms proportional to a†a (since
the population of the field mode is assumed to be small
under the conditions of validity of this elimination), and in-
troduce the parameters

μi = 2�11̃ḡi
11̃


1

4
2
1 + γ 2

1

and νi = 2�33̃ḡi
33̃


3

4
2
3 + γ 2

3

. (A7)

Here, the term Hint is the one responsible for the photon-
mediated interactions between emitters, which reads

Hint = − 4
a

4
2
a + κ2

∑
i 	= j

(
μiμ̄ jσ

i
11σ

j
11

+ νiν̄ jσ
i
33σ

j
33 + μiν̄ jσ

i
11σ

j
33 + μ̄iν jσ

j
11σ

i
33

)
. (A8)

Let us now consider that we can tune the Hamiltonian
parameters such that μi = −νi for each atom i. This situation
can be achieved by several means; for example, setting �11̃ =
�−1−̃1, gi

11̃
= −gi

−1−̃1
, γ1 = γ3, and 
1 = 
3, or instead

changing the relative sign between the coupling constants or
the driving amplitudes. Anyway, once the condition μi = −νi

is satisfied, the effective Hamiltonian after the first adiabatic
elimination derived above, H (1)

eff , reads

H (1)
eff = −

∑
i

μi
(
σ i

11 − σ i
33

)
a† + H.c. + · · ·

= −
∑

i

μiS
i
za

† + H.c. + · · · , (A9)

where we have only written the Si
z ≡ σ i

11 − σ i
33 terms gener-

ating the ZZ interactions. Hence, once the quantized field is
eliminated, these terms proportional to Si

z will generate the
desired Si

zS
j
z interactions:

Heff = Hs +
∑
i< j

Ji j
z Si

zS
j
z , (A10)

with Ji j
z = Re[−8
aμiμ̄ j/(4
2

a + κ2)]. Furthermore, the
condition μi = −νi obtained as discussed above yields a pair
of ac Stark shifts for the |1〉 and |3〉 levels in the effective
Hamiltonian of Eq. (A6) that are equal in amplitude and
sign, so they can be easily removed with a single laser field
coupled off-resonantly to a different transition. Hence, the
effective Hamiltonian in Eq. (A10) corresponds to an Ising-
type interaction for the emitters. As a final remark, let us note
that, although the Si

z operator only has two matrix elements
different from zero (and these have an opposite sign), it cannot
be mapped to a spin-1/2 projection along the z axis, σ i

z . This is
because the identity in this spin-1/2 space would be 1s=1/2 =
σ11 + σ22 = σ 2

z ; meanwhile, the identity in the spin-1 space is
1s=1 = σ11 + σ00 + σ11 	= S2

z .
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b. Implementing the interaction with real atoms

The configuration proposed in the main text to obtain an
effective ZZ interaction between two alkali atoms uses the
D1 line of rubidium (or sodium) and an extra microwave field
to induce two-photon transitions. The Hamiltonian, now in a
frame rotating with the frequency of the laser and also of the
microwave field, reads

H = Hs + Hf + HL + HI + Hm. (A11)

Again, Hs is the projection of the Hamiltonian over the slow
subspace,

Hf =
∑

i


1
(
σ i,F̃=1

1̃1̃
+ σ i,F̃=1

0̃0̃
+ σ i,F̃=1

−1̃−1̃

)
+ 
2

(
σ i,F̃=2

1̃1̃
+ σ i,F̃=2

0̃0̃
+ σ i,F̃=2

−1̃−1̃

) + 
aa†a, (A12)

and accounts for the noninteracting parts of both the excited
hyperfine angular momentum F̃ = 1 and F̃ = 2 and also the
field, with an optical driving frequency ωL and a microwave
one ωMW , which yield the detunings 
1 = ω1 − ωL + ωMW ,

2 = ω2 − ωL, and 
a = ωa − ωL + ωMW . Furthermore, the
laser field induces a driving term that is coupled only to the
F̃ = 2 line,

HL =
∑

i

�11̃

2
σ i,F̃=2

1̃1
+ �00̃

2
σ i,F̃=2

0̃0
+ �−11̃

2
σ i,F̃=2

−1̃−1
+ H.c.,

(A13)
the light-matter Hamiltonian is

HI =
∑

i

gi
11̃σ

i,F̃=1
11̃

a† + gi
−11̃σ

i,F̃=1
−1−1̃

a† + H.c., (A14)

and the microwave-driving-inducing transitions between the
F̃ = 2 and the F̃ = 1 states read

Hm =
∑

i

�MW
1

2
|F̃ = 1, 1〉i〈F̃ = 2, 1| + �MW

0

2
|F̃ = 1, 0〉i

〈F̃ = 2, 0| + �MW
−1

2
|F̃ = 1,−1〉i〈F̃ = 2,−1| + H.c. (A15)

(where we have recovered the full braket notation to high-
light that the transitions always take place among the excited
atomic states). Hence, the first step is the elimination of the
F̃ = 2 levels, leading to the following effective Hamiltonian
(in the following, we omit the F̃ = 1 superscript so σ i,F̃=1

kl ≡
σ i

kl ):

HF̃=1
eff = Hs +

∑
i, j

(

1 − 
2

∣∣�MW
j

∣∣2

4
2
2 + γ 2

2

)
σ i

j̃ j̃

+
(

�eff
j

2
σ i

j j̃ + gi
11̃σ

i
11̃a† + gi

−11̃σ
i
−1−1̃a† + H.c.

)

+ 
aa†a, (A16)

with �eff
j ≡ −2� j j̄�

MW
j 
2/(4
2

2 + γ 2
2 ) and where γ2 is the

rate of spontaneous emission from that level. We find that
the elimination of the F̃ = 2 excited levels has two effects:
on the one hand, it introduces a state-dependent ac Stark
shift on the F̃ = 1 line, depending on the amplitude of the
microwave driving and the detuning 
2, and, on the other

hand, it renormalizes the driving amplitudes to consider the
two-photon transitions with effective amplitude given by �eff

j .
The key aspect of this scheme is that the effective two-photon
Raman transitions from the F = 1 level to the F̃ = 1 level
once the F̃ = 2 level has been eliminated have the same sign
for both the mF = 1 and mF = −1 cases, so the remaining
adiabatic elimination is able to exploit the fact that gi

11̃
and

gi
−11̃

have opposite signs.

Thus, once that the extra F̃ = 2 levels are eliminated, the
Hamiltonian in Eq. (A16) is identical to the one in Eq. (A1),
so the procedure to derive the final effective Hamiltonian is
the same: the only difference apart from the state-dependent
ac Stark shifts entering the detunings and the renormalized
driving amplitudes discussed above would be an extra term in
the final ac Stark shift,

HStark =
∑
i, j

∣∣� j
eff

∣∣2

eff

1, j

4
eff 2
1, j + γ 2

1

σ i
j j =

∑
i, j

δ jσ
i
j j, (A17)

where we have introduced the effective detunings


eff
1, j = 
1 − 
2

∣∣�MW
j

∣∣2

4
2
2 + γ 2

2

. (A18)

Finally, using the fact that |�1
eff| = |�−1

eff | and 
eff
1,1 = 
eff

1,−1,
so δ1 = δ−1, we can rewrite the Stark shift in Eq. (A17)
as HStark = ∑

i δ01i + +(δ1 − δ0)Si 2
z , neglect the term pro-

portional to the unit operator 1i, and finally arrive at the
Hamiltonian written in the main text,

HStark = δ
∑

i

Si 2
z , (A19)

where δ ≡ δ1 − δ0 is the amplitude of the shift.

2. The spin-1 XX exchange interaction

a. Platform-agnostic case

In this Appendix we consider crossed polarizations for
the first time. This will couple different states in the atomic
operators, leading to terms of the form σ i

αβ before the
field is eliminated (with α 	= β) that, in turn, will lead to
spin-exchange like interactions. A model with the minimal
ingredients to obtain this is shown in Fig. 13, with a circularly
polarized laser driving generating the transitions |1〉 ↔ |2′〉
and |2〉 ↔ |3′〉 (the configuration with the |3〉 ↔ |2′〉 and
|2′〉 ↔ |1〉 transitions would be equivalent, so we only take
into account one in the discussion). The Hamiltonian describ-
ing this situation is again H = Hs + Hf + HL + HI , and we
find that Hf is given again by Eq. (A2); meanwhile, the driving
Hamiltonian now is

HL =
∑

i

�12̃

2
σ i

12̃ + �23̃

2
σ i

23̃ + H.c. (A20)

and the light-matter interaction term reads

HI =
∑

i

gi
11̃σ

i
11̃a† + gi

22̃σ
i
22̃a† + gi

33̃σ
i
33̃a† + H.c., (A21)

both already written in a rotating frame with the single laser
frequency ωL (note that here we have written explicitly the
1 ↔ 1̃ although as we will show below, it will not play a
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FIG. 13. Configuration used to obtain an effective XX -type in-
teraction between the emitters using a single-field mode.

role in the dynamics with this laser configuration and the
assumption of a far-detuned cavity).

Finally, the Lindblad operators account not only for spon-
taneous emission from each atomic excited state (via the two
channels), Lγ1,1 = ∑

i
√

γ1σ
i
11̃

, Lγ2,1 = ∑
i
√

γ2σ
i
12̃

, Lγ2,2 =∑
i
√

γ2σ
i
22̃

, Lγ3,1 = ∑
i
√

γ3σ
i
23̃

, and Lγ3,2 = ∑
i
√

γ3σ
i
33̃

but
also for the loss of photons, Lκ = √

κa.
Now, following the procedure described in Sec. II, we

eliminate first the excited emitter states and find the following
Hamiltonian:

H (1)
eff = Hs −

∑
i

{

2|�12̃|2

4
2
2 + 4γ 2

2

σ i
11 + 
3|�23̃|2

4
2
3 + 4γ 2

3

σ i
22

+
(

4
1

∣∣gi
11̃

∣∣2

4
2
1 + γ 2

1

σ i
11 + 4
2

∣∣gi
22̃

∣∣2

4
2
2

+ 4γ 2
2 σ i

22 + 4
2

∣∣gi
32̃

∣∣2

4
2
2 + 4γ 2

2

σ i
33

)
a†a

+
[(

2�12̃gi
22̃


2

4
2
2 + 4γ 2

2

σ i
21 + 2�23̃gi

33̃

3

4
2
3 + 4γ 2

3

σ i
32

)
a† + H.c.

]}

(A22)

(note that this Hamiltonian already takes into account the
two possible channels of decay to the |2〉 and |3〉 states,
meanwhile the |1〉 state only has one: hence the difference in
the corresponding terms). Furthermore, since we are looking
for a Hamiltonian describing photon-mediated interactions
between the emitters, we further suppose a situation where
the cavity field is far detuned and therefore it has a very small
population, and we can neglect the terms proportional to a†a
(so all the contributions proportional to g11̃ vanish; this is the
reason why this transition is already neglected in the main
text). Furthermore, introducing the parameters

ξi = 2�12̃gi
22̃


2

4
2
2 + 4γ 2

2

and ηi = 2�23̃gi
33̃


3

4
2
3 + 4γ 2

3

(A23)

and eliminating the cavity field finally yields the effective
Hamiltonian

Heff = Hs −
∑

i

(

2|�12̃|2

4
2
2 + 4γ 2

2

σ i
11 + 
3|�23̃|2

4
2
3 + 4γ 2

3

σ i
22

+ 4
a|ξi|2
4
2

a + κ2
σ i

11 + 4
a|ηi|2
4
2

a + κ2
σ i

22

)
+ Hint (A24)

found in the main text, where the term Hint reads

Hint = − 4
a

4
2
a + κ2

∑
i 	= j

[
ξiξ̄ jσ

i
21σ

j
12 + ηiη̄ jσ

i
32σ

j
23

+ ξiη̄ jσ
i
21σ

j
23 + ξ̄ jηiσ

i
32σ

j
32

]
. (A25)

To understand clearly the reason why the condition ξi = ηi

yields an XX interaction, note that we can rewrite the excita-
tion operator used to find this final Hamiltonian from the one
in Eq. (A22) (according to the procedure in Sec. II) as

V+ = −
∑

i

(
ξiσ

i
21 + ηiσ

i
32

)
a†. (A26)

If we could tune the system parameters in such a way that
ξi = ηi, then the operator above would be

V+ = −
∑

i

ξi√
2

(√
2σ i

21 +
√

2σ i
32

)
a† = −

∑
i

ξi√
2

Si
+a†,

(A27)
where we have introduced the ladder operator for the ith atom,

Si
+ =

√
2
(
σ i

21 + σ i
32

)
, (A28)

with Si
− = (Si

+)†. Then, for different emitters (with i 	= j) the
adiabatic elimination of the field would yield terms of the
form

Hint = 2|ξi|2
a

4
2
a + κ2

∑
i 	= j

Si
+S j

− = 2|ξi|2
a

4
2
a + κ2

∑
i< j

(Si
+S j

− + Si
−S j

+).

(A29)
Since the ladder operators can be written in terms of the Si

x
and Si

y operators as

Si
± = Si

x ± iSi
y, (A30)

the term in Eq. (A29) can be cast as

Hint =
∑
i< j

Ji j
XX

(
Si

xS j
x + Si

yS j
y

)
, (A31)

with

Ji j
XX = Re

[−4ξiη̄i
a

4
2
a + κ2

]
. (A32)

The interaction in Eq. (A31) is an XX spin model with a
coupling strength given by Ji j

XX .

b. Implementing the interaction with real atoms

In the main text we proposed the hyperfine levels of alkali
atoms, in particular, the D1 line of rubidium or sodium, as a
suitable physical platform to implement the proposed models.
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The full Hamiltonian describing this situation would be

H = Hs + Hf + HL + HI + Hm, (A33)

where Hs is the projection of the Hamiltonian over the slow
subspace, Hf is the Hamiltonian in Eq. (A12) accounting for
the excited F̃ = 1 and F̃ = 2 states and also the field (and
where the same global rotations have been applied to make it
time independent, producing the detunings 
1 ≡ ω1 − ωL +
ωMW , 
2 ≡ ω2 − ωL, and 
a = ωa − ωL + ωMW , were ωL

is the laser frequency and ωMW is the frequency of the mi-
crowave field) and the laser field enter as a classical driving
term HL coupling the F̃ = 2 states and the F = 1 ones,

HL =
∑

i

[
�10̃

2
σ i,F̃=2

0̃1
+ �−01̃

2
σ i,F̃=2

0̃−1
+ �−12̃

2
σ i,F̃=2

−2̃−1

]
+ H.c.,

(A34)
the light-matter Hamiltonian reads

HI =
∑

i

[
gi

00̃σ
i,F̃=2
00̃

a† + gi
−11̃σ

i,F̃=2
−1−1̃

a†
] + H.c., (A35)

and the microwave-driving-inducing transitions between the
F̃ = 2 and the F̃ = 1 states read

Hm =
∑

i

�MW
1

2
|F̃ = 1, 1〉i〈F̃ = 2, 1

∣∣∣∣ + �MW
0

2

∣∣∣∣F̃ = 1, 0〉i

〈F̃ = 2, 0

∣∣∣∣ + �MW
−1

2

∣∣∣∣F̃ = 1,−1〉i〈F̃ = 2,−1| + H.c. (A36)

To relate this situation with the one derived in the previous
section, we first eliminate the excited F̃ = 1 levels. Note that
we are not coupling to the F̃ = 1 level either the driving term
nor the field term, so the only effect of the elimination of these
levels is a renormalization of the detunings in the excited-state
Hamiltonian. Hence, the first effective Hamiltonian without
the F̃ = 1 states reads (we omit the F̃ = 2 superscript in the
following and assume that all the coherence operators refer to
this manifold, σ i,F̃=2

kl ≡ σ i
kl ):

HF̃=2
eff = Hs +

∑
i, j


eff
2, jσ

i
j̃ j̃ + 
aa†a + HL + HI , (A37)

where we have introduced the state-dependent energy shifts

eff

2, j = 
2 − |�MW
j |2/(4
2

1). The only difference between
the Hamiltonian in Eq. (A37) and the full Hamiltonian before
the eliminations used in Appendix A 2 a to derive the XX
model is a state-dependent energy shift in Hf according to

eff

2, j . This implies that the parameters ξi and ηi now would
be

ξi = �12̃gi
22̃

2
eff
2,0

and ηi = 2�23̃gi
33̃

2
eff
2,−1

, (A38)

and the condition ξi = ηi, substituting the values of the
Clebsch-Gordan coefficients in Tables II and III in the main
text, yields the an equivalent condition over the renormalized
detunings, 3
eff

2,0 = 2
eff
2,−1, which can be solved for

|�MW| =
√

8

3

1
2. (A39)

Finally, let us remark that, together with the interaction Hamil-
tonian derived in Appendix A 2 a, Eq. (A31), the full effective
Hamiltonian in Eq. (A24) also includes terms that, in this
atomic case, would be proportional to the σ i

11 and σ i
00 oper-

ators, together with an extra one proportional to σ i
−1−1 that

could be grouped in a Hamiltonian

HStark =
∑
i, j

ε jσ
i
j j, (A40)

with εi = |Ci|2�2/
eff
2,i, which can be cast in terms of the unit

matrix and the operators Si
z and Si 2

z as

HStark =
∑

i

ε01
i + ε1 − ε−1

2
Si

z + ε1 + ε−1 − 2ε0

2
Si 2

z .

(A41)

APPENDIX B: SCALING OF THE ERRORS

In the main text (Sec. III A 2) we claim that there are two
possible sources of error when comparing the full quantum
evolution with the corresponding effective one:

i. First, there is a trade-off between the coherent processes
(according to the timescale ≈Ji j

z for the ZZ interaction and
≈Ji j

XX for the XX interaction) and the corresponding losses,
leading to an error εlosses that scales as

εlosses ∼ 1√
C

(B1)

if the detuning 
a is optimized according to Eq. (22). This
is an error due to the losses and that is present even in the
nonprojected case (when comparing the actual dynamics with
the purely coherent ones), hence the name.

ii. Second, there is an error (even in an ideal coherent
case, without any loss) found when comparing the effective
quantum evolutions with the full ones, since the effective
Hamiltonians are obtained perturbatively according to Eq. (6)
and thus the formula is not valid if the perturbative correc-
tion is big enough; that is, if the slow subspace cannot be
regarded as slow when compared with the other timescales
of the system. Thus, when the condition above is used to
make εlosses → 0 as C → ∞, the coupling constant between
the emitters and the field g cannot be arbitrarily high, or
otherwise this perturbative calculation would fail. The order
of this correction is J ∝ �2g/
2
a, and it is necessary that
this energy scale is much smaller than those typical in the
excited spaces, 
 ≈ 
a. Hence, we quantify the error of the
approximation in terms of

εapprox ∼ J/
 ∼ |�|2

2

|g|2

a


. (B2)

Hence, the total error between the effective photon-
mediated Hermitian evolution according to the considered
spin models (such as the ZZ or the XX ) and the actual
evolution (including both the non-Hermitian jump operators
and the excited levels) can be quantified in terms of the
infidelity I between states evolved in these two ways, see
Eq. (24) of the main text and the accompanying discussion.
Note that this infidelity will include all the possible sources
of error, beyond those considered here (which are obtained
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FIG. 14. Infidelity [Eq. (24)] as function of the cooperativity for different values of γ /κ , which introduces a bigger error in the
approximation because this ratio is increased according to Eq. (B3). The figures reproduce the results shown in the top panel of Fig. 3(c) of the
main text, so the parameters taken are equal to those there with the exception of the ratio γ /κ . Furthermore, from left to right, the linear fits
superimposed over the log-log plots in the bottom panels yield slopes of −0.02, −0.21, and −0.46, respectively.

from series expansion up to first order in γ /
 and κ/
a), so
I = εlosses + εapprox + · · · .

Furthermore, we found that the condition of optimal de-
tuning to minimize the losses in Eq. (22) sets εapprox =
|�|2√Cγ /
3. Recalling that the ratio �/
 is independent
of the values of the cooperativity but should not be extremely
small if a fast-enough evolution is desired, we assumed it to be
fixed. Hence, εapprox goes to infinity in the limit C → ∞ if the
ratio γ /
 is not kept low (or conversely, 
/γ big). Therefore,
in Sec. III A 2 we studied these two situations and we found
numerical results that corroborate these claims, as shown in
Fig. 3. In this Appendix we further elaborate these numerical
results.

Thus, in Fig. 14 we have reproduced the top panel of
Fig. 3(c) in the main text for different values of the ratio γ /κ

but keeping the same values of the cooperativity. This makes
g/
a bigger as the ratio increases, so although Fig. 3(c) is
used in the main text mainly to study the effect εlosses, the error
in the approximation can be cast as

εapprox = |�|2

2

γ

κ



opt
a



(B3)

if the condition in Eq. (22) for the optimal detuning is sat-
isfied, hence introducing a new source of error in the total
infidelity.

Hence, what Fig. 14 shows is that, for high values of γ /κ

[Fig. 14(a)], the dominant source of error is due to the adia-
batic elimination procedure, εapprox, as shown in Eq. (B3), so
the infidelity is independent of the cooperativity. If this ratio
is reduced, the error due to the losses εlosses starts playing a
role [Fig. 14(b)], but the scaling of the total error as ∼1/

√
C,

as predicted by Eq. (B1), is only possible if γ /κ is small
enough to neglect the error due to the projection onto the slow
subspace, as shown in Fig. 14(c).

Finally, in order to check the scaling of the total error as a
function of the ratio 
/γ for a fixed cooperativity discussed
in the bottom panel of Fig. 3(c), we show in Fig. 15 a similar
figure that in the main text [Fig. 15(b) is indeed the same,
shown here to compare] but including more values of the
cooperativity. This plots show that the value in which the total
error saturates is smaller as C is increased, in agreement with
the claim we made in the main text regarding this constant
value as the effect of εlosses, which is smaller as the coopera-
tivity increases.

FIG. 15. Infidelity [Eq. (24)] as function of 
/γ for different values of the cooperativity C. The figures reproduce the results shown in the
bottom panel of Fig. 3(c) of the main text, so the parameters taken are equal to those there with the except for the value of C. Furthermore,
from left to right, the linear fits superimposed over the log-log plots around the nonconstant regions yield slopes of −1.00, −1.09, and −1.15,
respectively.
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