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Effects of phase accumulation in frequency-comb-based multidimensional coherent spectroscopy
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In recent years, frequency-comb-based multidimensional coherent spectroscopy has emerged as a very
powerful optical method for studying samples with long dephasing times. It enables the measurement of
comb resolution multidimensional coherent spectra in seconds as opposed to hours or even days required by
traditional mechanical stage-based spectrometers. However, for some samples (e.g., cold atoms and molecules)
the dephasing times could be longer than the repetition periods of the excitation lasers which means that the
generated signal will not fully decay between the pulses. Depending on the relative phase or time between the
pulses, the signals generated by the subsequent laser pulses can constructively or destructively interfere with
each other. In this paper we study this behavior by solving the optical Bloch equations and provide a theoretical
description of frequency-comb-based multidimensional coherent spectroscopy.

DOI: 10.1103/PhysRevA.106.033704

I. INTRODUCTION

Since its development over two decades ago, multidi-
mensional coherent spectroscopy (MDCS) [1,2] has attracted
attention as a powerful experimental method for studying
structure, nonlinear optical properties, and ultrafast dynamics
of a wide range of materials [2–9]. MDCS that is based on
concepts of nuclear magnetic resonance spectroscopy [10] is
the only nonlinear method that can simultaneously measure
homogeneous linewidth of inhomogeneously broadened sys-
tems, determine if the excited states are coupled, and also
probe collective and many-body effects.

To provide more background information, in Fig. 1(a) we
show a simplified schematic diagram of one of the most
commonly used multidimensional coherent spectroscopy
schemes. This approach is also refereed to as rephasing sin-
gle quantum or photon echo [11] multidimensional coherent
spectroscopy. In this approach a sequence of three pulses A*
(phase conjugated pulse), B, and C (B and C are from the same
pulse) are used to interrogate the sample and an emitted four-
wave mixing (FWM) signal is then heterodyne detected [using
local oscillator (LO) pulses] as a function of the delay between
the excitation pulses (τ evolution) and the time over which
it is emitted (t emission). Experimentally, the separation of
the FWM and linear signals (as well as other FWM contri-
butions) are usually performed either utilizing a “k-space”
(momentum) geometry configuration [12] (FWM signal is
detected in the phase matched direction ksig = −ka + kb + kc)
or a collinear geometry [13,14] and phase-cycling schemes
(each excitation pulse is frequency tagged and the signal is
detected at fsig = − fa + fb + fc + fLO frequency) as shown
in Fig. 1(b) top and bottom. The detected time domain signal
is then Fourier transformed with respect to the evolution and
emission time delays to generate a multidimensional coherent
spectrum.

*blomsadze@scu.edu

In the photon echo excitation scheme [shown in Fig. 1(a)],
the first pulse A* (a phase conjugated pulse) creates a co-
herence between ground (|g〉) and excited states (|e〉). This
coherence then evolves with −ωge frequency. Pulse B then
converts the coherence into the population state and then the
same pulse converts it to the third order coherence which
evolves with ωge frequency. Since the evolution (dephasing
of resonances) and emission dynamics happen with the op-
posite phase (−ωgeτ and ωget), this enables the excited state
resonances to be rephased. In the frequency domain this
corresponds to separating or decoupling the samples’ homo-
geneous and inhomogeneous linewidths [15] [see Fig. 1(c)].
In addition, this excitation scheme can distinguish a V-type
system (with ω1 = 2π f1 and ω2 = 2π f1 resonant frequen-
cies) from a mixture of two two-level systems with the same
resonant frequencies, which is important for chemical sensing
applications. This information cannot be obtained from linear
absorption spectra. In Figs. 1(d) and 1(e) two-dimensional
(2D) spectra are plotted for a sample containing two indepen-
dent two-level systems and for a three-level V-type system,
respectively. On the 2D spectra, diagonal peaks (along the
white dotted line) correspond to the samples’ resonances and
off-diagonal peaks determine the cross peaks (evolution and
emission happens at different frequencies) indicating that the
resonances belong to the same system.

Rephasing single quantum 2D spectra provide critical
information; however, until recently 2D spectroscopy was
mostly used for samples with short dephasing times of
their excited states (particularly for semiconductor materi-
als and molecules in solutions). This is due to the fact
that currently available MDCS techniques provide low spec-
tral resolution (limited by spectrometer resolution or time
delays achievable using acousto-optic modulators), or re-
quire long acquisition times (the ones implemented with
long delay stages) [9]. These techniques have limitations to
probe a wide range of exciting materials with long-lived
excited states such as interfacial quantum dots, vacancy cen-
ters, cold atomic and molecular systems, etc. To overcome
these limitations, recently, Lomsadze et al. have developed
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FIG. 1. (a) Photon-echo (rephasing single quantum) excitation scheme. A* (phase conjugated) pulse creates a coherence between ground
(|g〉) and excited states (|e〉). This coherence then evolves during τ (blue trace). Pulse B then converts the coherence into the population state
and then the same pulse (C) converts it to the third order coherence which emits a FWM signal during t (blue trace). The emitted FWM signals
(from an inhomogeneously broadened system) interfere constructively at τ = t and create a photon echo signal (red). The signal is detected
using an LO pulse. (b) Detection of the FWM signal using a k-space (momentum) (top) and the collinear geometry (bottom), respectively.
(c) Magnitude of a photon-echo two-dimensional spectrum. The evolution frequency is negative to reflect the negative phase evolution during
the evolution period. The black dotted line from (0,0) to (1, −1) GHz shows the diagonal line. White and red arrows indicate homogeneous
and inhomogeneous linewidths. (d) A 2D spectrum of two independent two-level systems. g ground state, e1 and e2 excited states. (e) A 2D
spectrum of a V-type system. Color scale shows normalized signal magnitude.

an approach to multidimensional spectroscopy that is
based on the frequency-comb technology [16–19]. This
approach called frequency-comb-based multidimensional co-
herent spectroscopy (or tri-comb spectroscopy) enables the
rapid measurement of multidimensional coherent spectra with
comb resolution. In this approach, the excitation and LO
pulses belong to separate lasers that have slightly differ-
ent repetition frequencies (e.g., frep + �, frep, and frep − �,
where � ∼ Hz or kHz). This enables evolution and emission
times (τ and t) to be scanned automatically with �/ f 2

rep step
size up to several nanoseconds (effective time, determined by
1/ frep) rapidly in seconds or milliseconds (acquisition time,
determined by 1/�) without the use of mechanical delay
lines [17]. Using this method it is now possible to investigate
critical processes in cold atomic or molecular samples and
vacancy centers that are promising candidates for quantum
computing.

However, it is important to note that the excited states’
dephasing times for some of the samples mentioned above

are usually much longer than the repetition periods of the
lasers used in frequency-comb-based multidimensional co-
herent spectroscopy. For example, dephasing times for alkali
metal atoms in a magneto-optical trap (MOT) are tens to
hundreds of nanoseconds [20], whereas repetition periods of
frequency combs are typically a few nanoseconds. In this
situation a FWM signal generated in the sample is not decayed
between the comb pulses and hence will interfere with the
FWM signal generated by the next sequence of the comb
pulses. This process is pictorially shown in Fig. 2(a). Depend-
ing on the samples’ resonance frequencies, dephasing times,
and relative phase between the comb pulses (determined by
the repetition period and the carrier envelope phase) these
FWM signals can constructively or destructively interfere
with each other. By controlling the relative phase between the
pulses, one can control the strength of FWM signals and hence
the peaks on a 2D spectrum.

The goal of this paper is to provide a theoretical descrip-
tion of frequency-comb-based multidimensional coherent
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FIG. 2. (a) Photon-echo (rephasing single quantum) excitation scheme using two trains (blue and black) of pulses. T repetition period of
each train. and ϕ1 and ϕ2 correspond to carrier envelope phase slips for each train. Red curves show the four-wave mixing signals. FWM signal
generated by A*1, B1, C1 interferes with the signals generated by A*2, B2, C2 and A*3, B3, C3. (b) Feynman diagrams contributing to the
generation of the photon echo FWM signal. I and II correspond to diagonal peak 1 (upper left corner) in Fig. 1(e), III and IV correspond to
diagonal peak 2 (lower right corner), V and VI correspond to the lower cross peak (lower left corner), and VII and VIII correspond to the upper
cross peak (upper right corner).

spectroscopy of samples whose dephasing times are longer
than the repetition periods of the excitation lasers. We hope
that the results will provide valuable insights into comb-based
MDCS and will help efforts to extend MDCS to cold atomic
and molecular systems.

II. SIMULATION AND RESULTS

To demonstrate the effects of phase accumulation
in frequency-comb-based multidimensional coherent spec-
troscopy, we solved the optical Bloch equations for a
three-level V system shown in Fig. 1(e),

ρ̇ = − i

h̄
[H0, ρ] − i

h̄
[Hint, ρ] − γ ρ. (1)

In this equation ρ is the density matrix, γ de-
scribes the decay rates of the excited states and coher-
ences, H0 = h̄ω1 |e1〉 〈e1| + h̄ω2 |e2〉 〈e2| is the unperturbed
Hamiltonian describing the three-level V system with
ω1 and ω2 resonant frequencies, Hint = μge1 E (t ) |g〉 〈e1| +
μge2 E (t ) |g〉 〈e2| + H.c. is the perturbation due to the laser
electric fields E (t ), and μge1 and μge2 are the transition dipole

strength of the excited states. In our simulation the sys-
tem is subjected to two trains [Fig. 2(a)] of equally spaced
ultrashort pulses (Delta-function pulses E (t ) ≈ E0eiωtδ(t −
nT )einϕ , where T is the repetition period of the laser, ϕ is
the carrier envelope phase (CEP) slip, and n is an integer).
Each train contains equally spaced identical pulses, except
that each pulse (in each train) is differed from the previous
one by a carrier-envelope phase (CEP) slip (ϕ1 and ϕ2, which
are controlled parameters in our calculation) [21]. In order
to resemble a real system and also decrease the computation
time, we chose the repetition periods of our lasers to be T =
2 ns ( frep = 500 MHz), and the sample’s natural decoherence
time to be 20 ns (γ = 50 MHz). This is equivalent to probing
a sample whose pure decoherence time is ∼100 ns (e.g.,
alkali metal atoms in a magneto-optical trap) using ∼10 ns
(most commonly used) repetition period frequency combs. In
our simulation we treated our system to be homogeneously
broadened (e.g., atoms in a MOT) and followed the Feynman
diagrams [shown in Fig. 2(b)] to isolate the contributions of
signals related to the photon-echo excitation scheme. In this
scheme, the third order polarization [P = Tr(μρ)] induced by
a pair of comb pulses [e.g., A*n, Bn, and Cn in Fig. 2(a)] is

P(t, τ ) = 2(−i/h̄)3E3
0 μ4

ge1
exp[−iω1τ + iω1t − γ1(t + τ ) + in(2ϕ2 − ϕ1)]

+ 2(−i/h̄)3E3
0 μ4

ge2
exp[−iω2τ + iω2t − γ2(t + τ ) + in(2ϕ2 − ϕ1)]

+ 2(−i/h̄)3E3
0 μ2

ge1
μ2

ge2
exp[−iω1τ + iω2t − (γ2t + γ1τ ) + in(2ϕ2 − ϕ1)]

+ 2(−i/h̄)3E3
0 μ2

ge1
μ2

ge2
exp[−iω2τ + iω1t − (γ1t + γ2τ ) + in(2ϕ2 − ϕ1)]. (2)
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FIG. 3. (a) and (b) Normalized strength of the real parts of the one-dimensional (1D) FWM signals emitted at ω1 = 125 · 2π MHz and ω2 =
725 · 2π MHz frequencies, respectively. The results were obtained for τ = 0, ϕ1 = ϕ2 = 0.5π , and γ1 = γ2 = 50 MHz. (c) and (d) Normalized
strength of the real parts of the 1D FWM signals emitted at ω1 = 125 · 2π MHz and ω2 = 725 · 2π MHz frequencies, respectively. The
results were obtained for τ = 0, ϕ1 = ϕ2 = 0.9π , and γ1 = γ2 = 50 MHz. (e) Magnitude of a 2D spectrum for a V-type system with ω1 =
125 · 2π MHz and ω2 = 725 · 2π MHz resonant frequencies. ϕ1 = ϕ2 = 0.5π . fref = 300 THz arbitrary optical reference. Color scale shows
normalized signal magnitude.

In the equation E0 is the magnitude of the excitation pulses
(assumed identical), μge1 = μge2 and γ1 = γ2 are the transition
dipole strength and decoherence rates for |e1〉 and |e2〉 excited
states, respectively. ω1 = ωge1 − ωref and ω2 = ωge2 − ωref,
where ωge1 and ωge2 are resonant frequencies for |e1〉 and
|e2〉 excited states and ωref = 300 · 2π THz is an arbitrary
reference frequency. ϕ1 and ϕ2 are the carrier envelope phase
slips for comb A and comb B (C) and n is an integer (that
varies from 0 to 50 (number of pulses in the train)). The
first term in the equation corresponds to the absorption and
emission at ω1 frequency [I and II Feynman diagrams in
Fig. 2(b)], the second term corresponds to the absorption and
emission at ω2 frequency [III and IV Feynman diagrams in
Fig. 2(b)], whereas the third and forth term correspond to the
absorption and emission at ω1 (ω2) and ω2 (ω1) frequencies
[V and VI (VII and VIII) Feynman diagrams in Fig. 2(b)].
To include the effects of multiple pulses, first we fixed τ

delay, calculated the FWM signals for each pair of comb
pulses (total of 50), and then we added them coherently in
the regions where they overlapped. The results for τ = 0,
ϕ1 = ϕ2 = 0.5π , ω1 = 125 · 2π MHz, ω2 = 725 · 2π MHz,
and γ1 = γ2 = 50 MHz are shown in Figs. 3(a) and 3(b). The
effects of the phase accumulation is obvious. For the values
listed above, the FWM signals emitted at ω1 are constructively
interfering (hence it is growing), whereas they destructively
interfere at ω2 emission frequency. One can reverse the picture
by adjusting either the repetition period or carrier envelope
phase slip of each pulse train [21]. Experimentally this can
be done by adjusting one of the laser mirrors in the cavity or
the pump power. The results for ϕ1 = ϕ2 = 0.9π are plotted
in Figs. 3(c) and 3(d) which clearly shows that now the FWM
signals emitted at ω2 are constructively interfering, whereas
they destructively interfere at ω1 emission frequency.

To generate a two-dimensional spectrum, we then varied
τ from 0 to 50 T (T -repetition period = 2 ns) and calcu-
lated FWM signals for each delay. The delay beyond 2 ns is
equivalent to including contributions from the FWM signals
generated by, e.g., A*1, B2, C2; A*2, B3, C3; A*1, B3, C3; etc.

The total FWM signal was then Fourier transformed with
respect to τ and t . The resulting 2D spectrum for ϕ1 = ϕ2 =
0.5π is shown in Fig. 3(e). On this 2D spectrum it is clear
that, due to constructive or destructive interference along τ

and t times, only the peak at (− f1, f1) is dominant and other
diagonal (− f2, f2) and cross peaks [(− f1, f2) and (− f2, f1)]
are not even visible. We should also note that the peak on the
spectrum corresponds to a single point of the excited state’s
line shape and does not reflect the full profile (both diagonal
and cross diagonal) of the excited state’s resonance. In order to
obtain the full line shape as well as observe other diagonal and
cross peaks, one needs to adjust either the repetition period
or CEP slips of the excitation combs, acquire multiple 2D
spectra (one for each phase), and combine them into a single
2D spectrum. While doing so it is important to know that the
constructive or destructive interference of FWM signals along
the evolution time is determined by ϕτ = −ϕ1 phase slip and
along the emission time is determined by ϕt = −ϕ1 + 2ϕ2

phase slip. If the full profile of a 2D spectrum is desired, then
one can scan ϕτ and ϕt iteratively. The results are shown in
Fig. 4(a). It is also possible to obtain a specific peak instead
of acquiring the full 2D spectrum. For example, in Figs. 4(b)
and 4(c), by choosing specific ϕτ and ϕt values, only upper
diagonal and lower cross peaks were acquired, respectively.
One can also acquire the diagonal profile of a specific peak by
anticorrelating the ϕτ and ϕt values [scanning them simulta-
neously in the opposite direction (ϕt = ϕo − ϕτ )] and one can
obtain the cross diagonal profile by correlating the ϕτ and ϕt

values (ϕt = ϕo + ϕτ , scanning them in the same direction).
In these expressions the value of ϕo (offset phase) determines
the section (diagonal or off-diagonal) that is scanned on a
2D spectrum. The diagonal and cross-diagonal profiles of the
lower diagonal (ϕo = 0) and upper cross peaks (ϕo = 1.4π )
are shown in Figs. 4(d) and 4(e), respectively.

A simple explanation of how one can target a specific peak
on a 2D spectrum is as follows: the diagonal and cross peaks
correspond to absorption and emission at different frequencies
and hence one can “tune” the phases of both frequency combs
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FIG. 4. Magnitude of overlaid 2D spectra for a V-type system with ω1 = 125 · 2π MHz and ω2 = 725 · 2π MHz resonant frequencies.
(a) The spectrum was acquired by scanning ϕ1 and ϕt values iteratively from 0.3π to 1.1π with 0.05π step size, respectively. (b) The spectrum
was acquired by scanning ϕ1 and ϕt values iteratively from 0.3π to 0.7π with 0.05π step size, respectively. (c) The spectrum was acquired
by scanning ϕ1 and ϕt values iteratively from 0.7π to 1.1π and from 0.3π to 0.7π with 0.05π step size, respectively. (d) The spectrum was
acquired by scanning ϕ1 and ϕt values simultaneously from 0.7π to 1.1π . (e) The spectrum was acquired by scanning ϕ1 (from 0.3π to 0.7π )
and ϕt (from 1.1π to 0.7π ) simultaneously. fref = 300 THz arbitrary optical reference. Color scale shows normalized signal magnitude.

such that the FWM signals, corresponding to a specific peak,
constructively interfere both along t and τ times simultane-
ously. If the frequency separation between the excited states
is not exactly equal to an integer number times the repetition
frequency of the excitation lasers (which is the case for most
samples), then the “tuning” for each peak happens at different
sets of ϕ1 and ϕ2 values (ϕτ and ϕt ). One can think about
this process as using a very high resolution, extremely narrow,
and tunable bandpass filters along the evolution and emission
frequencies. This is a useful capability as it allows one to
monitor a specific peak on a congested spectrum as a function
of other experimental parameters, or even measure a specific
2D profile. Clearly this cannot be accomplished using regular
optical bandpass filters and traditional MDCS experimental
setups.

We note that the calculation shown above describes only a
photon-echo excitation scheme (A*, B, C), however since the
samples’ dephasing time is longer than the repetition periods
of the excitation lasers, the detected FWM signal will contain
contributions from the (B, C, A*) excitation scheme as well.
A 2D spectrum obtained in this scheme is refereed to as a

double-quantum spectrum and provides insight of many-body
effects and interactions. To understand this point, below, first
we provide a brief overview of how 2D spectroscopy is used
to probe many-body effects [8,22,23] and then we show the
results of our calculation in the (B, C, A*) excitation scheme.

III. PROBING MANY-BODY EFFECTS

Double-quantum coherent spectroscopy [8,18,22,23] is
similar to single-quantum coherent spectroscopy except that
the time ordering of the excitation pulses are swapped (B, C,
A*) [Fig. 5(a)]. In this excitation scheme the first pulse (B)
excites a coherence between the ground and singly excited
states and then the same pulse (C) excites the coherence
between the ground state and the doubly excited state (also
referred to as a double-quantum coherence). This coherence
evolves with ω f e frequency. The phase conjugated pulse (A*)
then puts the system either back into the coherence between
the ground and the singly excited states or into the coherence
between the singly excited and doubly excited states. The
final radiated signal is then detected and Fourier transformed
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FIG. 5. (a) Double-quantum excitation scheme: |g〉 ground state, |e〉 excited state, | f 〉 doubly excited state. (b) Combined picture of two
two-level systems (with f1 and f2 resonance frequencies) without interaction (solid lines) and with interactions (dotted lines). |G〉 both atoms
are on the ground state, |E1〉 and |E1〉 either atom 1 or atom 2 is excited, |F 〉 both atoms are excited. δ1 and δ2 correspond to frequency shifts
of |E1〉 (|E2〉) and |F 〉 states, respectively. (c) Double-sided Feynman diagrams of the FWM signals corresponding to f1 + f2 evolution and
f1 emission frequencies in a double-quantum excitation scheme (B,C,A*). (d) Magnitude of overlaid double-quantum 2D spectra for a V-type
system with ω1 = 125 · 2π MHz and ω2 = 725 · 2π MHz resonant frequencies. The spectrum was acquired by scanning ϕ2 and ϕt values
iteratively from 0.3π to 1.1π , respectively. Color scale shows normalized signal magnitude.

with respect to τ and t to generate a 2D spectrum. Clearly
double-quantum MDCS can measure doubly excited states,
however, it can also probe samples that do not have double
excited states (or they are outside the bandwidth of the laser
pulses), e.g., two-level systems shown in Fig. 1(d). In that case
the generation of a FWM signal can be described by com-
bining (performing Hilbert space transformation) simple two
two-level systems as shown in Fig. 5(b) (solid lines) which
clearly shows a doubly excited state. In this combined picture,
|G〉 corresponds to both atoms being on the ground state, |E1〉
and |E2〉 correspond to atom 1 or atom 2 being on the excited
state, and |F 〉 corresponds to both atoms being on the excited
states. In this excitation scheme, the pathways that could po-
tentially lead to the generation of FWM signals (for example
the ones corresponding to f1 + f2 evolution and f1 emission
frequencies) are described using the double-sided Feynman
diagrams [Fig. 5(c)]. However, following the double-sided
Feynman diagram rules, the contributions completely cancel
each other as all FWM signals have exactly the same emission
frequency, the same strength, and opposite sign (I and III are

negative, II and IV are positive). This is not surprising as the
signal generation should not depend on the basis used to de-
scribe the process. If there is no signal in the two independent
atoms basis, there will be no signal in the combined picture
as well.

The result is true if there is no interaction between the
atoms, however, if we include dipole-dipole interactions, then
each state will experience a slight energy shift as shown in
Fig. 5(b) with dotted lines (or slight changes in decoherence
rates). In this case the FWM signal contributions emitted by
the sample do not perfectly cancel each other and hence leads
to a nonzero signal. To demonstrate this point, in our calcula-
tion (optical Bloch equations) we included slight energy level
shifts δ1 and δ2 (∼kHz) due to dipole-dipole interactions and
followed the Feynman diagrams shown in Fig. 5(c) to isolate
the contributions of signals related to the double-quantum
excitation scheme. In this scheme the third order polarization
induced by a pair of comb pulses in the |ge1〉 and |ge2〉 inter-
acting system [shown in Fig. 5(b)] is

PDQ(t, τ ) = 2(−i/h̄)3E3
0 μ2

ge1
μ2

ge2
{exp[i(ω1 + ω2 + δ2)τ + i(ω1 + δ1 + δ2)t − γ t − 2γ τ + in(2ϕ2 − ϕ1)]

− exp[i(ω1 + ω2 + δ2)τ + i(ω1 + δ1)t − γ t − 2γ τ + in(2ϕ2 − ϕ1)]}. (3)

For a three-level V-type system, considered in this work,
there are dipole-dipole interactions between |ge1〉 and |ge1〉
states, |ge2〉 and |ge2〉 states, and |ge2〉 and |ge1〉 states as
well that produce similar third order polarization terms. All
of these third order polarization terms were included in
our calculation and the final signal (including the contri-
butions from different excitation pulses) was then Fourier
transformed with respect to τ and t . The result is plotted

in Fig. 5(d) which was acquired by scanning ϕ2 and ϕt

values iteratively from 0.3π to 1.1π . The peaks along the
diagonal (from [0, 0] to [1, 2] GHz) correspond to coupling
between the same |e1〉 and |e2〉 energy levels of two V-
type systems (atoms), respectively, and cross-diagonal peaks
correspond to coupling between |e1〉 and |e2〉 energy levels
of two atoms. These peaks are only due to dipole-dipole
interactions.
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The description shows that, the combination of single-
quantum [Fig. 4(a)] and double-quantum [Fig. 5(d)] spectra
provide critical and complete spectroscopic information and
in frequency-comb-based MDCS they can be obtained si-
multaneously, even though the emitted FWM signals are
overlapped. Furthermore, if necessary, by controlling the CEP
slips of combs A and B, one can obtain high resolution sec-
tions of single-quantum and double-quantum 2D spectra.

Before we conclude, we note that in recent years there
has been substantial progress in developing high repetition
rate (tens to hundreds of GHz) frequency combs (e.g., mi-
crocombs) [24]. These lasers clearly are suitable for probing
samples with short dephasing times (e.g., semiconductor ma-
terials and molecules in solutions) and hence the analysis
described in this paper can readily be extended to the systems
as well.

IV. CONCLUSION

In this work we provided a theoretically description
of frequency-comb-based multidimensional coherent spec-
troscopy of systems whose dephasing times are longer than
the repetition periods of the excitation lasers. We showed that
single-quantum and double-quantum 2D spectra are obtained
simultaneously and the strength of diagonal and off-diagonal
peaks contain contributions from the FWM signals generated
by different pairs of excitation pulses. By varying the relative
phase between the excitation pulses, one can precisely control
which contributions interfere constructively or destructively
and hence resolve and display or target specific peaks on a
2D spectrum with high resolution. These improvements now

make MDCS relevant for systems with narrow resonances,
e.g., cold atomic and molecular (homonuclear and heteronu-
clear) samples that have very narrow fine or hyperfine and
rovibrational lines. Until now, these measurements were chal-
lenging with currently available MDCS methods due to their
resolution limitations and long acquisition times. In addition,
frequency-comb-based MDCS will enable us to probe these
systems in a MOT (e.g., rubidium) and Bose-Einstein conden-
sate to study many-body interactions and collective effects,
determine the interaction range and number of atoms that
contribute in the collective response, and determine energy
transfer dynamics between the excited states with fs reso-
lution. Furthermore, the method can also be used to map
out potential energy curves and probe optical properties of
ultra-long-range Rydberg molecules, also known as trilobite
molecules [25]. These exotic molecules have very unique
properties. They are the most polar molecules ever created,
even though they are homonuclear. They have very high
binding energies (∼GHz), and have extremely long radiative
lifetimes (∼tens to hundreds of μs). These are the properties
that make them very attractive for possible applications in
quantum information and frequency-comb-based MDCS is a
powerful technique to study these materials with high reso-
lution. We hope that the theoretical description and results
shown in this paper provide valuable insights into comb-based
2D spectroscopy and will aid efforts to extend MDCS to cold
atomic and molecular systems.
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